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Abstract

This paper presents a methodology and numerical
algorithms for constructing accelerated gradient
flows on the space of probability distributions. In
particular, we extend the recent variational formu-
lation of accelerated methods in (Wibisono et al.,
2016) from vector valued variables to probability
distributions. The variational problem is modeled
as a mean-field optimal control problem. A quan-
titative estimate on the asymptotic convergence
rate is provided based on a Lyapunov function
construction, when the objective functional is dis-
placement convex. An important special case is
considered where the objective functional is the
relative entropy. For this case, two numerical
approximations are presented to implement the
Hamilton’s equations as a system ofN interacting
particles. The algorithm is numerically illustrated
and compared with the MCMC and Hamiltonian
MCMC algorithms.

1. Introduction
Optimization on the space of probability distributions is im-
portant to a number of machine learning models including
variational inference (Blei et al., 2017), generative mod-
els (Goodfellow et al., 2014; Arjovsky et al., 2017), and
policy optimization in reinforcement learning (Sutton et al.,
2000). A number of recent studies have considered solution
approaches to these problems based upon a construction of
gradient flow on the space of probability distributions (Liu
& Wang, 2016; Richemond & Maginnis, 2017; Zhang et al.,
2018; Frogner & Poggio, 2018; Chizat & Bach, 2018; Chen
et al., 2018; Liu et al., 2018). Such constructions are useful
for convergence analysis as well as development of numeri-
cal algorithms.

1Department of Mechanical Science and Engineering, Co-
ordinated Science Laboratory, University of Illinois at Urbana-
Champaign, Urbana, IL, USA. Correspondence to: Amirhossein
Taghvaei <taghvae2@illinois.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

In this paper, we propose a methodology and numerical
algorithms that achieve accelerated gradient flows on the
space of probability distributions. The proposed numerical
algorithms are related to yet distinct from the accelerated
stochastic gradient descent (Jain et al., 2017) and Hamilto-
nian Markov chain Monte-Carlo (MCMC) algorithms (Neal
et al., 2011; Cheng et al., 2017). The proposed methodol-
ogy extends the variational formulation of (Wibisono et al.,
2016) from vector valued variables to probability distribu-
tions. The original formulation of (Wibisono et al., 2016)
was used to derive and analyze the convergence properties
of a large class of accelerated optimization algorithms, most
significant of which is the continuous-time limit of the Nes-
terov’s algorithm (Su et al., 2014). In this paper, the limit is
referred to as the Nesterov’s ordinary differential equation.

The extension proposed in our work is based upon a general-
ization of the formula for the Lagrangian in (Wibisono et al.,
2016): (i) the kinetic energy term is replaced with the ex-
pected value of kinetic energy; (ii) the potential energy term
is replaced with a suitably defined functional on the space
of probability distributions. The variational problem is to
obtain a trajectory in the space of probability distributions
that minimizes the action integral of the Lagrangian.

The variational problem is modeled as a mean-field opti-
mal problem (Bensoussan et al., 2013; Carmona & Delarue,
2017). The maximum principle of the optimal control theory
is used to derive the Hamilton’s equations which represent
the first order optimality conditions. The Hamilton’s equa-
tions provide a generalization of the Nesterov’s ODE to the
space of probability distributions. A Lyapunov function is
proposed for the convergence analysis of the solution of the
Hamilton’s equations. In this way, quantitative estimates
on convergence rate are obtained for the case when the ob-
jective functional is displacement convex (McCann, 1997).
Table 1 provides a summary of the relationship between the
original variational formulation in (Wibisono et al., 2016)
and the extension proposed in this paper.

We also consider the important special case when the objec-
tive functional is the relative entropy functional D(ρ|ρ∞) de-
fined with respect to a target probability distribution ρ∞. In
this case, the accelerated gradient flow is shown to be related
to the continuous limit of the Hamiltonian Monte-Carlo
algorithm (Cheng et al., 2017) (Remark 2). The Hamil-
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ton’s equations are finite-dimensional for the special case
when the initial and the target probability distributions are
both Gaussian. In this case, the mean evolves according to
the Nesterov’s ODE. For the general case, the Lyapunov
function-based convergence analysis applies when the target
distribution is log-concave.

As a final contribution, the proposed methodology is used
to obtain a numerical algorithm. The algorithm is an in-
teracting particle system that empirically approximates the
distribution with a finite but large number of N particles.
The difficult part of this construction is the approximation
of the interaction term between particles. For this purpose,
two types of approximations are described: (i) Gaussian
approximation which is asymptotically (as N →∞) exact
in Gaussian settings; and (ii) Diffusion map approximation
which is computationally more demanding but asymptoti-
cally exact for a general class of distributions.

The outline of the remainder of this paper is as follows:
Sec. 2 provides a brief review of the variational formulation
in (Wibisono et al., 2016). The proposed extension to the
space of probability distribution appears in Sec. 3 where the
main result is also described. The numerical algorithm along
with the results of numerical experiments appear in Sec. 4.
Comparisons with MCMC and Hamiltonian MCMC are
also described. The conclusions appear in Sec. 5. The proof
of the results appear in the supplementary note.

1.1. Related work

Construction of accelerated flows for probability distribution
was proposed in (Liu et al., 2018) based on the generaliza-
tion of the Nesterov’s method to Riemannian manifolds (Liu
et al., 2017). The procedure involves approximating the ex-
ponential map and parallel transport map for probability
distributions in the Wasserstein space. Our construction
of accelerated flow is different from (Liu et al., 2018) in
several respects: i) we describe a variational formulation
and make connection to mean-field control theory; ii) our
variational construction yields a continuous-time algorithm
providing a straightforward comparison to HMCMC; iii)
we carry out convergence analysis based upon a Lyapunov
function method; iv) and analysis in Gaussian setting shows
we recover the Nesterov ode.

Another class of related work are the interacting particle-
based numerical algorithms designed to sample from a target
distribution. An example is the Stein variational gradient
descent (SVGD) algorithm (Liu & Wang, 2016; Liu, 2017)
based on the Riemannian construction of the gradient flow.
Another example is the particle optimization method (Chen
et al., 2018), whose update is obtained from a solution to an
optimization problem based on the variational formulation
of the Langevin dynamics. Interacting particle systems have
also been shown to be useful for numerically solving the

nonlinear filtering problem (Del Moral et al., 1998; Reich,
2011; Yang et al., 2016; Zhang et al., 2019).

Notation: The gradient and divergence operators are de-
noted as∇ and∇· respectively. With multiple variables,∇z
denotes the gradient with respect to the variable z. There-
fore, the divergence of the vector field U is ∇ · U(x) =∑d
n=1∇xnUn(x). The space of absolutely continuous prob-

ability measures on Rd with finite second moments is de-
noted by Pac,2(Rd). For a measure µ ∈ Pac,2(Rd) and a
measurable map T : Rd → Rd, the push-forward of µ by T
is denoted by T#µ. The second-order Wasserstein distance
between any two measures µ, ν ∈ Pac,2(Rd) is denoted
as W2(µ, ν). The Wasserstein gradient and the Gâteaux
derivative of a functional F is denoted as∇ρF(ρ) and ∂F

∂ρ (ρ)
respectively (see supplementary note for definition). The
probability distribution of a random variable Z is denoted
as Law(Z).

2. Review of the variational formulation
of (Wibisono et al., 2016)

The basic problem is to minimize a C1 smooth convex
function f on Rd. The standard form of the gradient descent
algorithm for this problem is an ODE:

dXt

dt
= −∇f(Xt), t ≥ 0 (1)

Accelerated forms of this algorithm are obtained based on
a variational formulation due to (Wibisono et al., 2016).
The formulation is briefly reviewed here using an optimal
control formalism. The Lagrangian L : R+×Rd×Rd → R
is defined as

L(t, x, u) := eαt+γt
(

1

2
|e−αtu|2︸ ︷︷ ︸

kinetic energy

− eβtf(x)︸ ︷︷ ︸
potential energy

)
(2)

where t ≥ 0 is the time, x ∈ Rd is the state, u ∈ Rd is the
velocity or control input, and the time-varying parameters
αt, βt, γt satisfy the following scaling conditions: αt =
log p− log t, βt = p log t+ logC, and γt = p log t where
p ≥ 2 and C > 0 are constants.

The variational problem is

Minimize
u

J(u) =

∫ ∞
0

L(t,Xt, ut) dt

Subject to
dXt

dt
= ut, X0 = x0

(3)

where ut is the control input chosen to minimize the objec-
tive function J(u). over all control laws {ut}t>0 in Rd.

The Hamiltonian function is

H(t, x, y, u) = y · u− L(t, x, u) (4)
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Vector Probability distribution

State-space Rd P2(Rd)

Objective function f(x) F(ρ) := D(ρ|ρ∞)

Lagrangian eαt+γt
(
1
2 |e
−αtu|2 − eβtf(x)

)
eαt+γtE

[
1
2 |e
−αtU |2 − eβt log( ρ(X)

ρ∞(X) )
]

Lyapunov funct.
1
2 |x+ e−γty − x̄|2 1

2E[|Xt + e−γtYt − T ρ∞ρt (Xt)|2]

+eβt(f(x)− f(x̄)) +eβt(F(ρt)− F(ρ∞))

Convergence rate f(xt)− f(x̄) ≤ O(e−βt) F (ρt)− F (ρ∞) ≤ O(e−βt)

Table 1. Summary of the variational formulations for vectors and probability distributions.

where y ∈ Rd is dual variable and y · u denotes the dot
product between vectors y and u.

According to the Pontryagin’s Maximum Principle, the opti-
mal control u∗t = arg max

v
H(t,Xt, Yt, v) = eαt−γtYt. The

resulting Hamilton’s equations are

dXt

dt
= +∇yH(t,Xt, Yt, u

∗
t ) = eαt−γtYt, X0 = x0

(5a)
dYt
dt

= −∇xH(t,Xt, Yt, u
∗
t ) = −eαt+βt+γt∇f(Xt),

(5b)

The system (5) is an example of accelerated gradient de-
scent algorithm. Specifically, if the parameters αt, βt, γt are
defined using p = 2, one obtains the continuous-time limit
of the Nesterov’s accelerated algorithm. It is referred to as
the Nesterov’s ODE in this paper.

For this system, a Lyapunov function is as follows:

V (t, x, y) =
1

2

∣∣x+ e−γty − x̄
∣∣2 +eβt(f(x)−f(x̄)) (6)

where x̄ ∈ arg minx f(x). It is shown in (Wibisono et al.,
2016) that upon differentiating along the solution trajectory,
d
dtV (t,Xt, Yt) ≤ 0. This yields the convergence rate:

f(Xt)− f(x̄) ≤ O(e−βt), ∀t ≥ 0 (7)

3. Variational formulation for probability
distributions

3.1. Motivation and background

Let F : Pac,2(Rd)→ R be a functional on the space of prob-
ability distributions. Consider the problem of minimizing
F(ρ). The (Wasserstein) gradient flow with respect to F(ρ)
is a curve ρt such that

∂ρt
∂t

(x) = ∇ · (ρt(x)∇ρF(ρt)(x)) (8)

where (the vector field) ∇ρF(ρ) : Rd → Rd is the Wasser-
stein gradient of F.

An important example is the relative entropy functional
where F(ρ) = D(ρ|ρ∞) :=

∫
Rd log( ρ(x)

ρ∞(x) )ρ(x) dx where
ρ∞ ∈ Pac,2(Rd) is referred to as the target distribution.
The gradient of relative entropy is given by ∇ρF(ρ)(x) =

∇ log( ρ(x)
ρ∞(x) ) (Ch. 8.3 in (Villani, 2003)). The gradient

flow

∂ρt
∂t

(x) = −∇ · (ρt(x)∇ log(ρ∞(x))) + ∆ρt(x) (9)

is the Fokker-Planck equation (Jordan et al., 1998). The gra-
dient flow achieves the density transport from an initial prob-
ability distribution ρ0 to the target (here, also equilibrium)
probability distribution ρ∞; and underlies the construction
and the analysis of Markov chain Monte-Carlo (MCMC)
algorithms. The simplest MCMC algorithm is the Langevin
stochastic differential equation (SDE):

dXt = −∇f(Xt) dt+
√

2 dBt, X0 ∼ ρ0

where Bt is the standard Brownian motion in Rd.

The main problem of this paper is to construct an accelerated
form of the gradient flow (8). The proposed solution is based
upon a variational formulation. As tabulated in Table 1,
the solution represents a generalization of (Wibisono et al.,
2016) from its original deterministic finite-dimensional to
now probabilistic infinite-dimensional settings.

The variational problem can be expressed in two equiva-
lent forms: (i) The probabilistic form and (ii) The partial
differential equation (PDE)

3.2. Probabilistic form of the variational problem

Consider the stochastic process {Xt}t≥0 that takes values
in Rd and evolves according to:

dXt

dt
= Ut, X0 ∼ ρ0
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where the control input {Ut}t≥0 also takes values in Rd,
and ρ0 ∈ Pac,2(Rd) is the probability distribution of the
initial condition X0. It is noted that the randomness here
comes only from the random initial condition.

Suppose the objective functional is of the form F(ρ) =∫
F̃ (ρ, x)ρ(x) dx. The Lagrangian L : R+ × Rd ×
Pac,2(Rd)× Rd → R is defined as

L(t, x, ρ, u) := eαt+γt
(

1

2
|e−αtu|2︸ ︷︷ ︸

kinetic energy

− eβt F̃ (ρ, x)︸ ︷︷ ︸
potential energy

)
(10)

This formula is a natural generalization of the Lagrangian (2)
and the parameters αt, βt, γt are defined exactly the same
as in the finite-dimensional case. The stochastic optimal
control problem is:

Minimize J(u) = E

[∫ ∞
0

L(t,Xt, ρt, Ut) dt

]
Subject to

dXt

dt
= Ut, X0 ∼ ρ0

(11)

where ρt = Law(Xt) ∈ Pac,2(Rd) is the probability density
function of the random variable Xt.

The Hamiltonian function H : R+×Rd×Pac,2(Rd)×Rd×
Rd → R for this problem is given by (see Sec. 6.2.3 in
(Carmona & Delarue, 2017)):

H(t, x, ρ, y, u) := u · y − L(t, x, ρ, u) (12)

where y ∈ Rd is the dual variable.

Remark 1. The variational problem (11) is an example of a
mean-field (McKean-Vlasov) optimal control problem. This
is because the Lagrangian depends also upon the law of
the stochastic process; cf., Ch. 6 in (Carmona & Delarue,
2017).

3.3. PDE formulation of the variational problem

An equivalent pde formulation is obtained by considering
the stochastic optimal control problem (11) as a determinis-
tic optimal control problem on the space of the probability
distributions. Specifically, the process {ρt}t≥0 is a deter-
ministic process that takes values in Pac,2(Rd) and evolves
according to the continuity equation

∂ρt
∂t

= −∇ · (ρtut)

where ut : Rd → Rd is now a time-varying vector field.
The Lagrangian L : R+×Pac,2(Rd)×L2(Rd;Rd)→ R is
defined as:

L(t, ρ, u) := eαt+γt
[∫

Rd

1

2
|e−αtu(x)|2ρ(x) dx− eβtF(ρ)

]
(13)

The optimal control problem is:

Minimize
∫ ∞
0

L(t, ρt, ut) dt

Subject to
∂ρt
∂t

+∇ · (ρtut) = 0

(14)

The Hamiltonian functionH : R+×Pac,2(Rd)×C(Rd;R)×
L2(Rd;Rd)→ R is

H(t, ρ, φ, u) := 〈∇φ, u〉L2(ρ) − L(t, ρ, u) (15)

where φ ∈ C(Rd;R) is the dual variable and the inner-
product 〈∇φ, u〉L2(ρ) :=

∫
Rd ∇φ(x) · u(x)ρ(x) dx

3.4. Main result

Theorem 1. Consider the variational problem (11)-(14).

(i) For the probabilistic form (11) of the variational
problem, the optimal control U∗t = eαt−γtYt, where
the optimal trajectory {(Xt, Yt)}t≥0 evolves accord-
ing to the Hamilton’s odes:

dXt

dt
= U∗t = eαt−γtYt, X0 ∼ ρ0 (16a)

dYt
dt

= −eαt+βt+γt∇ρF(ρt)(Xt), Y0 = ∇φ0(X0)

(16b)

where φ0 is a convex function, and ρt = Law(Xt).

(ii) For the pde form (14) of the variational problem,
the optimal control is u∗t = eαt−γt∇φt(x), where the
optimal trajectory {(ρt, φt)}t≥0 evolves according to
the Hamilton’s pdes:

∂ρt
∂t

= −∇ · (ρt eαt−γt∇φt︸ ︷︷ ︸
u∗t

), (17a)

∂φt
∂t

= −eαt−γt |∇φt|
2

2
− eαt+γt+βt∇ρF(ρ) (17b)

(iii) The solutions of the two forms are equivalent in the
following sense:

Law(Xt) = ρt, Ut = ut(Xt), Yt = ∇φt(Xt)

(iv) Suppose additionally that the functional F is dis-
placement convex and ρ∞ is its minimizer. Define

V (t) =
1

2
E[|Xt + e−γtYt − T ρ∞ρt (Xt)|2]

+ eβt(F(ρ)− F(ρ∞))
(18)

where the map T ρ∞ρt : Rd → Rd is the optimal trans-
port map from ρt to ρ∞. Assume the dimension d = 1.
Consequently, the following rate of convergence is ob-
tained along the optimal trajectory

F(ρt)− F(ρ∞) ≤ O(e−βt), ∀t ≥ 0
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Proof sketch. The Hamilton’s equations are derived using
the standard mean-field optimal control theory (Carmona &
Delarue, 2017). The Lyapunov function argument is based
upon the variational inequality characterization of a dis-
placement convex function (see Eq. 10.1.7 in (Ambrosio
et al., 2008)). The detailed proof appears in the supplemen-
tary note. We expect that the assumption that d = 1 is not
necessary. This is the subject of the continuing work.

3.5. Relative entropy as the functional

In the remainder of this paper, we assume that the func-
tional F(ρ) = D(ρ|ρ∞) is the relative entropy where
ρ∞ ∈ Pac,2(Rd) is a given target probability distribution.
In this case the Hamilton’s equations are given by

dXt

dt
= eαt−γtYt, X0 ∼ ρ0 (19a)

dYt
dt

= −eαt+βt+γt(∇f(Xt) +∇ log(ρt(Xt)), (19b)

with Y0 = ∇φ0(X0), where ρt = Law(Xt) and f =
− log(ρ∞). Moreover, if f is convex (or equivalently ρ∞ is
log-concave), then F is displacement convex with the unique
minimizer at ρ∞ and the convergence estimate is given by
D(ρt|ρ∞) ≤ O(e−βt).

Remark 2. The Hamilton’s equations (19) with the relative
entropy functional is related to the under-damped Langevin
equation (Cheng et al., 2017). A basic form of the under-
damped (or second order) Langevin equation is

dXt = vt dt

dvt = −γvt dt−∇f(Xt) dt+
√

2 dBt
(20)

where {Bt}t≥0 is the standard Brownian motion.

Consider next, the the accelerated flow (19). Denote
vt := eαt−γtYt. Then, with an appropriate choice of scal-
ing parameters (e.g. αt = 0, βt = 0 and γt = −γt ):

dXt = vt dt

dvt = −γvt dt−∇f(Xt) dt−∇x log(ρt(Xt))
(21)

The scaling parameters are chosen here for the sake of
comparison and do not satisfy the ideal scaling conditions
of (Wibisono et al., 2016).

The sdes (20) and (21) are similar except that the stochastic
term

√
2 dBt in (20) is replaced with a deterministic term

−∇x log(ρt(Xt)) in (21). Because of this difference, the
resulting distributions are different. See the supplementary
note for more details.

3.6. Quadratic Gaussian case

Suppose the initial distribution ρ0 and the target distribu-
tion ρ∞ are both Gaussian, denoted as N (m0,Σ0) and

N (x̄, Q), respectively. This is equivalent to the objec-
tive function f(x) being quadratic of the form f(x) =
1
2 (x− x̄)>Q−1(x− x̄). Therefore, this problem is referred
to as the quadratic Gaussian case. The following Proposi-
tion shows that the mean of the stochastic process (Xt, Yt)
evolves according to the Nesterov ODE (5):
Proposition 1. (Quadratic Gaussian case) Consider the
variational problem (11) for the quadratic Gaussian case.
Then

(i) The stochastic process (Xt, Yt) is a Gaussian pro-
cess. The Hamilton’s equations are given by:

dXt

dt
= eαt−γtYt,

dYt
dt

= −eαt+βt+γt(Q−1(Xt − x̄)− Σ−1t (Xt −mt))

where mt and Σt are the mean and the covariance of
Xt.

(ii) Upon taking the expectation of both sides, and de-
noting nt := E[Yt]

dmt

dt
= eαt−γtnt,

dnt
dt

= −eαt+βt+γt Q−1(mt − x̄)︸ ︷︷ ︸
∇f(mt)

which is identical to Nesterov ODE (5).

Proof sketch. Fix ρt. Consider the resulting pair (Xt, Yt)
from (19) and let ρ̃t = Law(Xt). The proof follows from
showing that a Gaussian ρt is a fixed-point of the map ρt 7→
ρ̃t.

4. Numerical algorithm
The proposed numerical algorithm is based upon an interact-
ing particle implementation of the Hamilton’s equation (19).
Consider a system ofN particles {(Xi

t , Y
i
t )}Ni=1 that evolve

according to:

dXi
t

dt
= eαt−γtY it , Xi

0 ∼ ρ0

dY it
dt

= −eαt+βt+γt(∇f(Xi
t) + I

(N)
t (Xi

t)︸ ︷︷ ︸
interaction term

),

with Y i0 = ∇φ0(Xi
0). The interaction term I

(N)
t is an

empirical approximation of the ∇ log(ρt) term in (19). We
propose two types of empirical approximations as follows:

1. Gaussian approximation: Suppose the density is
approximated as a Gaussian N (mt,Σt). In this case,
∇ log(ρt(x)) = −Σt

−1(x −mt). This motivates the fol-
lowing empirical approximation of the interaction term:

I
(N)
t (x) = −Σ

(N)
t

−1
(x−m(N)

t ) (23)
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where m(N)
t := N−1

∑N
i=1X

i
t is the empirical mean and

Σ
(N)
t := 1

N−1
∑N
i=1(Xi

t − m
(N)
t )(Xi

t − m
(N)
t )> is the

empirical covariance.

Even though the approximation is asymptotically (as N →
∞) exact only under the Gaussian assumption, it may be
used in a more general settings, particularly when the den-
sity ρt is unimodal. The situation is analogous to the
(Bayesian) filtering problem, where an ensemble Kalman
filter is used as an approximate solution for non-Gaussian
distributions (Evensen, 2003).

2. Diffusion map approximation: This is based upon
the diffusion map approximation of the weighted Lapla-
cian operator (Coifman & Lafon, 2006; Hein et al., 2007).
For a C2 function f , the weighted Laplacian is defined as
∆ρf := 1

ρ∇ · (ρ∇f). Denote e(x) = x as the coordinate
function on Rd. It is a straightforward calculation to show
that ∇ log(ρ) = ∆ρe. This allows one to use the diffusion
map approximation of the weighted Laplacian to approxi-
mate the interaction term as follows:

(DM) I(N)
t (Xi

t) =
1

ε

∑N
j=1 kε(X

i
t , X

j
t )(Xj

t −Xi
t)∑N

j=1 kε(X
i
t , X

j
t )

(24)

where the kernel kε(x, y) = gε(x,y)√∑N
i=1 gε(y,X

i)
is constructed

empirically in terms of the Gaussian kernel gε(x, y) =
exp(−|x − y|2/(4ε)). The parameter ε is referred to as
the kernel bandwidth. The approximation is asymptotically
exact as ε ↓ 0 and N ↑ ∞. The approximation error is of
order O(ε) +O( 1√

Nεd/4
) where the first term is referred to

as the bias error and the second term is referred to as the
variance error (Hein et al., 2007). The variance error is the
dominant term in the error for small values of ε, whereas
the bias error is the dominant term for large values of ε (see
Figure 2(d)).

The resulting interacting particle algorithm is tabulated in
Table 1. The symplectic method proposed in (Betancourt
et al., 2018) is used to carry out the numerical integration.
The algorithm is applied to two examples as described in
the following sections.
Remark 3. For the case where there is only one particle
( N = 1), the interaction term is zero and the system (22)
reduces to the Nesterov ODE (5).
Remark 4. (Comparison with density estimation) The dif-
fusion map approximation algorithm is conceptually dif-
ferent from an explicit density estimation-based approach.
A basic density estimation is to approximate ρ(x) ≈
1
N

∑N
i=1 gε(x,X

i
t) where gε(x, y) is the Gaussian kernel.

Using such an approximation, the interaction term is ap-
proximated as

(DE) I(N)
t (Xi

t) =
1

ε

∑N
j=1 gε(X

i
t , X

j
t )(Xj

t −Xi
t)

2
∑N
j=1 gε(X

i
t , X

j
t )

(25)

Algorithm 1 Interacting particle implementation of the ac-
celerated gradient flow
Input: ρ0, φ0, N , t0, ∆t, p, C, K
Output: {Xi

k}
N,K
i=1,k=0

Initialize {Xi
0}Ni=1

i.i.d∼ ρ0, Y i0 = ∇φ0(Xi
0)

Compute I(N)
0 (Xi

0) with (23) or (24)
for k = 0 to K − 1 do
tk+ 1

2
= tk + 1

2∆t

Y i
k+ 1

2

= Y ik − 1
2Cpt

2p−1
k+ 1

2

(∇f(Xi
k) + I

(N)
k (Xi

k))∆t

Xi
k+1 = Xi

k + p

tp+1

k+1
2

Y ik∆t

Compute I(N)
k+1(Xi

k+1) with (23)or (24)
Y ik+1 = Y i

k+ 1
2

− 1
2Cpt

2p−1
k+ 1

2

(∇f(Xi
k+1) +

I
(N)
k+1(Xi

k+1))∆t

tk+1 = tk+ 1
2

+ 1
2∆t

end for

Despite the apparent similarity of the two formulae, (24) for
diffusion map approximation and (25) for density estima-
tion, the nature of the two approximations is different. The
difference arises because the kernel kε(x, y) in (24) is data-
dependent whereas the kernel in (25) is not. While both
approximations are exact in the asymptotic limit as N ↑ ∞
and ε ↓ 0, they exhibit different convergence rates. Numeri-
cal experiments presented in Figure 2(a)-(d) show that the
diffusion map approximation has a much smaller variance
for intermediate values of N . Theoretical understanding of
the difference is the subject of continuing work.

4.1. Gaussian Example

Consider the Gaussian example as described in Sec. 3.6. The
simulation results for the scalar (d = 1) case with initial
distribution ρ0 = N (2, 4) and target distribution N (x̄, Q)
where x̄ = −5.0 and Q = 0.25 is depicted in Figure 1-(a)-
(b). For this simulation, the numerical parameters are as
follows: N = 100, φ0(x) = 0.5(x− 2), t0 = 1, ∆t = 0.1,
p = 2,C = 0.625, and K = 400. The result numerically
verifies the O(e−βt) = O( 1

t2 ) convergence rate derived
in Theorem 1 for the case where the target distribution is
Gaussian.

4.2. Non-Gaussian example

This example involves a non-Gaussian target distribution
ρ∞ = 1

2N (−m,σ2) + 1
2N (m,σ2) which is a mixture

of two one-dimensional Gaussians with m = 2.0 and
σ2 = 0.8. The simulation results are depicted in Figure 1-
(c)-(d). The numerical parameters are same as in the Ex-
ample 4.1. The interaction term is approximated using the
diffusion map approximation with ε = 0.01. The numerical
result depicted in Figure 1-(c) show that the diffusion map
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(a) (b)

t=t0 t=t1 t=t2

t0 t1 t2

(c) (d)

Figure 1. Simulation result for the Gaussian case (Example 4.1): (a) The time traces of the particles; (b) The KL-divergence as a function
of time. Simulation result for the non-Gaussian case (Example 4.2): (c) The time traces of the particles; (d) The KL-divergence as a
function of time.

algorithm converges to the mixture of Gaussian target distri-
bution. The result depicted in Figure 1-(d) suggests that the
convergence rate O(e−βt) also appears to hold for this non-
log-concave target distribution. Theoretical justification of
this is subject of continuing work.

4.3. Comparison with MCMC and HMCMC

This section contains numerical experiment comparing the
performance of the accelerated algorithm 1 using the dif-
fusion map (DM) approximation (24) and the density esti-
mation (DE)-based approximation (25) with the Markov
chain Monte-Carlo (MCMC) algorithm studied in (Durmus
& Moulines, 2016) and the Hamiltonian MCMC algorithm
studied in (Cheng et al., 2017).

We consider the problem setting of the mixture of Gaussians
as in example 4.2. All algorithms are simulated with a fixed
step-size of ∆t = 0.1 for K = 1000 iterations. The perfor-
mance is measured by computing the mean-squared error
in estimating the expectation of the function ψ(x) = x1x≥0
denoted as ψ̂ :=

∫
ψ(x)ρ∞(x) dx. The mean-square error

at the k-th iteration is computed by averaging the error over

M = 100 runs:

m.s.ek =
1

M

M∑
m=1

(
1

N

N∑
i=1

ψ(Xi,m
tk

)− ψ̂

)2

(26)

The numerical results are depicted in Figure 2. Figure 2(a)
depicts the m.s.e as a function of N . It is observed that
the accelerated algorithm 1 with the diffusion map approx-
imation admits an order of magnitude better m.s.e for the
same number of particles. It is also observed that the m.s.e
decreases rapidly for intermediate values of N before sat-
urating for large values of N , where the bias term domi-
nates (see discussion following Eq. 24).

Figure 2(b) depicts the m.s.e as a function of the number
of iterations for a fixed number of particles N = 100. It
is observed that the accelerated algorithm 1 displays the
quickest convergence amongst the algorithms tested.

Figure 2(c) depicts the average computational time per iter-
ation as a function of the number of samples N . The com-
putational time of the diffusion map approximation scales
as O(N2) because it involves computing a N × N ma-
trix [kε(X

i, Xj)]Ni,j=1, while the computational cost of the
MCMC and HMCMC algorithms scale as O(N). The com-
putational complexity may be improved by (i) exploiting the
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(a) (b)

(c)

bias 
dominates

variance
dominates

(d)

Figure 2. Simulation-based comparison of the performance of the accelerated algorithm 1 using the diffusion map (DM) approxima-
tion (24), the density estimation (DE)-based approximation (25) with the MCMC and HMCMC algorithms: (a) the mean-squared error
(m.s.e) (26) as a function of the number of samplesN ; (b) the m.s.e as a function of the number of iterations; (c) the average computational
time per iteration as a function of the number of samples; (d) m.s.e comparison between the diffusion map and the density estimation-based
approaches as a function of the kernel bandwidth ε.

sparsity structure of the N ×N matrix ; (ii) sub-sampling
the particles in computing the empirical averages; (iii) adap-
tively updating the N × N matrix according to a certain
error criteria.

Finally, we provide comparison between diffusion map ap-
proximation (25) and the density-based approximation (25):
Figure 2(d) depicts the m.s.e for these two approximations
as a function of the kernel-bandwidth ε for a fixed number of
particles N = 100. For very large and for very small values
of ε, where bias and variance dominates the error, respec-
tively, the two algorithms have similar m.s.e. However, for
intermediate values of ε, the diffusion map approximation
has smaller variance, and thus lower m.s.e.

5. Conclusion and directions for future work
The main contribution of this paper is to extend the varia-
tional formulation of (Wibisono et al., 2016) to the space
of probability distributions (see Theorem 1). In particular,
we obtain theoretical results and numerical algorithms for
accelerated gradient flow in such settings. Through this pro-
cedure, we provide an accelerated version of the Langevin
equation (see equation (19)), and compare it with the under-

damped Langevin equation (see Remark 2). Moreover, we
recover the ode limit of the Nesterov accelerated method in
the special quadratic Gaussian case (see Proposition 1).

Two algorithms based upon an interacting particle represen-
tation are presented and illustrated with numerical exam-
ples. The examples serve to verify the theoretical result,
and demonstrate that our proposed approach admits faster
convergence and better accuracy with the same number of
samples, compared to the standard MCMC and HMCMC
methods. The main bottleneck for the implementation of our
approach is the O(N2) computational complexity, which is
common to the related interacting particle based approaches
in the literature. This is an important problem in its own
right and subject of future work.

Some direction for future include: (i) removing the assump-
tion d = 1 in the convergence result of the Theorem 1;
(ii) using the variational formulation to obtain meaningful
approximations of the interaction term for the finite-N algo-
rithm (ii) analysis of the convergence under the weaker as-
sumption that the target distribution satisfies the logarithmic-
Sobolev inequality; and (iii) error analysis of the numerical
algorithms in the finite-N and in the discrete-time setting.



Accelerated Flow for probability distributions

Acknowledgements
Financial support from the NSF grant CMMI-1462773 and
ARO grant W911NF1810334 is gratefully acknowledged.

References
Ambrosio, L., Gigli, N., and Savaré, G. Gradient flows: in

metric spaces and in the space of probability measures.
Springer Science & Business Media, 2008.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.

Bensoussan, A., Frehse, J., Yam, P., et al. Mean field games
and mean field type control theory, volume 101. Springer,
2013.

Betancourt, M., Jordan, M. I., and Wilson, A. C. On sym-
plectic optimization. arXiv preprint arXiv:1802.03653,
2018.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American Statistical Association, 112(518):859–877,
2017.

Carmona, R. and Delarue, F. Probabilistic Theory of Mean
Field Games with Applications I-II. Springer, 2017.

Chen, C., Zhang, R., Wang, W., Li, B., and Chen, L.
A unified particle-optimization framework for scalable
bayesian sampling. arXiv preprint arXiv:1805.11659,
2018.

Cheng, X., Chatterji, N. S., Bartlett, P. L., and Jordan, M. I.
Underdamped langevin mcmc: A non-asymptotic analy-
sis. arXiv preprint arXiv:1707.03663, 2017.

Chizat, L. and Bach, F. On the global convergence of gradi-
ent descent for over-parameterized models using optimal
transport. arXiv preprint arXiv:1805.09545, 2018.

Coifman, R. R. and Lafon, S. Diffusion maps. Applied and
computational harmonic analysis, 21(1):5–30, 2006.

Del Moral, P. et al. Measure-valued processes and inter-
acting particle systems. application to nonlinear filtering
problems. The Annals of Applied Probability, 8(2):438–
495, 1998.

Durmus, A. and Moulines, E. High-dimensional bayesian
inference via the unadjusted langevin algorithm. arXiv
preprint arXiv:1605.01559, 2016.

Evensen, G. The ensemble kalman filter: Theoretical for-
mulation and practical implementation. Ocean dynamics,
53(4):343–367, 2003.

Frogner, C. and Poggio, T. Approximate inference
with wasserstein gradient flows. arXiv preprint
arXiv:1806.04542, 2018.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Hein, M., Audibert, J.-Y., and Luxburg, U. v. Graph lapla-
cians and their convergence on random neighborhood
graphs. Journal of Machine Learning Research, 8(Jun):
1325–1368, 2007.

Jain, P., Kakade, S. M., Kidambi, R., Netrapalli, P., and
Sidford, A. Accelerating stochastic gradient descent.
arXiv preprint arXiv:1704.08227, 2017.

Jordan, R., Kinderlehrer, D., and Otto, F. The variational
formulation of the fokker–planck equation. SIAM journal
on mathematical analysis, 29(1):1–17, 1998.

Liu, C., Zhuo, J., Cheng, P., Zhang, R., Zhu, J., and Carin, L.
Accelerated first-order methods on the wasserstein space
for bayesian inference. arXiv preprint arXiv:1807.01750,
2018.

Liu, Q. Stein variational gradient descent as gradient flow.
In Advances in neural information processing systems,
pp. 3115–3123, 2017.

Liu, Q. and Wang, D. Stein variational gradient descent:
A general purpose bayesian inference algorithm. In
Advances In Neural Information Processing Systems, pp.
2378–2386, 2016.

Liu, Y., Shang, F., Cheng, J., Cheng, H., and Jiao, L. Accel-
erated first-order methods for geodesically convex op-
timization on riemannian manifolds. In Advances in
Neural Information Processing Systems, pp. 4868–4877,
2017.

McCann, R. J. A convexity principle for interacting gases.
Advances in mathematics, 128(1):153–179, 1997.

Neal, R. M. et al. Mcmc using hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, 2(11):2, 2011.

Reich, S. A dynamical systems framework for intermittent
data assimilation. BIT Numerical Mathematics, 51(1):
235–249, 2011.

Richemond, P. H. and Maginnis, B. On wasserstein rein-
forcement learning and the fokker-planck equation. arXiv
preprint arXiv:1712.07185, 2017.

Su, W., Boyd, S., and Candes, E. A differential equation for
modeling nesterov’s accelerated gradient method: The-
ory and insights. In Advances in Neural Information
Processing Systems, pp. 2510–2518, 2014.



Accelerated Flow for probability distributions

Sutton, R. S., McAllester, D. A., Singh, S. P., and Man-
sour, Y. Policy gradient methods for reinforcement learn-
ing with function approximation. In Advances in neural
information processing systems, pp. 1057–1063, 2000.

Villani, C. Topics in optimal transportation. Number 58.
American Mathematical Soc., 2003.

Wibisono, A., Wilson, A. C., and Jordan, M. I. A varia-
tional perspective on accelerated methods in optimization.
Proceedings of the National Academy of Sciences, pp.
201614734, 2016.

Yang, T., Laugesen, R. S., Mehta, P. G., and Meyn, S. P.
Multivariable feedback particle filter. Automatica, 71:
10–23, 2016.

Zhang, C., Taghvaei, A., and Mehta, P. G. A mean-
field optimal control formulation for global optimiza-
tion. IEEE Transactions on Automatic Control, 64(1):
279–286, 2019.

Zhang, R., Chen, C., Li, C., and Carin, L. Policy opti-
mization as wasserstein gradient flows. arXiv preprint
arXiv:1808.03030, 2018.


