
Hyperbolic Disk Embeddings for Directed Acyclic Graphs

A. Proof of Proposition 1
From the definition of C⪯(y), x ∈ C⪯(y) iff x ⪯ y. Then, we will show that x ∈ C⪯(y) ⇔ C⪯(x) ⊆ C⪯(y).

(⇐) This is obvious because x ∈ C⪯(x) holds.

(⇒) For arbitrary z ∈ C⪯(x), z ⪯ x follows the definition of C⪯(x). Likewise, x ⪯ y follows x ∈ C⪯(y). Then, z ⪯ y
holds because of the transitivity, which implies that C⪯(x) ⊆ C⪯(y). □

B. Proof of Proposition 2
B.1. Non-negativity

We will demonstrate this proposition by contradiction. Assume dW (x,y) < 0; then, sj := w⊤
j (x − y) < 0 holds for

all j = 1, · · · ,m. From the assumption coni(W ) = Rn, there exists a1, · · · , am ≥ 0 such that x − y =
∑m

j=1 ajw.
Therefore,

∥x− y∥2 = (x− y)⊤(x− y)

=

m∑
j=1

ajw
⊤
j (x− y) =

m∑
j=1

ajsj . (B.1)

Considering aj ≥ 0 and sj < 0, ∥x− y∥2 < 0 leads to a contradiction.

B.2. Identity of indiscernibles

If dW (x, y) = 0, sj ≤ 0 holds for all j = 1, · · · ,m. Considering aj ≥ 0 and sj ≤ 0 in (B.1), we obtain ∥x − y∥2 ≤ 0;
then, x = y.

B.3. Subadditivity

dW (x,y) = max
j

{w⊤
j (x− y)}

= max
j

{w⊤
j (x− z) +w⊤

j (z − y)}

≤ max
j

{w⊤
j (x− z)}+max

j
{w⊤

j (z − y)}

= dW (x, z) + dW (z,y). □

C. Proof of Theorem 1
Condition (16) is equivalent to maxk{xk − yk} ≤ 0. Thus, we will show that maxk{xk − yk} = d(x′,y′) − rx + ry if
ϕord(x) = (x′, rx), ϕord(y) = (y′, ry).

Let P⊥ = I − P = 1
n11

⊤; then,

max
k

{xk − yk} = max
k

{e⊤k (x− y)}

= max
k

{e⊤k (P + P⊥)(x− y)}.

Here, considering P⊥ek = 1
n1, Pek = wk, P

2 = P , we find

max
k

{xk − yk} = max
k

{wkP (x− y)}+ 1⊤x

n
− 1⊤y

n

= max
k

{wk(x
′ − y′)}+ (a− rx)− (a− ry)

= dW (x′,y′)− rx + ry. □ (C.2)
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D. Proof of Theorem 2
By using a uniform norm in (18) instead of a Euclidean norm,

∥h+(x− y)∥∞ = max
k

{|h+(xk − yk)|}

= h+

(
max

k
{xk − yk}

)
= h+ (dW (x′,y′)− rx + ry)

= h+ (lxy) , (D.3)

where lxy = l (x′, rx;y
′, ry) and h+ is applied element-wise. We used (C.2) for the third equation of (D.3).

From the inequality between the uniform norm and the Euclidean norm ∥x∥ ≥ ∥x∥∞, we find

Eord(x,y) = ∥h+(x− y)∥2 ≥ ∥h+(x− y)∥2∞ = h+ (lxy)
2
.

The equality holds iff
∥h+(x− y)∥ = ∥h+(x− y)∥∞,

i.e.,
|{k|h+(xk − yk) ̸= 0}| ≤ 1. □

E. Proof of Theorem 3
We first prove Theorem 4 and then use our results to prove Theorem 3. Thus, see Sec. F first.

By eliminating dx from (F.5) and (F.11), we obtain

sin(rx + θ0) =
1 + ∥x∥2

2∥x∥
sin θ0,

which is followed by (21).

The equivalence of ordering (3) and (20) is directly derived from Theorem 4 since

Ehyp
ij ≤ 0 ⇔ lij ≤ 0. □ (E.4)

F. Proof of Theorem 4

Figure 5. Hyperbolic Entailment cones.

To obtain (23), we present ψ − Ξ in Figure 5 as a function of rX , rY , and D. Let dx, dy , and dxy be

dx = dD(O,X)

dy = dD(O, Y )

dxy = dD(X,Y )
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and x and y be

x = ∥x∥ = tanh
dx
2
. (F.5)

y = ∥y∥ = tanh
dy
2
. (F.6)

Assume that XP = s in the Euclidean triangle △OPX; then, OP = 1− s. Thus,

(1− s) sin rX = s sinψ. (F.7)

By applying the law of cosines to ∠POX , it is shown that

s2 = x2 + (1− s)2 − 2x(1− s) cos rX . (F.8)

By removing s from (F.7) and (F.8) and substituting (F.5), we have

sinψ =
sin rX

cosh dx − sinh dx cos rX
. (F.9)

In addition, from the assumption of Hyperbolic Cones (Ganea et al., 2018),

sinψ = K
1− x2

x
=

2K

sinh dx
. (F.10)

Comparing the right-hand side of equations (F.9) and (F.10), we have

coth dx = cos rX +
1

2K
sin rX =

sin(rX + θ0)

sin θ0
(F.11)

where θ0 = arctan 2K.

In the same manner, we have

coth dy =
sin(rY + θ0)

sin θ0
. (F.12)

By substituting (F.11) into (F.10),

sinψ = 2K

√
coth2 dx − 1

= tan θ0

√
sin2(rX − θ0)

sin2 θ0
− 1

=

√
sin(rX) sin(rX + 2ϕ0)

cos θ0
. (F.13)

Applying the law of sines and the law of cosines to the hyperbolic triangle △OXY , we have

sinh dy sinD = sinh dxy sinΞ, (F.14)

cosD =
cosh dx cosh dy − cosh dxy

sinh dx sinh dy
. (F.15)

By eliminating dxy from (F.14) and (F.15), and substituting (F.11) and (F.12), it is finally shown that

sin(Ξ−ψ) = 2 sin

(
rX − rY −D

2

)
cos
(
rX+rY −D

2 + θ0
)

cos θ0 sin θ0

√
sin rX sin(rX + 2θ0)

s2X + s2Y − 2sXsY cosD − sin2D
, (F.16)

where

sX =
sin(rX + θ0)

sin θ0
, sY =

sin(rY + θ0)

sin θ0
.
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G. Euclidean Entailment Cones
Similar to Hyperbolic Cones (Ganea et al., 2018), Euclidean Cones are also considered as Disk Embeddings. Here, we
will show that ψ − Ξ in Euclidean entailment cones is also represented by Rx, Ry and D.

Let dx, dy , and dxy be

dx = d(O,X) = x,

dy = d(O, Y ) = y,

dxy = d(x, y).

(G.17), (G.18), and (G.19) are determined by applying the law of sines to △OAB and △OXY :

sin(ψ −Rx)

x
= sinψ, (G.17)

sin(ϕ−Ry)

y
= sinϕ, (G.18)

sinΞ

y
=

sinD

dxy
. (G.19)

Moreover, for Euclid entailment cones,

sinψ =
K

x
, (G.20)

sinϕ =
K

y
. (G.21)

(G.22)

By applying the law of cosines to △OXY , we obtain dxy:

dxy
2 = x2 + y2 − 2xy cosD. (G.23)

We represent ψ − Ξ as rX , rY , dxy , and K. By eliminating x, y, dxy , and ϕ from (G.17) to (G.23), it is finally shown that

sin(ψ − Ξ) =
2σX cos

(
rX−rY −D

2

)
sin
(
rX+rY −D

2 + ξ0
)√

σ2
X + σ2

Y − 2σXσY cosD
, (G.24)

where σX = sin(rX + ξ0), σY = sin(rY + ξ0) and ξ0 = arcsinK.

H. Loss functions for Hyperbolic Entailment Cones in Disk Embedding format
In Figure 6, we illustrate values of energy function (23) for lij with fixed ri, rj .
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Figure 6. Values of Ehyp
ij for lij with fixed ri, rj .


