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A. Appendix: Counterfactual Learning to Rank
We also consider another important partial information setting: ranking evaluation and learning to rank based on implicit
feedback (e.g. clicks, dwell time). Here the selection bias on the feedback signal is strongly influenced by position bias,
since items lower in the ranking are less likely to be discovered by the user. However, it can be shown that this bias can
be estimated (Joachims et al., 2017; Wang et al., 2018; Agarwal et al., 2019), and that the resulting estimates can serve as
propensities in IPS-style estimators.

To connect the ranking setting with the contextual bandit setting more formally, now each context x ∼ P (X ) represents a
query and/or user profile. Given ranking function π, we use π(x) to represent the ranking for query x. However, in the
LTR setting, we no longer consider the actions atomic, but instead treat rankings as combinatorial actions where the reward
decomposes as a weighted sum of component rewards. Formally speaking, the reward for rankings π(x) is denoted as
∆(π(x)|x, r) :=

∑
d∈d λ(rank(d|π(x)))r(x, d), where λ(·) is a function that maps a rank to a score, d is the candidate set

for query x and rank(d|π(x)) represents the rank of document d in the candidate set d under the ranking policy π given
context x, and r(x, d) ∈ {0, 1} is the relevance indicator. Then we can define the overall reward for a ranking policy π as

R(π) =

∫
∆(π(x)|x, r)dP (x) (15)

Note that in this partial information setting we typically do not observe rewards for all (query, document) pairs. The
only observable reward per component may be whether the user clicks the document or not, c(x, π0(x), d) ∈ {0, 1},
and there is inherent ambiguity whether the lack of a click means lack of relevance or lack of discovery. Here we use a
latent variable o(x, π0(x), d) ∈ {0, 1} to represent whether the user x observes document d under the logging policy π0,
which then leads to the following click model: a user clicks a document when the user observes it and the document is
relevant, c(x, π0(x), d) = r(x, d) · o(x, π0(x), d). Note that the examination o(x, π0(x), d) is not observed by the system,
but one can estimate a missingness model (Joachims et al., 2017), and use p(x, π0(x), d) be the (estimated) probability
of 1{o(x, π0(x), d) = 1}. We denote this probability value as the propensity of the observation. In practice one could
estimate the propensities as outlined in (Agarwal et al., 2019; Fang et al., 2019). The logged data we get is in the format of
S = {{(xi, dij , pij , cij)}mi

j=1}ni=1 where mi is the number of candidates for context xi, pij is p(xi, π0(xi), dij) and cij is
c(xi, π0(xi), dij). For additive ranking metrics, various estimators in the Interpolated Counterfactual Estimator Family can
be written in the form

R̂w(π) =
1

n

n∑
i=1

mi∑
j=1

[
wαijαij + oijw

β
ijβij + oijw

γ
ijγij

]
· λ(rank(dij |xi, π(xi)))

with αij :=δ̂(xi, dij), βij :=
rij
pij

, γij :=
δ̂(xi, dij)

pij
.

where wαij , w
β
ij and wγij are the weight functions of the three components of the Interpolated Counterfactual Estimator

Family. Given a perfect reward model and logged propensities, we can get unbiased estimate of additive ranking metrics if
the weight functions sum to 1. The weights of various estimators in this setting are shown in Table 3.

Table 3. The weight functions for different estimators of the family R̂w(π) in the ranking setting.
Estimator wαij wβij wγij
DM 1 0 0
IPS 0 1 0
cIPS 0 min{Mpij ,1} 0
SB 1− τ τ 0

SWITCH 1
{

1
pij
>M

}
1
{

1
pij
≤M

}
0

CAB 1−min{Mpij ,1} min{Mpij ,1} 0

Note that estimators with wγij 6= 0 (DR, CAB-DR) are not applicable in this setting since the third term oijw
γ
ijγij depends

on oij , which is not observed nor fully captured by cij . However, the second term is computable since the unobserved oij
and rij are captured by cij through oijβij =

oijrij
pij

=
cij
pij

. The SWITCH estimator is applicable for learning in this setting
since the weights of the estimator do not depend on the ranking policy to be learned.



CAB: Continuous Adaptive Blending for Policy Evaluation and Learning

B. Appendix: Proofs
In this appendix, we provide proofs of the main theorems.

B.1. Proof of Theorem 1

Theorem 1 (Bias of the Interpolated Counterfactual Estimator Family). For contexts x1, x2, · · · , xn drawn i.i.d from
some distribution P (X ) and for actions yi ∼ π0(Y|xi), under Condition 1 the bias of R̂w(π) with weighting functions
w = (wα,wγ ,wγ) is

Ex Ey∼π
[

wα ∆− wβ ζδ + wγ(∆− ζ(δ + ∆))

+ (wα + wβ + wγ)δ − δ
] (8)

Proof. For simplicity, we make the following notations throughout the proof. We let ζ := ζ(x, y) denote the multiplicative
deviation of the propensity estimate from the true propensity model, and ∆ := ∆(x, y) be the additive deviation of the
reward model from the true reward. Recall

ζ(x, y) = 1− π0(y|x)

π̂0(y|x)
(16)

∆(x, y) = δ̂(x, y)− δ(x, y). (17)

Moreover, the σ2
r := σ2

r(x, y) is used to denote the randomness in reward r(x, y) with σ2
r(x, y) = Vr(r(x, y)|x, y).

Moreover, we denote the true IPS weight π(y|x)
π0(y|x) as c(x, y) with the estimated version being ĉ(x, y). Also, let wα :=

wα
xy,w

β := wβ
xy and wγ := wγ

xy be the abbreviation for the weighting functions.

We will start the proof by calculating the expectation of three different components of R̂w(π). For the αiȳ component, this
term is independent of the distribution of yi, and we have:

E
[ 1

n

n∑
i=1

∑
ȳ∈Y

π(ȳ|x) wα
iȳ αiȳ

]
= Ex

[∑
ȳ∈Y

π(ȳ|x) wα
xȳ δ̂(x, ȳ)

]
= Ex Ey∼π

[
wα

xy(δ + ∆)
]

(18)

For the IPS term βi, with xi ∼ P (X ) and yi ∼ π0(Y |x).

E
[ 1

n

n∑
i=1

π(yi|xi) wβ
i βi

]
= Ex Ey∼π0 Er

[
wβ

xy

π(y|x)

π̂0(y|x)
r(x, y)

]
= Ex Ey∼π0

[
wβ

xy

π(y|x)

π0(y|x)

π0(y|x)

π̂0(y|x)
δ
]

= Ex Ey∼π0

[
cwβ

xy(1− ζ)δ
]

= Ex Ey∼π
[

wβ
xy(1− ζ)δ

]
(19)

where the second equation follows from the fact that conditioning on (x, y), Er[r(x, y)|x, y] = δ(x, y). For the third term
γi, we have

E
[ 1

n

n∑
i=1

π(yi|xi) wγ
i γi

]
= Ex Ey∼π0

[
wγ

xy

π(y|x)

π̂0(y|x)
δ̂(x, y)

]
= Ex Ey∼π0

[
wγ

xy

π(y|x)

π0(y|x)

π0(y|x)

π̂0(y|x)
(δ + ∆)

]
= Ex Ey∼π0

[
cwγ

xy(1− ζ)(δ + ∆)
]

= Ex Ey∼π
[

wγ
xy(1− ζ)(δ + ∆)

]
(20)
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Combining these three terms and using the formula that Bias(R̂w(π)) = E[R̂w(π)]− Ex Ey∼π Er[r], we have

Bias(R̂w(π)) = Ex Ey∼π
[

wα ∆− wβ ζδ + wγ(∆− ζ(δ + ∆)) + (wα + wβ + wγ)δ − δ
]

(21)

B.2. Proof of Theorem 2

Theorem 2 (Variance of the Interpolated Counterfactual Estimator Family). Under the same conditions as in Theorem 1,
the variance of R̂w(π) with weighting functions w = (wα,wβ ,wγ) is

1

n

{
Vx
(
Eπ[wα ∆− wβ ζδ + wγ(∆− ζ(δ + ∆))

+ (wα + wβ + wγ)δ]
)

+ ExEπ
[
(wβ)2c(1− ζ)2σ2

r

]
+ Ex

[
Vπ0(wβ c(1− ζ)δ + wγ c(1− ζ)(δ + ∆))

]} (9)

Proof. We follow the same notation as in Appendix B.1. Let R̂w
i (π) :=

∑
ȳ∈Y π(ȳ|xi) wαiȳ αiȳ + π(yi|xi) wβi βi +

π(yi|xi) wγi γi with the abbreviated version defined as Rw
xy(π), and it is easy to see that V(R̂w(π)) = 1

n V(R̂w
i (π)).

V(R̂w
i (π)) = Vx

(
Ey∼π0,r[R

w
xy(π) |x]

)
+ Ex

[
Vy∼π0,r(R

w
xy(π) |x)

]
= Vx

(
Ey∼π0,r[R

w
xy(π) |x]

)
+ Ex

[
Ey∼π0

[Vr(Rw
xy(π) |x, y)|x]

]
+ Ex

[
Vy∼π0

(Er[Rw
xy(π) |x, y]|x)

] (22)

For the first term, using the bias formula in Appendix B.1, it is easy to see that

Vx
(
Ey∼π0,r[R

w
xy(π) |x]

)
= Vx

(
Ey∼π[wα

xy ∆− wβ
xy ζδ + wγ

xy(∆− ζ(δ + ∆)) + (wα
xȳ + wβ

xy + wγ
xy)δ|x]

)
(23)

For the second term, we will calculate Vr(Rw
xy(π) |x, y) first.

Vr(Rw
xy(π) |x, y) = Vr

(
wβ

xy

π(y|x)

π̂0(y|x)
r(x, y)|x, y

)
= Vr

(
wβ

xy

π(y|x)

π0(y|x)

π0(y|x)

π̂0(y|x)
r|x, y

)
= c2(wβ

xy)2(1− ζ)2 Vr(r|x, y)

= c2(wβ
xy)2(1− ζ)2σ2

r

(24)

where the first equality follows from the fact that conditioning on (x, y),
∑
ȳ∈Y π(ȳ|x) wα

xȳ αxȳ + π(y|x) wγ
xy γxy is just

a constant, and we use the formula V(a+X) = V(X) for any constant a, random variable X .

Then for the term Ex
[
Ey∼π0

[Vr(Rw
xy(π) |x, y)|x]

]
, we have

Ex
[
Ey∼π0

[Vr(Rw
xy(π) |x, y)|x]

]
= Ex Ey∼π0

[
c2(wβ

xy)2(1− ζ)2σ2
r

]
= Ex Ey∼π

[
c(wβ

xy)2(1− ζ)2σ2
r

] (25)
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Similarly, for the third term, we will calculate Er[Rw
xy(π) |x, y] first.

Er[Rw
xy(π) |x, y] = Er

[∑
ȳ∈Y

π(ȳ|x) wα
xȳ αiȳ + π(y|x) wβ

xy βxy + π(y|x) wγ
xy γxy|x, y

]
=
∑
ȳ∈Y

π(ȳ|x) wα
xȳ δ̂(x, ȳ) + Er

[
wβ

xy

π(y|x)

π0(y|x)

π0(y|x)

π̂0(y|x)
r|x, y

]
+ wγ

xy

π(y|x)

π0(y|x)

π0(y|x)

π̂0(y|x)
(δ + ∆)

=
∑
ȳ∈Y

π(ȳ|x) wα
xȳ δ̂(x, ȳ) + wβ

xy

π(y|x)

π0(y|x)

π0(y|x)

π̂0(y|x)
δ + wγ

xy

π(y|x)

π0(y|x)

π0(y|x)

π̂0(y|x)
(δ + ∆)

=
∑
ȳ∈Y

π(ȳ|x) wα
xȳ δ̂(x, ȳ) + wβ

xy c(1− ζ)δ + wγ
xy c(1− ζ)(δ + ∆)

(26)

For the term Vy∼π0

(
Er[Rw

xy(π) |x, y]|x
)

, since the first term
∑
ȳ∈Y π(ȳ|x) wα

xȳ δ̂(x, ȳ) is independent of y, then we have

Vy∼π0

(
Er[Rw

xy(π) |x, y]|x
)

= Vy∼π0

(∑
ȳ∈Y

π(ȳ|xi) wα
xȳ δ̂(xi, ȳ) + wβ

xy c(1− ζ)δ + wγ
xy c(1− ζ)(δ + ∆)|x

)
= Vy∼π0

(
wβ

xy c(1− ζ)δ + wγ
xy c(1− ζ)(δ + ∆)|x

) (27)

Then taking the outer expectation over x, we have:

Ex
[
Vy∼π0(Er[Rw

xy(π) |x, y]|x)
]

= Ex
[
Vy∼π0

(wβ
xy c(1− ζ)δ + wγ

xy c(1− ζ)(δ + ∆)|x)
]

(28)

Summing all the three terms together, and using the formula V(R̂w(π)) = 1
n V(R̂w

i (π)) for i.i.d R̂w
i , we have:

V(R̂w(π)) =
1

n

{
Vx
(
Eπ[wα ∆− wβ ζδ + wγ(∆− ζ(δ + ∆)) + (wα + wβ + wγ)δ]

)
+ ExEπ

[
(wβ)2c(1− ζ)2σ2

r

]
+ Ex

[
Vπ0(wβ c(1− ζ)δ + wγ c(1− ζ)(δ + ∆))

]} (29)

B.3. Proof of Theorem 3

Theorem 3 (Bias of CAB). For contexts x1, x2, · · · , xn drawn i.i.d from some distribution P (X ) and for actions yi ∼
π0(Y |xi), under Condition 1 the bias of R̂CAB(π) is

ExEπ[−δζ1{ĉ ≤M}+ {∆(1− M

c(1− ζ)
)− M

c(1− ζ)
δζ}1{ĉ > M}] (30)

Proof. Note CAB falls into the class of counterfactual estimator with the weighting functions wα
iȳ = 1 −

min
{
M π̂0(ȳ|xi)

π(ȳ|xi)
, 1
}
,wβ

i = min
{
M π̂0(yi|xi)

π(yi|xi)
, 1
}
,wγ

i = 0.

Using Theorem 1, the bias for R̂CAB(π) is:

Bias(R̂CAB(π)) = Ex Ey∼π
[

wα
xy ∆− wβ

xy ζδ + wγ
xy(∆− ζ(δ + ∆)) + (wα

xȳ + wβ
xy + wγ

xy)δ − δ
]

= ExEy∼π
[
(1−min{ M

ĉ(x, y)
, 1})∆−min{ M

ĉ(x, y)
, 1}ζδ

]
= ExEy∼π

[
− ζδ 1{ĉ ≤ M}+{(1− M

ĉ(x, y)
)∆− M

ĉ(x, y)
ζδ}1{ĉ > M}

]
= ExEy∼π

[
− ζδ 1{ĉ ≤ M}+{(1− M

c(1− ζ)
)∆− M

c(1− ζ)
ζδ}1{ĉ > M}

]
(31)

while the last equality follows from the fact that ĉ(x, y) := π(y|x)
π̂0(y|x) = π(y|x)

π0(y|x)
π0(y|x)
π̂0(y|x) = c(x, y)(1− ζ(x, y))
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B.4. Proof of Theorem 4

Theorem 4 (Variance of CAB). Under the same conditions as in Theorem 3, the variance of R̂CAB(π)

V(R̂CAB(π)) =
1

n

{
Vx(Eπ[δ − δζ1{ĉ ≤M}+ (∆(1− M

c(1− ζ)
)− M

c(1− ζ)
δζ)1{ĉ > M}])

+ ExEπ[c(1− ζ)2σ2
r1{ĉ ≤M}+

M2

c
σ2
r1{ĉ > M}] + Ex[Vπ0

(c(1− ζ)δ1{ĉ ≤M}+Mδ1{ĉ > M})]
}

(32)

Proof. The result follows by plugging in the weighting function for CAB with wα
iȳ = 1 − min

{
M π̂0(ȳ|xi)

π(ȳ|xi)
, 1
}
,wβ

i =

min
{
M π̂0(yi|xi)

π(yi|xi)
, 1
}
,wγ

i = 0 in Theorem 2.

For the term Vx
(
Eπ[wα ∆ − wβ ζδ + wγ(∆ − ζ(δ + ∆)) + (wα + wβ + wγ)δ]

)
, using the result from Theorem 3, we

have:

Vx
(
Eπ[wα ∆− wβ ζδ + wγ(∆− ζ(δ + ∆)) + (wα + wβ + wγ)δ]

)
= Vx

(
Eπ[δ − δζ1{ĉ ≤M}+ (∆(1− M

c(1− ζ)
)− M

c(1− ζ)
δζ)1{ĉ > M}]

) (33)

For the term ExEπ
[
(wβ)2c(1− ζ)2σ2

r

]
, we have

ExEπ
[
(wβ)2c(1− ζ)2σ2

r

]
= ExEπ

[
min{( M

ĉ(x, y)
)2, 1}c(1− ζ)2σ2

r

]
= Ex Eπ

[
c(1− ζ)2σ2

r 1{ĉ ≤ M}+
M2

ĉ2(x, y)
c(1− ζ)2σ2

r 1{ĉ > M}
]

= Ex Eπ
[
c(1− ζ)2σ2

r 1{ĉ ≤ M}+
M2

c2(1− ζ)2
c(1− ζ)2σ2

r 1{ĉ > M}
]

= Ex Eπ
[
c(1− ζ)2σ2

r 1{ĉ ≤ M}+
M2

c
σ2
r 1{ĉ > M}

]
(34)

For the last term Ex
[
Vπ0(wβ c(1− ζ)δ + wγ c(1− ζ)(δ + ∆))

]
, then

Ex
[
Vπ0

(wβ c(1− ζ)δ)
]

= Ex
[
Vπ0

(min{ M

ĉ(x, y)
, 1}c(1− ζ)δ)

]
= Ex

[
Vπ0

(c(1− ζ)δ 1{ĉ ≤ M}+
M

ĉ(x, y)
c(1− ζ)δ 1{ĉ > M})

]
= Ex

[
Vπ0

(c(1− ζ)δ 1{ĉ ≤ M}+Mδ 1{ĉ > M})
] (35)

Combining all, we have

V(R̂CAB(π)) =
1

n

{
Vx
(
Eπ[δ − δζ1{ĉ ≤M}+ (∆(1− M

c(1− ζ)
)− M

c(1− ζ)
δζ)1{ĉ > M}]

)
+ ExEπ

[
c(1− ζ)2σ2

r1{ĉ ≤M}+
M2

c
σ2
r1{ĉ > M}

]
+ Ex

[
Vπ0(c(1− ζ)δ1{ĉ ≤M}+Mδ1{ĉ > M})

]}
(36)
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B.5. Proof of Bias and Variance of CAB-DR

Theorem 5 (Bias of CAB-DR). For contexts x1, x2, · · · , xn drawn i.i.d from some distribution P (X ) and for actions
yi ∼ π0(Y |xi), under Condition 1 the bias of R̂CABDR(π) is

Ex Eπ
[
ζ∆1{ĉ ≤M}+ ∆(1− M

c
)1{ĉ > M}

]
(37)

Proof. CAB-DR is also an instance in the Interpolated Counterfactual Estimator Family with the weighting function:
wα

iȳ = 1,wβ
i = min

{
M π̂0(yi|xi)

π(yi|xi)
, 1
}
,wγ

i = −min
{
M π̂0(yi|xi)

π(yi|xi)
, 1
}

. Using Theorem 1, the bias for CAB-DR is:

Bias(R̂CABDR(π)) = Ex Eπ
[

wα ∆− wβ ζδ + wγ(∆− ζ(δ + ∆)) + (wα + wβ + wγ)δ − δ
]

= Ex Eπ
[
∆−min{ M

ĉ(x, y)
, 1}ζδ −min{ M

ĉ(x, y)
, 1}(∆− ζ(δ + ∆))

]
= Ex Eπ

[
∆−min{ M

ĉ(x, y)
, 1}(∆− ζ∆)

]
= Ex Eπ

[
ζ∆1{ĉ ≤ M}+{∆[1− M

ĉ(x, y)
(1− ζ)]}1{ĉ > M}

]
= Ex Eπ

[
ζ∆1{ĉ ≤M}+ ∆(1− M

c
)1{ĉ > M}

]
(38)

Theorem 6 (Variance of CAB-DR). Under the same conditions as in Theorem 3, the variance of R̂CABDR(π)

V(R̂CABDR(π)) =
1

n

{
Vx
(
Eπ[δ + ζ∆1{ĉ ≤M}+ ∆(1− M

c
)1{ĉ > M}]

)
+ ExEπ

[
c(1− ζ)2σ2

r1{ĉ ≤M}+
M2

c
σ2
r1{ĉ > M}

]
+ Ex

[
Vπ0

(c(1− ζ)(−∆)1{ĉ ≤M} −M∆1{ĉ > M})
]} (39)

Proof. The proof follows by using Theorem 2 with the weights wα
iȳ = 1,wβ

i = min
{
M π̂0(yi|xi)

π(yi|xi)
, 1
}
,wγ

i =

−min
{
M π̂0(yi|xi)

π(yi|xi)
, 1
}

.

For the first term, following directly from Appendix B.5, it is easy to see

Vx
(
Eπ[wα ∆−wβ ζδ+wγ(∆−ζ(δ+∆))+(wα + wβ + wγ)δ]

)
= Vx

(
Eπ[δ+ζ∆1{ĉ ≤M}+∆(1−M

c
)1{ĉ > M}]

)
(40)

For the second term ExEπ[(wβ)2c(1− ζ)2σ2
r ], since CAB and CAB-DR has the same weighting function wβ , this term is

exactly the same for CAB and CAB-DR.

For the third term Ex
[
Vπ0(wβ c(1− ζ)δ + wγ c(1− ζ)(δ + ∆))

]
, we have

Ex
[
Vπ0

(wβ c(1− ζ)δ + wγ c(1− ζ)(δ + ∆))
]

= Ex
[
Vπ0

(min{ M

ĉ(x, y)
, 1}c(1− ζ)δ −min{ M

ĉ(x, y)
, 1}c(1− ζ)(δ + ∆))

]
= Ex

[
Vπ0

(−min{ M

ĉ(x, y)
, 1}c(1− ζ)∆)

]
= Ex

[
Vπ0(c(1− ζ)(−∆)1{ĉ ≤ M}−M∆1{ĉ > M})

]
(41)

Combining all the three terms will give us the variance for R̂CABDR(π).
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C. Experiment Details
In this section, we provide experiment details for both the BLBF and LTR settings.

C.1. BLBF

In the BLBF experiment, specifically, given a supervised dataset {(xi, y∗i )}ni=1, where x is i.i.d drawn from a certain fixed
distribution P (X ) and y∗ ∈ {1, 2, · · · , k} denotes the true class label. For a particular logging policy π0, the logged bandit
data is simulated by sampling yi ∼ π0(Y|xi) and a deterministic loss r(xi, yi) is revealed. In our experiments, the loss is
defined as r(xi, yi) = 1{yi 6= y∗i } − 1. The resulting logged contextual bandit data S = {xi, yi, r(xi, yi), π0(yi|xi)} is
then used to evaluate the performance of different estimators.

For evaluation, we split each dataset equally into train and test sets. For the train set, we use 10% of the full-information data
to train the logger π0 and loss predictor πr(x), with loss estimates defined by δ̂(xi, y) = 1{πr(xi) 6= y} − 1. The policy π
we want to evaluate is a multiclass logistic regression trained on the whole train set. Finally, we use the full-information test
set to generate the contextual bandit datasets S for off-policy evaluation of sizes n = 200, 500, 2000. We evaluate the policy
π with different estimators on the logged bandit feedback of different sizes and treat the performance on the full-information
test set as ground truth R(π). The performance is measured by MSE. We repeat each experiment 500 times and calculate
the bias, variance and MSE.

For learning, we first split the original dataset into training (48%), validation (32%) and test sets (20%). Following
(Swaminathan & Joachims, 2015a), the policy we want to learn lies on the space F := {πw : w ∈ Rp} with πw as the
stochastic linear rules defined by:

πw(y|x) =
exp(wTφ(x, y))

Z(x)
(42)

Here, φ(x, y) denotes the joint feature map between context x and action y, and Z(x) is a normalization factor. The
training objective is defined by πest = argminπw∈F R̂

est(πw) + λ||w||2, where λ is selected through the lowest R̂IPS(π)
on the validation set. To avoid local minimum, the objective is optimized via L-BFGS using scikit-learn with 10 ran-
dom starts. The performance of the learned policy πest is measured via expected error on the test set, defined as:

1
ntest

∑ntest

i=1 Eyi∼πest(Y|xi)[1{yi 6= y∗i }]. Similar to evaluation, we use 20% of the training data to train the multiclass
logistics regression as logging policy with default hyperparameter. While for the estimated loss δ̂(x, y), we train the logistic
regression using 10% training data with tuned hyperparameter selected from the validation set. All the result is averaged
over 10 runs with n = 5000.

C.2. LTR

In the LTR experiment, we use 10% of the training set for learning a DM, which reflects that we typically have a small
amount of manual relevance judgements. The DM is a binary Gradient Boosted Decision Tree Classifier calibrated by
Sigmoid Calibration (Platt et al., 1999). We use λ(rank) = rank as the performance metric which can be interpreted as the
average rank of the relevant results. The examination probability (propensity) that we use is p(x, π0(x), d) = 1

rank(d|π0(x)) .
For the evaluation experiments, to get a ranking policy for evaluation, we train a ranking SVM (Joachims, 2002) on the
remaining 90% training data. As input to the estimators, different amounts of click data are generated from the test set. For
each experiment, we generate the log data 100 times and report the bias, variance, and MSE with respect to the estimated
ground truth from the full-information test set.

For the learning experiments, we derived a concrete learning algorithm based on propensity SVM-Rank that conducts
learning from biased user feedback using different estimators. The SVM-style algorithm (Joachims, 2002; 2006; Joachims
et al., 2017) optimizes an upper bound on different estimators and details are in Appendix C.3. We compare the performance
of different estimators using different amounts of simulated user feedback with the proposed learning algorithm. As input
to the propensity SVM-Rank, different amount of click data is simulated from the 90% training data. Specifically, we
present the performance using 1 sweep of the data in Table 2. We grid search C for propensity SVM-Rank and M for
different estimators and conduct hyperparameter selection with 90 percentile cIPS on user feedback data simulated from the
validation set for 5 sweeps. All the experiments are run for 5 times and the average is presented.
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C.3. Generalized Propensity SVM-Rank

We now derive a concrete learning algorithm that conducts learning from biased user feedback using different estimators
from the Interpolated Counterfactual Estimator Family. It is based on SVM-Rank (Joachims, 2002; 2006; Joachims et al.,
2017) but we expect other learning to rank methods can also be adapted to the estimators.

The generalized propensity SVM-Rank learns a linear scoring function f(x, d) = w · φ(x, d) with φ(x, d) describing how
context x and document d interact. It optimizes the following objective

ŵ = argminw,ξ
1

2
w · w +

C

n

∑
i

∑
j

[
wαijαij + oijw

β
ijβij

]∑
k 6=j

ξijk

s.t. ∀i, j, k 6= j w · [φ(xi, dij)− φ(xi, dik)] > 1− ξijk,
∀i, j, k 6= j ξijk ≥ 0

(43)

where w is the parameter of the generalized propensity SVM-Rank and C is a regularization parameter. The training
objective optimizes an upper bound on the estimator with average rank of positive examples metric(λ(rank) = rank) since∑

i

∑
j

[
wαijαij + oijw

β
ijβij

]
(rank(dij |xi, π(xi))− 1)

=
∑
i

∑
j

[
wαijαij + oijw

β
ijβij

]
·
∑
k 6=j

1{w · [φ(xi, dik)− φ(xi, dij)] > 0}

≤
∑
i

∑
j

[
wαijαij + oijw

β
ijβij

]
·
∑
k 6=j

max(1− w · [φ(xi, dij)− φ(xi, dik)], 0)

≤
∑
i

∑
j

[
wαijαij + oijw

β
ijβij

]
·
∑
k 6=j

ξijk


