
Predicate Exchange: Inference with Declarative Knowledge

Zenna Tavares 1 Javier Burroni 2 Edgar Minasyan 3 Armando Solar Lezama 1 Rajesh Ranganath 4

Abstract
Programming languages allow us to express com-
plex predicates, but existing inference methods
are unable to condition probabilistic models on
most of them. To support a broader class of predi-
cates, we develop an inference procedure called
predicate exchange, which softens predicates. A
soft predicate quantifies the extent to which val-
ues of model variables are consistent with its hard
counterpart. We substitute the likelihood term
in the Bayesian posterior with a soft predicate,
and develop a variant of replica exchange MCMC
to draw posterior samples. We implement predi-
cate exchange as a language agnostic tool which
performs a nonstandard execution of a probabilis-
tic program. We demonstrate the approach on
sequence models of health and inverse rendering.

1. Introduction
Conditioning in Bayesian inference incorporates observed
data into a model. In a broader sense, conditioning revises
a model such that a predicate of uncertain truth becomes a
fact. Conventionally, this predicate is the equality of observ-
able variables to data. Predicates outside of this class have
received significantly less attention, partly because it makes
the inference problem significantly more challenging, and
partly because conditioning on data accommodates many
applications. Nevertheless, there are many more predicates
outside this class than inside; our inability to condition on
them is a major limitation.

The ability to condition on a broader class of predicates
would enable us to incorporate more kinds of declarative
domain knowledge into generative models. For example,
probabilistic variants of inverse rendering (Marschner &
Greenberg, 1998; Kulkarni et al., 2015) require a prior dis-

1MIT, USA 2College of Information and Computer Science,
University of Massachusetts, Amherst, USA. 3Princeton Uni-
versity, USA 4NYU, USA. Correspondence to: Zenna Tavares
<zenna@mit.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

tribution over three dimensional scenes. Some forms of
knowledge, such as the fact that rigid bodies do not inter-
sect, are easier to express declaratively as predicates, than
constructively in a generative model. Conditioning on pred-
icates allows us to express what should be true without the
burden of specifying how.

Predicates can also represent observations that restrict vari-
ables to sets rather than single values. For example, a medi-
cal practitioner may observe that a patient is hypoglycemic,
i.e., that their glucose levels have fallen below a critical
value. Given a model over time series of glucose levels
(Levine et al., 2017; Murata et al., 2004), this observation
can be realized as a predicate that maps the series to 1 if
it falls below the threshold. Neither hypoglycemia nor any
of the infinite number of predicates that can be expressed,
need to exist in the generative model apriori.

Probability theory treats conditioning on predicates and con-
crete observations uniformly, but sampling from models
conditioned on most predicates is challenging due to the
lack of a tractable likelihood function. The likelihood func-
tion quantifies the extent to which values of latent variables
are consistent with observations, and is deemed intractable if
it is normalized by intractable integrals or summations. This
can occur, for example, if we condition random variables
that are deterministic transformations of other random vari-
ables (e.g., the occurrence of hypoglycemia in the example
above, or the mean of a collection of variables). Alterna-
tively, if the model is generative, i.e. specified as a stochastic
simulation, the likelihood is not explicitly available even
when the condition is a conventional observation. The nu-
merous effective likelihood-based sampling (Andrieu et al.,
2003) and variational (Jordan et al., 1999; Ranganath et al.,
2014) methods are inapplicable as a result.

In this paper we present predicate exchange: a likelihood-
free method to sample from distributions conditioned on
predicates from a broad class. It is composed of two parts:

1. Predicate Relaxation constructs soft predicates which
return values in a continuous Boolean algebra: the unit
interval [0, 1] with continuous logical connectives ∧̃.
∨̃ and ¬̃. Softened predicates approximate their hard
counterparts.

2. Replica Exchange is a Markov Chain Monte Carlo

Predicate Exchange: Inference with Declarative Knowledge

method that simulates Markov chains at different tem-
peratures. Predicate relaxation is parameterized by
a temperature which controls the amount of approxi-
mation introduced. We use replica exchange to draw
samples from the unrelaxed model.

By returning a value in [0, 1] instead of {0, 1}, a soft predi-
cate quantifies the degree to which values of variables are
consistent with the hard predicate. We concretize this con-
cept in terms of distance: a realization of the model is almost
consistent with a predicate if there is another realization that
is both consistent with the predicate and close-by with re-
spect to a metric.

Hard predicates exist in a Boolean algebra; they can be con-
joined, disjoined and negated. This enables predicates to
represent knowledge with complex Boolean structure. Con-
tinuing the previous example, we may know that a person is
not hypoglycemic, or that they are hypoglycemic or hyper-
glycemic, or neither. To be able to relax complex predicates,
we define a soft Boolean algebra with continuous counter-
parts to equality, inequalities and logical connectives.

To perform inference we replace the likelihood term in the
Bayesian posterior with a soft predicate. This yields an
approximate posterior which we sample from using Markov
Chain Monte Carlo. However, relaxed predicates can still
induce complex, multimodal posteriors. Increasing the tem-
perature smooths the approximate posterior, but also causes
it to diverge from the true posterior. We use replica exchange
to mitigate the trade-off. Replica exchange simulates high
temperature chains – which explore vasts regions of the sam-
ple space – in parallel with low temperature chains which
sample accurately from localized regions. We augment
replica exchange with an accept-reject phase, which allows
us to use approximate posteriors to sample from the true
posterior when the predicate is of non-zero measure.

Predicate exchange addresses a shortcoming of probabilistic
programming languages, which have vastly expanded the
class of probabilistic models that can be expressed, but still
restrict the kinds of predicates that can be conditioned on
to those which result in a tractable likelihood. In a similar
vein to (Wingate et al., 2011) we provide a light-weight
implementation that modulates the execution of a stochastic
simulation based model to perform inference. This means
predicate exchange is easily incorporated into existing prob-
abilistic languages. For a concrete implementation, we build
predicate exchange into the OMEGA probabilistic program-
ming language1 (Tavares et al., 2019),

In summary, we:

1. Formalize the desiderata for predicate relaxation (Sec-

1OMEGA is available at http://github.com/zenna/
Omega.jl

tion 2.1) and present relaxations of numerical and logi-
cal primitive functions.

2. Implement predicate exchange as nonstandard execu-
tion of a simulation based model (Section 3).

3. Evaluate our approach on examples including inverse
rendering and glycemic forecasting (Section 4).

2. Predicate Exchange
Given a model (a collection of random variables) X =
(X1, X2, . . . , Xn) and a predicate ` which maps a model re-
alization x = (x1, x2, . . . , xn) to 0 or 1, predicate exchange
samples from the posterior distribution of X conditioned on
` through two steps:

1. Predicate Relaxation constructs a soft predicate ˜̀

from `. ˜̀ maps a model realization x in a realization
spaceX to a value in a continuous Boolean algebra: the
unit interval [0, 1] with continuous logical connectives
∧̃, ∨̃ and ¬̃. ˜̀ is 1 iff ` is 1, but otherwise takes nonzero
values denoting the degree to which ` is satisfied.

2. Replica Exchange is a Markov Chain Monte Carlo
procedure that simulates several replicas of the model
conditioned on ˜̀ at different temperatures, ultimately
in order to condition on `.

In this section we motivate and formalize the relaxation of
predicates expressed as compositions of simple functions.
In addition, the latter part of this section defines what it
means to condition on a soft predicate. Together, these form
the foundation of the relaxation and conditional sampling
from probabilistic programs in Section 3.

2.1. Predicate Relaxation

Our objective is to construct a soft predicate ˜̀ that introduces
approximations into ` to make inference more tractable. We
refer to ˜̀ as a relaxation of `. Informally, these approxima-
tions mean that while conditioning on ` eliminates a set of
values, conditioning on ˜̀ makes them less likely.

A relaxation ˜̀ has a temperature parameter α that controls
the fidelity of the approximation. There are three desiderata
which govern this approximation. In particular, ˜̀ should (i)
converge to ` as α→ 0, (ii) converge to 1 as α→∞, and
(iii) be consistent with ` on 1, i.e., `(x) = 1 iff ˜̀(x) = 1 at
all temperatures. Formally:

Definition 1. ˜̀ : X → [0, 1] parameterized by α ∈ [0,∞)
is a relaxation of ` : X → {0, 1} if for all x ∈ X :

(i) limα→0
˜̀(x;α) = `(x).

(ii) limα→∞ ˜̀(x;α) = 1.

http://github.com/zenna/Omega.jl
http://github.com/zenna/Omega.jl

Predicate Exchange: Inference with Declarative Knowledge

(iii) for all α <∞, ˜̀(x;α) = 1 iff `(x) = 1.

Axioms (i) and (ii) allow us to vary the fidelity to which ˜̀

approximates `, and axiom (iii) prevents ˜̀ from deviating
from ` on values which satisfy `. These axioms allow us to
construct a sampling procedure that (i) samples accurately
from local regions, but also (ii) explores large parts of the
realization space, and (iii) in non measure-zero cases can
sample from the true posterior without approximation.

Similarity Based Satisfiability There is a straightfor-
ward construction of ˜̀ that satisfies the relaxation axioms.
Let ρ be a metric on X , kα be a relaxation kernel (described
below) which maps distances in R to similarities in [0, 1],
andA = {x | `(x) = 1} be the satisfying set. The predicate
˜̀
inf(x) is a relaxation of `:

˜̀
inf(x) = kα(ρ(x, A)) (1)

The distance ρ(x, A) = inf {ρ(x, a) | a ∈ A} is the small-
est distance between x and any element of A.

Relaxation Kernels A relaxation kernel kα maps a dis-
tance in R to the unit interval, and is parameterized by
temperature α. One kernel, which we restrict our attention
to, is the squared exponential kernel:

kα(r) = exp

(
−r

2

α

)
(2)

Soft Primitives Unfortunately, ˜̀inf is in general incom-
putable since the distance ρ(x,A) from a point to the satis-
fying set is incomputable. Instead, to relax ` we relax the
functions it is composed of, which boil down to a set of
numerical and logical primitives. For instance the predicate
(x > y) ∨ ¬(x2 = 2) is relaxed by (x >̃ y) ∨̃ ¬̃(x2 =̃ 2),
where >̃, <̃, =̃, ∨̃, ∧̃ and ¬̃ are as follows.

Soft equality is straightforward: x =̃ y is defined as
kα(ρ(x, y)). A soft inequality such as x >̃ y is a function of
the amount by which x must be increased (or y decreased)
until x > y is true. This is the distance between x and the
interval [y,∞], where the distance between a point and any
interval [a, b] is the smallest distance between x and any
element in [a, b], and therefore 0 if x ∈ [a, b]:

ρ(x, [a, b]) =

a− x if x < a

x− b if x > b

0 otherwise
(3)

Soft conjunction ∧̃ and disjunction ∨̃ take the min and max
respectively, which is standard. Soft negation, on the other
hand, introduces complications. In most continuous logics,
the negation of a ∈ [0, 1] is 1 − a. However, as shown in

Figure 1. The problem of negation. All figures: soft (blue) and
hard (red, dashed) predicates as a function of x. Left: x >̃ 0
approximates x > 0. Middle: the standard approach to continuous
negation (1− (x >̃ 0)) violates relaxation criteria (iii). Right: the
desired outcome of soft negation of x >̃ 0.

Figure 1 (b), this violates criteria (iii) of predicate relax-
ation since there are values which satisfy the hard predicate
¬(x > 0) which do take a value of 1 in 1− (x >̃ 0). Figure
1 illustrates this issue.

The problem of negation arises because ˜̀ is consistent with
` at 1 but not at 0, i.e., ˜̀(x;α) = 1 iff `(x) = 1 at all tem-
peratures α. In other words, ˜̀ is a one-sided approximation.
To resolve this, we use two-sided soft primitives which yield
a pair (a0, a1) where a0, a0 ∈ [0, 1]. a1 is consistent with
` on 1, just as before, while a0 is consistent with ¬ ` on 1.
For example if x >̃ 0 evaluates to (a0, a1), then a1 is 1 iff
x > 0 (Figure 1 (a)) and a0 is 1 iff x ≤ 0 (Figure 1 (c)).
Two-sided soft equality and inequalities are defined as:

x =̃ y = (a0, kα(ρ(x, y))) where a0 =

{
exp(1/α) if x = y

1 otherwise

x >̃ y = (kα(ρ(x, [−∞, y])), kα(ρ(x, [y,∞])))

x <̃ y = (kα(ρ(y, [x,∞])), kα(ρ(y, [−∞, x])))
(4)

Two-sided soft conjunction and soft disjunction follow De
Morgan’s laws, and soft negation simply swaps the elements
of (a0, a1) to yield (a1, a0):

(a0, a1) ∧̃ (b0, b1) = (max(a0, b0),min(a1, b1))

(a0, a1) ∨̃ (b0, b1) = (min(a0, b0),max(a1, b1))

¬̃(a0, a1) = (a1, a0)

(5)

In probability theory, conditioning does not treat the outputs
of a predicate symmetrically. Rather, it restricts the model
to values which produce 1. Consequently, when used to
condition in replica exchange, a1 and not a0 is used in the
target density.

2.2. Approximate Markov Chain Monte Carlo

We use soft predicates as approximate likelihoods for
Markov Chain Monte Carlo sampling. MCMC algorithms
require a function f that is proportional to the the target

Predicate Exchange: Inference with Declarative Knowledge

density. In Bayesian inference this is the posterior, dictated
by Bayes’ theorem as the product of the likelihood and the
prior. Inference using soft predicates has a similar form.
Definition 2. Let X be a model, ` be a predicate that con-
ditions X, and x be a realization of X. Assuming a prior
density p, the approximate posterior f is the product:

f(x) = p(x) · ˜̀(x) (6)

For illustration, if X1,2 ∼ N (0, 1) constitute a model con-
ditioned on X1 + X2 = 0, the approximate posterior is:

fα(x1, x2) = N0,1(x1) ·N0,1(x2) ·kα(ρ(x1+x2, 0)) (7)

˜̀ down-weights parameter values by the degree to which
they violate `. This is modulated by the temperature α used
in the relaxation kernels which constitute ˜̀. As α tends
to infinity ˜̀ has no effect, and the approximate posterior
f is equal to the prior p. As α tends to zero, f recovers
the true posterior since parameter values which violate the
condition are given zero weight. Between these extremes, α
trades-off between tractability of inference and the fidelity
of the approximation. If α is too high ˜̀ will diverge too
greatly from `. If it is too low, convergence will be slow.

Balancing Different Constraints At a fixed, nonzero
temperature, the scales of variables affects their influence
on the conditional distribution. For instance, consider two
uniformly distributed random variables x ∼ Unif(−1, 1)
and y ∼ Unif(−10, 10), and predicates px, py defined as
x =̃ 0 and y =̃ 0 respectively. The expectation of a soft
predicate quantifies the degree to which it is true, and is a
non-decreasing function of temperature. The prior expec-
tation of px is significantly larger than that of py. because
values far from zero are more likely under y.

This disparity persists if the model is conditioned. Figure
2 shows samples from the model conditioned on px ∨̃ py,
and differing histograms of the marginals of px and py.
The disparity decreases with decreasing temperature, and
disappears at zero. Still, it is undesirable in practice because
it means that the approximation error is distributed unevenly.

To mitigate this issue, we minimize discrepancies between
sample averages of constraints. Consider the case of two
soft predicates p1 and p2. We introduce a weight for all but
the first constraint. In this case p2 in the soft predicate is
replaced by γ2p2. The weight γ2 should ensure that γ2p2
has the same magnitude effect as p1 on the energy function:

Epα,γ2 [p1] = Epα,γ2 [γ2p2]

In practice, we find γ2 that minimizes ||Epα,γ2 [p1] −
Epα,γ2 [γ2p2]||, using exponential moving averages to ap-
proximate the expectations. Figure 2 visualizes the problem
of unbalanced constraints, as well as corrections to γ.

Figure 2. Magnitudes of variables can lead to uneven contributions
to error if unadjusted. Top row: (left) samples from model, (middle
and right) histograms of marginals. Bottom row is same model
with weights adjusted to balance error.

2.3. Replica Exchange

Replica exchange (Swendsen & Wang, 1986) simulates M
replicas of a model at different temperatures, and uses a
Metropolis-Hastings update to periodically swap the temper-
atures of chains. Let fαi denote the approximate posterior
function at temperature αi, then two independent parallel
chains simulating targets fα1

(x), fα2
(y) follow a joint tar-

get fα1,α2
(x, y) = fα1

(x)fα2
(y). Replica exchange swaps

states between the chains while preserving the joint tar-
get. Swapping states is equivalent to swapping predicates,
which motivates the name “predicate exchange”. Concretely,
replica exchange proposes a swap from (x, y) to (y, x), and
accepts it with probability min(1, A), where:

A =
fα1,α2

(y, x)

fα1,α2
(x, y)

=
fα1

(y)fα2
(x)

fα1
(x)fα2

(y)
(8)

We modify standard replica exchange in two ways: (i) for
exact inference, states which violate the constraint are re-
jected, and (ii) unlike conventional replica exchange which
draws samples only from the zero-temperature chain, we
accept states from any chain so long as fαi(x) = 1.

3. Implementation
In this section we describe an implementation of predicate
exchange. Our approach resembles (Wingate et al., 2011;
Milch et al., 2007) as a language independent layer that can
sit on top of existing programming languages and model-
ing formalisms. Our objective is twofold: (i) to compute
the prior term p, approximate likelihood term ˜̀, and ap-
proximate posterior term f (Equation 7) from an arbitrary
simulator π, and (ii) to perform replica exchange MCMC to
sample from the posterior.

We define a simulator π as a program composed of de-
terministic and stochastic procedures, but where all ran-
domness comes from a set of known random primitives.
Primitives correspond to primitive parametric distribution

Predicate Exchange: Inference with Declarative Knowledge

Example Program 1
1. x = rand(nx,N , 0, 1)
2. y = rand(ny,N , 0, 1)
3. cond(x < y)
4. Return: (x, y)

Example Program 2
x = rand(nx,N , 0, 1)
if x < 0 then

cond(x = −100)
end if
Return: x

families, such as the uniform or normal distribution. Let T
be a set of primitive types. Each type τ ∈ T must support
(i) evaluation of the conditional density pτ (x | θ1, ..., θn),
and (ii) sampling from the distribution. Concretely, π is any
nullary program that contains the statements:

1. rand(n, τ, θ1, ..., θn) returns a random sample from
pτ (· | θ1, ..., θn). n is a unique name described below.

2. cond(y) conditions π. It throws an error if y ∈ {0, 1}
is 0, and otherwise allows the execution to resume.

Example Programs 1 and 2 illustrate conditioned models.

Names (e.g. nx) passed to rand are not the same as variable
names (e.g. x) in the host programming language. If two
distinct names are used, the samples output from rand will
be independent or conditionally independent. Care must
be taken when a program has loops to avoid inadvertently
reusing the same name. A simple solution is to append the
the loop counter to the name.

3.1. Tracked Soft Execution

Predicate exchange uses softexecute (Algorithm 1), which
formalizes the soft execution of a program π at temperature
α in the context of dictionary D. D is a mutable mapping
from a name to a value. In the context of a particular D, the
execution of π is deterministic. This allows the execution
of π to be modulated by controlling the elements of D.

softexecute computes the prior term p as the product of
random choices in the program. That is, let πk|x1,...,xk−1

be
the k’th random primitive encountered while executing π,
xk be the value it takes, and x denote the set of all values
of all random primitives constructed in the simulation of π,
p(x) is then the product:

p(x) =

K∏
k=1

pτ (xk | θ1, ..., θn) (9)

The parameters θ1, .., θn may be fixed values or depend on
values of other random primitives in π.

softexecute executes π but within a context where (i) vari-
ables `D and pD accumulate prior and approximate posterior
values, and (ii) the following operators are redefined:

1. rand(τ, n, θ1, ...θn) returns D(n) if n is a key in D
(denoted n ∈ D), and updates pD according to Equation

L D pD log(˜̀D)
1 ∅ 1 0
2 nx 7→ 0.9 pN (0.9) = 0.3 0
3 nx, ny 7→ 0.9, 0.2 0.3pN (0.2) = 0.1 0
4 nx, ny 7→ 0.9, 0.2 0.1 −700

Figure 4. softexecute on Program 1. Each row shows D, pD and
log(˜̀D) just prior to executing line L. pN denotes standard normal
pdf. The final log(˜̀D) is 0.9 <̃ 0.2, which is −700 at α = 0.001.

9. If n /∈ D, the distribution is sampled from and D(n)
is updated with this value.

2. a op b and op a for op ∈ {>,<,=,∧,∨,¬} are re-
placed with soft versions õp ∈ {>̃, <̃, =̃, ∧̃, ∨̃, ¬̃}.

3. cond(y) updates ˜̀D with ˜̀D ∧̃ y. y will be a soft
Boolean rather than a Boolean due to substitution of
primitives with soft primitives as per the previous step.

softexecute returns a value for the approximate posterior as
a function of D. Figure 4 vizualises its progression.

Control Flow Programs often have control flow. If a
branch condition depends on a soft Boolean, softexecute
follows the path taken by the unrelaxed program. That is, if
a is a soft Boolean, if a then b evaluates b iff a = 1. One
consequence of this is that there may be unexplored paths
which would, if explored, produce values that are closer to
or within the satisfying set. For illustration, if x = −0.01
in Example Program 2, the branch condition succeeds and
softexecute will evaluate x =̃ −100. However, with only a
small change to x, the branch condition fails, and the path
taken has has no conditions. ˜̀ therefore over approximates
the change required to satisfy `.

3.2. Replica Exchange

predexchange (Algorithm 2) performs replica exchange us-
ing softexecute to compute approximate posterior values.
It takes as input an MCMC algorithm, which simulates a
Markov Chain by manipulating elements of the D.

predexchange rejects samples which are outside the sat-
isfying set. If the chains converge, resulting samples are
distributed according to the true, unrelaxed posterior. This
is because axiom (iii) enforces that all chains at all tempera-
tures are equivalent when restricted to the satisfying set, and
the accept-reject phase carries out this restriction explicitly.
Rejection sampling will fail in cases where the constraint is
of measure-zero (which happens when equalities are used),
since the probability of proposing a satisfying value falls
to zero. In these cases we perform approximate inference
by skipping the reject phase and taking samples from the
highest temperature chain.

Predicate Exchange: Inference with Declarative Knowledge

Algorithm 1 Soft Execution: softexecute(π, α,D)
Input: program π, temperature α, dictionary D
Initialize ˜̀D = 1, pD = 1
Simulate π with following subroutines redefined as:
subroutine rand(n, τ, θ1, ..., θn)

if n ∈ D then
x
d
= D(n)

else
x
d
= sample from pτ (x | θ1, ..., θn)

Update dictionary: D(n) d
= x

end if
pD

d
= pD · pτ (x | θ1, ..., θm)

Return from subroutine: x
end subroutine

subroutine cond(y)
˜̀D

d
= ˜̀D ∧̃ y

end subroutine

subroutine op(x, . . .) for op ∈ {>,<,=,∧,∨,¬}
Return from subroutine: õp (x, . . .)

end subroutine

Return: pD · ˜̀D

4. Experiments
Experimental Setup Replica exchange requires a within
chain MCMC algorithm. For finite dimensional continuous
models we use the No U-Turn Sampler (Hoffman & Gel-
man, 2014), a variant of Hamiltonion Monte Carlo (HMC).
We use reverse-mode automatic differentiation (Griewank
& Walther, 2008) to compute the negative log gradient of
f , which is required for HMC. For other models we use
standard Metropolis Hastings by defining proposals on ele-
ments in the dictionary. In particular we use the single site
Metropolis Hastings (SSMH) (Wingate et al., 2011) which
modifies a single random variable at a time.

Replica exchange has a number of hyper-parameters: the
number of parallel chains, the corresponding temperatures,
the swapping schedule. Several good practices are outlined
in (Earl & Deem, 2005). In practice, we simulate four chains
with α logarithmically spaced between log10(α1) = 5 and
log10(αM) = −5, and swap states that are adjacent in tem-
perature (α1 with α2, α2 with α3, etc) every 10 iterations.

Small Models In Figure 6 we use conditioning to truncate
a normal distribution. Figure 5 shows histograms of samples
from a uniform prior [−1, 1]2 conditioned on a variety of
predicates. While simple, these examples can be challenging
due to discontinuities in the approximate posterior.

Algorithm 2 Predicate Exchange: predexchange

Input: program π, temperatures α1, ..., αm, nsamples n
Input: mcmc, nsamples between swaps q
Initialize D = empty collection of dictionarys
Initialize Dinit

1 , ...,Dinit
m empty dictionarys

Define fαi(D) = softexecute(π, αi,D)
repeat

for i = 1 to M do
D1, ...,Dq

d
= q mcmc samples at temp αi, from Dinit

i

Dinit
i

d
= Dq

for j = 1 to q do
if fα=∞(Dj) 6= 0 then

append Dj to D
end if

end for
end for
for i = m down to 2 do
j
d
= i− 1

p
d
= fαi(Dj)fαj (Di)/fαi(Di)fαj (Dj)

if p > random sample in [0, 1] then
swap αi with αj

end if
end for

until D has n elements
Return: D

Figure 5. Samples from models using different procedures. Each
model is x, y ∼ Unif(−1, 1) conditioned on (i) x =̃ y, (ii)
|x| >̃ |y|, (iii) x2 =̃ y2 and (iv) sin(kx) cos(kx) >̃ 0.9999. In-
ference procedures are: Single Site Metropolis Hastings (SSMH),
Hamiltonian Monte Carlo (HMC), and Predicate-Exchange (PE)
using HMC and SSMH within chain.

Inverse Ray Tracing In this example (Figure 7) we sam-
ple from a posterior over scenes conditioned on an observed
rendering. A scene s is a set of n ∼ poisson(λ = 3) spheres.
A sphere is parameterized by color, reflectance, emission
color, transparency, radius and position, all with a uniform
prior. Let r be a ray tracing function that maps scenes

Predicate Exchange: Inference with Declarative Knowledge

Truncated Normal through Conditioning

-4 -2 0 2 4
0.0

0.5

1.0 α = 101

α = 100

α = 10-1

α = 10-2

1
2
3
4

1 2 3 4

1
2
3
4

1 2 3 4

Figure 6. Left: Normalized histogram of samples of Gaussian trun-
cated to [0, 1] through conditioning, at varying temperatures. Right:
transitions between different temperatures of replica exchange. For
each matrix, value in row i and column j is the fraction of times
replica exchange swapped a state at temperature i to temperature
j. Temperature is lowest at 4 and increases exponentially to 1.
Clockwise, starting top-left: transition counts are accumulated for
the first, second, third and fourth quarters of simulation.

to image, iobs be an observed image, and nointersect be a
predicate that maps a scene to 1 iff any spheres intersect.
The prior s is conditioned on the conjunction of the inverse
rendering and the no-intersection constraint:

(r(s) = iobs) ∧ nointersect(s) (10)

Glucose Model Type 2 diabetes is a prevalent and costly
condition. Keeping blood glucose within normal limits
helps prevent the long-term complications of Type 2 dia-
betes (Brownlee & Hirsch, 2006). Models to predict the
trajectories of blood glucose aid in keeping glucose within
normal limits (Zeevi et al., 2015). Traditional models have
been built from compositions of differential equations (Al-
bers et al., 2017; Levine et al., 2017) whose parameters
are estimated separately for each patient. An alternative
approach is to use a flexible sequence model like an RNN.
The problem with this approach is that an RNN can extrapo-
late to glucose values incompatible with human physiology.
This is especially a problem where we have patients with
only a few blood glucose measurements. To build an RNN
model that respects physiology, we condition on it.

We compare the independent RNN model to the one with
declarative knowledge on a second patient from Physionet
(Moody et al., 2001). Figure 8 plots the results performed on
more than 300 pairs of patients. We see that the conditional
model simulates more realistic glucose dynamics for the
patient with only a short observed time-series.

Benchmarks To compare predicate exchange with exist-
ing approaches we constructed a problem that scales in
difficulty. Let Xi ∼ N (0, 1) in a d-dimensional model
X = (X1, . . . , Xd) conditioned on an ε-thick ring:

`ε(x) = 1 < |x| < 1 + ε (11)

Table 9 compares the sample average of particle Gibbs (PG),

Figure 7. Inverse rendering with and without no-intersection con-
straints. Top row: raytraced scenes. Bottom row: red pixels denote
the existence of an intersection between spheres at that point. Mid-
dle and right scenes are samples from posterior over scenes given
observed image on left. The observed scene has no intersections.
Without the no-intersection condition (right), intersections occur.
Conditioning on no-intersection eliminates intersections (middle).

sequential Monte Carlo (SMC), rejection sampling (RS)
and predicate exchange (PE), varying both ε and d. The
theoretical expectation of all models is 0. Among these
methods, predicate exchange is unique in its support for
inference with predicates, which makes direct comparison
difficult. For all other inference procedures we use predi-
cate relaxation to compute d = ˜̀

ε(x), and sample from X
conditioned on N (d, 1/(2α)) = 1, where α is the lowest
temperature used in predicate exchange. Predicate exchange
compares favourably in most scenarios.

5. Related Work
Likelihood-free inference emerged in genetics ecology.
Tavaré et al. (1997) filtered samples from a stochastic simu-
lator to only those which matched (according to summary
statistics) observed data. Weiss et al. (1998) extended this
with a tolerance term, so that simulations sufficiently close
to the data were accepted. A variety of approaches in this
general regime (Beaumont et al., 2002; Sisson et al., 2007)
fall under the heading of Approximate Bayesian Compu-
tation (ABC). Marjoram et al. (2003) simulated Markov
Chains according to the prior, but applied the same summary
statistic based filtering to yield approximate posterior sam-
ples. A small tolerance leads to a high rate of rejected simu-
lations, whereas a large tolerance results in an unacceptable
approximation error. Proposed solutions are dynamically
decreasing the tolerance (Toni et al., 2008), importance
reweighting samples based on distance (Wegmann et al.,
2009), adapting the tolerance based on distance (Del Moral
et al., 2012; Lenormand et al., 2013), and annealing the
tolerance (Albert et al., 2015). Predicate exchange targets
simulation models and uses distance metrics, but does not

Predicate Exchange: Inference with Declarative Knowledge

0 5 10 15
Time

0.0

0.2

0.4

0.6

0.8

1.0
G

lu
c
o
s
e
 L

e
v
e
l

Time vs Glucose Level
Actual observed

Actual unobserved

Distribution of predictions.

0 5 10 15
Time

0.0

0.2

0.4

0.6

0.8

1.0

G
lu

c
o
s
e
 L

e
v
e
l

Time vs Glucose Level
Actual observed

Actual unobserved

Secondary patient observed

Distribution of predictions.

0 2 4 6 8 10
0

5

10

with tying

3
5
10

0 2 4 6 8 10
MSE

0.0

0.2

0.4
without tying

3
5
10

MSE to ground truth

Figure 8. Top: Actual (dotted) and predicted trajectories learned
using a partial trajectory. Center: Distribution of predicted trajec-
tories learned using only the first ten data points and a tie with a
secondary patient. Bottom: MSE when (above) tie is present, and
(below) without tie. Tying expectations has a dramatic influence
on prediction error. As more data is observed, the effect decreases.

require summary statistics.

Existing work relaxing programs includes (Chaudhuri &
Solar-Lezama, 2010) which extends Gaussian smoothing
to programs, and (Ritchie et al., 2015) which defines soft-
equality within an HMC sampler. Predicate exchange is not
bound to HMC, provides a complete soft algebra, and can
sample from the true posterior in non-measure cases.

Probabilistic logics such as ProbLog (Richardson & Domin-
gos, 2006) and Markov logic networks (De Raedt et al.,
2007) extend first order logic with probabilities. Proba-
bilistic soft logic (PSL) (Brocheler et al., 2012; Kimmig
et al., 2012) uses continuous logic to encode graded beliefs.
For example, isfriend(Alice, Bob) → 0.9 denotes a strong
friendship between Alice and Bob. In contrast, predicate
exchange uses relaxation solely to make inference more

d, ε 1, 10−1 1, 10−5 100, 10−1 100, 10−5

PE 0.0054 0.4735 -0.00037 0.00854
SMC 0.06 -0.226 -0.018 0.09
PG -0.029 0.239 -0.03 0.03
RS 0.003 timedout timedout timedout

Figure 9. Comparison of expectations of samples from d dimen-
sional, ε-thick ring. Theoretical value is 0 in all cases.

tractable; soft Boolean values only exist within the sam-
pling process and not in the resulting samples themselves.
In addition, predicate exchange is motivated by languages
for generative models, such as (Milch et al., 2007; Wood
et al., 2014; Mansinghka et al., 2014; Goodman et al., 2008),
rather than logic based languages.

Several continuous (Levin, 2000) and fuzzy (Klir & Yuan,
1995) logics apply model-theoretic tools to metric structures.
Continuous logics replace the Boolean structure {T, F},
quantifiers ∀x and ∃x, and logical connectives with contin-
uous counter-parts. The main technical difference of our
continuous logic is its two-sidedness, for negation. The
main conceptual difference is that we use continuous logic
only to increase the tractability of conventional inference.

6. Discussion
In this work we expanded the class of predicates that prob-
abilistic models can be conditioned on in practice. This
pushes predicates exchange into the domain of constraint
solvers. Precisely which kinds of predicates are suitable for
relaxation in practice remains an open question.

Equality conditions on continuous variables indicate sets of
zero measure. This is problematic because the probability of
proposing a satisfying state in a Markov chain becomes zero.
In these cases predicate exchange samples at a minimum
temperature greater than zero, which is approximate.

The problem of unexplored program paths due to control
flow is related to the path explosion problem in program
analysis (Cadar et al., 2008; Sen et al., 2005). Future work
is to adapt program analysis solutions to this problem.

Hard predicates provide a single bit of information. Pred-
icate relaxation effectively increases the quantity of infor-
mation available to inference procedures to a real value. We
anticipate that continuing to extract more kinds of informa-
tion from models could lead to novel sampling methods.

7. Acknowledgments
ZT and ASL were supported by ONR N00014-17-1-2699.
JB was supported by the CDS and the IESL.

Predicate Exchange: Inference with Declarative Knowledge

References
Albers, D. J., Levine, M., Gluckman, B., Ginsberg, H.,

Hripcsak, G., and Mamykina, L. Personalized glucose
forecasting for type 2 diabetes using data assimilation.
PLoS computational biology, 13(4):e1005232, 2017.

Albert, C., Künsch, H. R., and Scheidegger, A. A simulated
annealing approach to approximate bayes computations.
Statistics and computing, 25(6):1217–1232, 2015.

Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.
An introduction to mcmc for machine learning. Machine
learning, 50(1-2):5–43, 2003.

Beaumont, M. A., Zhang, W., and Balding, D. J. Approxi-
mate bayesian computation in population genetics. Ge-
netics, 162(4):2025–2035, 2002.

Brocheler, M., Mihalkova, L., and Getoor, L. Probabilistic
similarity logic. arXiv preprint arXiv:1203.3469, 2012.

Brownlee, M. and Hirsch, I. B. Glycemic variability: a
hemoglobin a1c–independent risk factor for diabetic com-
plications. Jama, 295(14):1707–1708, 2006.

Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., and
Engler, D. R. Exe: automatically generating inputs of
death. ACM Transactions on Information and System
Security (TISSEC), 12(2):10, 2008.

Chaudhuri, S. and Solar-Lezama, A. Smooth interpretation.
In ACM Sigplan Notices, volume 45, pp. 279–291. ACM,
2010.

De Raedt, L., Kimmig, A., and Toivonen, H. Problog: A
probabilistic prolog and its application in link discovery.
International Joint Conferences on Artificial Intelligence,
2007.

Del Moral, P., Doucet, A., and Jasra, A. An adaptive sequen-
tial monte carlo method for approximate bayesian com-
putation. Statistics and Computing, 22(5):1009–1020,
2012.

Earl, D. J. and Deem, M. W. Parallel tempering: Theory,
applications, and new perspectives. Physical Chemistry
Chemical Physics, 7(23):3910–3916, 2005.

Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz, K.,
and Tenenbaum, J. B. Church: a language for generative
models. In Proceedings of the Twenty-Fourth Conference
on Uncertainty in Artificial Intelligence, pp. 220–229.
AUAI Press, 2008.

Griewank, A. and Walther, A. Evaluating derivatives: prin-
ciples and techniques of algorithmic differentiation, vol-
ume 105. Siam, 2008.

Hoffman, M. D. and Gelman, A. The no-u-turn sampler:
adaptively setting path lengths in hamiltonian monte carlo.
Journal of Machine Learning Research, 15(1):1593–1623,
2014.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graphical
models. Machine learning, 37(2):183–233, 1999.

Kimmig, A., Bach, S., Broecheler, M., Huang, B., and
Getoor, L. A short introduction to probabilistic soft logic.
In Proceedings of the NIPS Workshop on Probabilistic
Programming: Foundations and Applications, pp. 1–4,
2012.

Klir, G. and Yuan, B. Fuzzy sets and fuzzy logic, volume 4.
Prentice hall New Jersey, 1995.

Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenenbaum,
J. Deep convolutional inverse graphics network. In
Advances in neural information processing systems, pp.
2539–2547, 2015.

Lenormand, M., Jabot, F., and Deffuant, G. Adaptive ap-
proximate bayesian computation for complex models.
Computational Statistics, 28(6):2777–2796, 2013.

Levin, V. Basic concepts of continuous logics. Kybernetes,
29(9/10):1234–1249, 2000.

Levine, M. E., Hripcsak, G., Mamykina, L., Stuart, A., and
Albers, D. J. Offline and online data assimilation for real-
time blood glucose forecasting in type 2 diabetes. arXiv
preprint arXiv:1709.00163, 2017.

Mansinghka, V., Selsam, D., and Perov, Y. Venture: a higher-
order probabilistic programming platform with pro-
grammable inference. arXiv preprint arXiv:1404.0099,
2014.

Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. Markov
chain monte carlo without likelihoods. Proceedings of
the National Academy of Sciences, 100(26):15324–15328,
2003.

Marschner, S. R. and Greenberg, D. P. Inverse rendering
for computer graphics. Citeseer, 1998.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L.,
and Kolobov, A. 1 blog: Probabilistic models with un-
known objects. Statistical relational learning, pp. 373,
2007.

Moody, G. B., Mark, R. G., and Goldberger, A. L. Physionet:
a web-based resource for the study of physiologic signals.
IEEE Engineering in Medicine and Biology Magazine,
20(3):70–75, 2001.

Predicate Exchange: Inference with Declarative Knowledge

Murata, G. H., Hoffman, R. M., Shah, J. H., Wendel, C. S.,
and Duckworth, W. C. A probabilistic model for pre-
dicting hypoglycemia in type 2 diabetes mellitus: The
diabetes outcomes in veterans study (doves). Archives of
internal medicine, 164(13):1445–1450, 2004.

Ranganath, R., Gerrish, S., and Blei, D. Black box varia-
tional inference. In Artificial Intelligence and Statistics,
pp. 814–822, 2014.

Richardson, M. and Domingos, P. Markov logic networks.
Machine learning, 62(1-2):107–136, 2006.

Ritchie, D., Lin, S., Goodman, N. D., and Hanrahan, P. Gen-
erating design suggestions under tight constraints with
gradient-based probabilistic programming. In Computer
Graphics Forum, volume 34, pp. 515–526. Wiley Online
Library, 2015.

Sen, K., Marinov, D., and Agha, G. Cute: a concolic unit
testing engine for c. In ACM SIGSOFT Software Engi-
neering Notes, volume 30, pp. 263–272. ACM, 2005.

Sisson, S. A., Fan, Y., and Tanaka, M. M. Sequential monte
carlo without likelihoods. Proceedings of the National
Academy of Sciences, 104(6):1760–1765, 2007.

Swendsen, R. H. and Wang, J.-S. Replica monte carlo
simulation of spin-glasses. Physical review letters, 57
(21):2607, 1986.

Tavaré, S., Balding, D. J., Griffiths, R. C., and Donnelly,
P. Inferring coalescence times from dna sequence data.
Genetics, 145(2):505–518, 1997.

Tavares, Z., Zhang, X., Burroni, J., Minasyan, E., Ran-
ganath, R., and Solar-Lezama, A. The random condi-
tional distribution for higher-order probabilistic inference.
arXiv, 2019.

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf,
M. P. Approximate bayesian computation scheme for
parameter inference and model selection in dynamical
systems. Journal of the Royal Society Interface, 6(31):
187–202, 2008.

Wegmann, D., Leuenberger, C., and Excoffier, L. Efficient
approximate bayesian computation coupled with markov
chain monte carlo without likelihood. Genetics, 2009.

Weiss, G. and von Haeseler, A. Inference of population
history using a likelihood approach. Genetics, 149(3):
1539–1546, 1998.

Wingate, D., Stuhlmüller, A., and Goodman, N. Lightweight
implementations of probabilistic programming languages
via transformational compilation. In Proceedings of the
Fourteenth International Conference on Artificial Intelli-
gence and Statistics, pp. 770–778, 2011.

Wood, F., Meent, J. W., and Mansinghka, V. A new approach
to probabilistic programming inference. In Artificial In-
telligence and Statistics, pp. 1024–1032, 2014.

Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D.,
Weinberger, A., Ben-Yacov, O., Lador, D., Avnit-Sagi,
T., Lotan-Pompan, M., et al. Personalized nutrition by
prediction of glycemic responses. Cell, 163(5):1079–
1094, 2015.

