A. Proof of Proposition 1

From the definition of $C_{\preceq}(y), x \in C_{\preceq}(y)$ iff $x \preceq y$. Then, we will show that $x \in C_{\preceq}(y) \Leftrightarrow C_{\preceq}(x) \subseteq C_{\preceq}(y)$.
(\Leftarrow) This is obvious because $x \in C_{\preceq}(x)$ holds.
(\Rightarrow) For arbitrary $z \in C \preceq(x)$, $z \preceq x$ follows the definition of $C \preceq(x)$. Likewise, $x \preceq y$ follows $x \in C \preceq(y)$. Then, $z \preceq y$ holds because of the transitivity, which implies that $C_{\preceq}(x) \subseteq C_{\preceq}(y)$.

B. Proof of Proposition 2

B.1. Non-negativity

We will demonstrate this proposition by contradiction. Assume $d_{W}(\boldsymbol{x}, \boldsymbol{y})<0$; then, $s_{j}:=\boldsymbol{w}_{j}^{\top}(\boldsymbol{x}-\boldsymbol{y})<0$ holds for all $j=1, \cdots, m$. From the assumption coni $(W)=\mathbb{R}^{n}$, there exists $a_{1}, \cdots, a_{m} \geq 0$ such that $\boldsymbol{x}-\boldsymbol{y}=\sum_{j=1}^{m} a_{j} \boldsymbol{w}$. Therefore,

$$
\begin{align*}
\|\boldsymbol{x}-\boldsymbol{y}\|^{2} & =(\boldsymbol{x}-\boldsymbol{y})^{\top}(\boldsymbol{x}-\boldsymbol{y}) \\
& =\sum_{j=1}^{m} a_{j} \boldsymbol{w}_{j}^{\top}(\boldsymbol{x}-\boldsymbol{y})=\sum_{j=1}^{m} a_{j} s_{j} . \tag{B.1}
\end{align*}
$$

Considering $a_{j} \geq 0$ and $s_{j}<0,\|\boldsymbol{x}-\boldsymbol{y}\|^{2}<0$ leads to a contradiction.

B.2. Identity of indiscernibles

If $d_{W}(x, y)=0, s_{j} \leq 0$ holds for all $j=1, \cdots, m$. Considering $a_{j} \geq 0$ and $s_{j} \leq 0$ in (B.1), we obtain $\|\boldsymbol{x}-\boldsymbol{y}\|^{2} \leq 0$; then, $\boldsymbol{x}=\boldsymbol{y}$.

B.3. Subadditivity

$$
\begin{aligned}
d_{W}(\boldsymbol{x}, \boldsymbol{y}) & =\max _{j}\left\{\boldsymbol{w}_{j}^{\top}(\boldsymbol{x}-\boldsymbol{y})\right\} \\
& =\max _{j}\left\{\boldsymbol{w}_{j}^{\top}(\boldsymbol{x}-\boldsymbol{z})+\boldsymbol{w}_{j}^{\top}(\boldsymbol{z}-\boldsymbol{y})\right\} \\
& \leq \max _{j}\left\{\boldsymbol{w}_{j}^{\top}(\boldsymbol{x}-\boldsymbol{z})\right\}+\max _{j}\left\{\boldsymbol{w}_{j}^{\top}(\boldsymbol{z}-\boldsymbol{y})\right\} \\
& =d_{W}(\boldsymbol{x}, \boldsymbol{z})+d_{W}(\boldsymbol{z}, \boldsymbol{y}) .
\end{aligned}
$$

C. Proof of Theorem 1

Condition (16) is equivalent to $\max _{k}\left\{x_{k}-y_{k}\right\} \leq 0$. Thus, we will show that $\max _{k}\left\{x_{k}-y_{k}\right\}=d\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)-r_{x}+r_{y}$ if $\phi_{\text {ord }}(\boldsymbol{x})=\left(\boldsymbol{x}^{\prime}, r_{x}\right), \phi_{\text {ord }}(\boldsymbol{y})=\left(\boldsymbol{y}^{\prime}, r_{y}\right)$.
Let $P_{\perp}=I-P=\frac{1}{n} \mathbf{1 1}^{\top}$; then,

$$
\begin{aligned}
\max _{k}\left\{x_{k}-y_{k}\right\} & =\max _{k}\left\{\boldsymbol{e}_{k}^{\top}(\boldsymbol{x}-\boldsymbol{y})\right\} \\
& =\max _{k}\left\{\boldsymbol{e}_{k}^{\top}\left(P+P_{\perp}\right)(\boldsymbol{x}-\boldsymbol{y})\right\} .
\end{aligned}
$$

Here, considering $P_{\perp} \boldsymbol{e}_{k}=\frac{1}{n} \mathbf{1}, P \boldsymbol{e}_{k}=\boldsymbol{w}_{k}, P^{2}=P$, we find

$$
\begin{align*}
\max _{k}\left\{x_{k}-y_{k}\right\} & =\max _{k}\left\{\boldsymbol{w}_{k} P(\boldsymbol{x}-\boldsymbol{y})\right\}+\frac{\mathbf{1}^{\top} \boldsymbol{x}}{n}-\frac{\mathbf{1}^{\top} \boldsymbol{y}}{n} \\
& =\max _{k}\left\{\boldsymbol{w}_{k}\left(\boldsymbol{x}^{\prime}-\boldsymbol{y}^{\prime}\right)\right\}+\left(a-r_{x}\right)-\left(a-r_{y}\right) \\
& =d_{W}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)-r_{x}+r_{y} . \tag{C.2}
\end{align*}
$$

D. Proof of Theorem 2

By using a uniform norm in (18) instead of a Euclidean norm,

$$
\begin{align*}
\left\|h_{+}(\boldsymbol{x}-\boldsymbol{y})\right\|_{\infty} & =\max _{k}\left\{\left|h_{+}\left(x_{k}-y_{k}\right)\right|\right\} \\
& =h_{+}\left(\max _{k}\left\{x_{k}-y_{k}\right\}\right) \\
& =h_{+}\left(d_{W}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)-r_{x}+r_{y}\right) \\
& =h_{+}\left(l_{x y}\right) \tag{D.3}
\end{align*}
$$

where $l_{x y}=l\left(\boldsymbol{x}^{\prime}, r_{x} ; \boldsymbol{y}^{\prime}, r_{y}\right)$ and h_{+}is applied element-wise. We used (C.2) for the third equation of (D.3).
From the inequality between the uniform norm and the Euclidean norm $\|x\| \geq\|x\|_{\infty}$, we find

$$
E^{\mathrm{ord}}(\boldsymbol{x}, \boldsymbol{y})=\left\|h_{+}(\boldsymbol{x}-\boldsymbol{y})\right\|^{2} \geq\left\|h_{+}(\boldsymbol{x}-\boldsymbol{y})\right\|_{\infty}^{2}=h_{+}\left(l_{x y}\right)^{2} .
$$

The equality holds iff

$$
\left\|h_{+}(\boldsymbol{x}-\boldsymbol{y})\right\|=\left\|h_{+}(\boldsymbol{x}-\boldsymbol{y})\right\|_{\infty}
$$

i.e.,

$$
\left|\left\{k \mid h_{+}\left(x_{k}-y_{k}\right) \neq 0\right\}\right| \leq 1 .
$$

E. Proof of Theorem 3

We first prove Theorem 4 and then use our results to prove Theorem 3. Thus, see Sec. F first.
By eliminating d_{x} from (F.5) and (F.11), we obtain

$$
\sin \left(r_{x}+\theta_{0}\right)=\frac{1+\|\boldsymbol{x}\|^{2}}{2\|\boldsymbol{x}\|} \sin \theta_{0}
$$

which is followed by (21).
The equivalence of ordering (3) and (20) is directly derived from Theorem 4 since

$$
\begin{equation*}
E_{i j}^{\text {hyp }} \leq 0 \Leftrightarrow l_{i j} \leq 0 \tag{E.4}
\end{equation*}
$$

F. Proof of Theorem 4

Figure 5. Hyperbolic Entailment cones.

To obtain (23), we present $\psi-\Xi$ in Figure 5 as a function of r_{X}, r_{Y}, and D. Let d_{x}, d_{y}, and $d_{x y}$ be

$$
\begin{aligned}
d_{x} & =d_{\mathbb{D}}(O, X) \\
d_{y} & =d_{\mathbb{D}}(O, Y) \\
d_{x y} & =d_{\mathbb{D}}(X, Y)
\end{aligned}
$$

and x and y be

$$
\begin{align*}
& x=\|\boldsymbol{x}\|=\tanh \frac{d_{x}}{2} \tag{F.5}\\
& y=\|\boldsymbol{y}\|=\tanh \frac{d_{y}}{2} . \tag{F.6}
\end{align*}
$$

Assume that $X P=s$ in the Euclidean triangle $\triangle O P X$; then, $O P=1-s$. Thus,

$$
\begin{equation*}
(1-s) \sin r_{X}=s \sin \psi \tag{F.7}
\end{equation*}
$$

By applying the law of cosines to $\angle P O X$, it is shown that

$$
\begin{equation*}
s^{2}=x^{2}+(1-s)^{2}-2 x(1-s) \cos r_{X} \tag{F.8}
\end{equation*}
$$

By removing s from (F.7) and (F.8) and substituting (F.5), we have

$$
\begin{equation*}
\sin \psi=\frac{\sin r_{X}}{\cosh d_{x}-\sinh d_{x} \cos r_{X}} \tag{F.9}
\end{equation*}
$$

In addition, from the assumption of Hyperbolic Cones (Ganea et al., 2018),

$$
\begin{equation*}
\sin \psi=K \frac{1-x^{2}}{x}=\frac{2 K}{\sinh d_{x}} \tag{F.10}
\end{equation*}
$$

Comparing the right-hand side of equations (F.9) and (F.10), we have

$$
\begin{equation*}
\operatorname{coth} d_{x}=\cos r_{X}+\frac{1}{2 K} \sin r_{X}=\frac{\sin \left(r_{X}+\theta_{0}\right)}{\sin \theta_{0}} \tag{F.11}
\end{equation*}
$$

where $\theta_{0}=\arctan 2 K$.
In the same manner, we have

$$
\begin{equation*}
\operatorname{coth} d_{y}=\frac{\sin \left(r_{Y}+\theta_{0}\right)}{\sin \theta_{0}} \tag{F.12}
\end{equation*}
$$

By substituting (F.11) into (F.10),

$$
\begin{align*}
\sin \psi & =2 K \sqrt{\operatorname{coth}^{2} d_{x}-1} \\
& =\tan \theta_{0} \sqrt{\frac{\sin ^{2}\left(r_{X}-\theta_{0}\right)}{\sin ^{2} \theta_{0}}-1} \\
& =\frac{\sqrt{\sin \left(r_{X}\right) \sin \left(r_{X}+2 \phi_{0}\right)}}{\cos \theta_{0}} \tag{F.13}
\end{align*}
$$

Applying the law of sines and the law of cosines to the hyperbolic triangle $\triangle O X Y$, we have

$$
\begin{align*}
\sinh d_{y} \sin D & =\sinh d_{x y} \sin \Xi \tag{F.14}\\
\cos D & =\frac{\cosh d_{x} \cosh d_{y}-\cosh d_{x y}}{\sinh d_{x} \sinh d_{y}} \tag{F.15}
\end{align*}
$$

By eliminating $d_{x y}$ from (F.14) and (F.15), and substituting (F.11) and (F.12), it is finally shown that

$$
\begin{equation*}
\sin (\Xi-\psi)=2 \sin \left(\frac{r_{X}-r_{Y}-D}{2}\right) \frac{\cos \left(\frac{r_{X}+r_{Y}-D}{2}+\theta_{0}\right)}{\cos \theta_{0} \sin \theta_{0}} \sqrt{\frac{\sin r_{X} \sin \left(r_{X}+2 \theta_{0}\right)}{s_{X}^{2}+s_{Y}^{2}-2 s_{X} s_{Y} \cos D-\sin ^{2} D}} \tag{F.16}
\end{equation*}
$$

where

$$
s_{X}=\frac{\sin \left(r_{X}+\theta_{0}\right)}{\sin \theta_{0}}, s_{Y}=\frac{\sin \left(r_{Y}+\theta_{0}\right)}{\sin \theta_{0}}
$$

G. Euclidean Entailment Cones

Similar to Hyperbolic Cones (Ganea et al., 2018), Euclidean Cones are also considered as Disk Embeddings. Here, we will show that $\psi-\Xi$ in Euclidean entailment cones is also represented by Rx, Ry and D .

Let d_{x}, d_{y}, and $d_{x y}$ be

$$
\begin{array}{r}
d_{x}=d(O, X)=x, \\
d_{y}=d(O, Y)=y, \\
\quad d_{x y}=d(x, y) .
\end{array}
$$

(G.17), (G.18), and (G.19) are determined by applying the law of sines to $\triangle O A B$ and $\triangle O X Y$:

$$
\begin{align*}
\frac{\sin \left(\psi-R_{x}\right)}{x} & =\sin \psi \tag{G.17}\\
\frac{\sin \left(\phi-R_{y}\right)}{y} & =\sin \phi \tag{G.18}\\
\frac{\sin \Xi}{y} & =\frac{\sin D}{d_{x y}} \tag{G.19}
\end{align*}
$$

Moreover, for Euclid entailment cones,

$$
\begin{align*}
\sin \psi & =\frac{K}{x} \tag{G.20}\\
\sin \phi & =\frac{K}{y} \tag{G.21}
\end{align*}
$$

By applying the law of cosines to $\triangle O X Y$, we obtain $d_{x y}$:

$$
\begin{equation*}
d_{x y}{ }^{2}=x^{2}+y^{2}-2 x y \cos D \tag{G.23}
\end{equation*}
$$

We represent $\psi-\Xi$ as $r_{X}, r_{Y}, d_{x y}$, and K. By eliminating $x, y, d_{x y}$, and ϕ from (G.17) to (G.23), it is finally shown that

$$
\begin{equation*}
\sin (\psi-\Xi)=\frac{2 \sigma_{X} \cos \left(\frac{r_{X}-r_{Y}-D}{2}\right) \sin \left(\frac{r_{X}+r_{Y}-D}{2}+\xi_{0}\right)}{\sqrt{\sigma_{X}^{2}+\sigma_{Y}^{2}-2 \sigma_{X} \sigma_{Y} \cos D}} \tag{G.24}
\end{equation*}
$$

where $\sigma_{X}=\sin \left(r_{X}+\xi_{0}\right), \sigma_{Y}=\sin \left(r_{Y}+\xi_{0}\right)$ and $\xi_{0}=\arcsin K$.

H. Loss functions for Hyperbolic Entailment Cones in Disk Embedding format

In Figure 6, we illustrate values of energy function (23) for $l_{i j}$ with fixed r_{i}, r_{j}.

Figure 6. Values of $E_{i j}^{\text {hyp }}$ for $l_{i j}$ with fixed r_{i}, r_{j}.

