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Abstract
In this paper we derive new concentration inequal-
ities for the conditional value at risk (CVaR) of
a random variable, and compare them to the pre-
vious state of the art (Brown, 2007). We show
analytically that our lower bound is strictly tighter
than Brown’s, and empirically that this difference
is significant. While our upper bound may be
looser than Brown’s in some cases, we show em-
pirically that in most cases our bound is signifi-
cantly tighter. After discussing when each upper
bound is superior, we conclude with empirical
results which suggest that both of our bounds will
often be significantly tighter than Brown’s.

1. Introduction
Many standard machine learning algorithms optimize the
expected value (mean) of a random variable that quantifies
performance or loss, for example, the mean squared error
(for regression) or the expected discounted return (for rein-
forcement learning). However, for some applications the
mean performance of an algorithm does not capture the de-
sired objective. For example, for some medical applications
the mean outcome should not be optimized, since doing so
could increase the number of disastrous outcomes if enough
mediocre outcomes are slightly improved so that the aver-
age outcome is still improved. To address this problem, risk
sensitive methods use alternatives to mean performance that
emphasize optimizing for the worst outcomes.

Two popular statistics that are used in risk sensitive ma-
chine learning, in place of the mean, are the value at risk
(VaR) and conditional value at risk (CVaR). CVaR is also
called the expected shortfall (ES), average value at risk
(AVaR), and expected tail loss (ETL). Although CVaR has
become popular within the operations research and machine
learning communities (Kashima, 2007; Chen et al., 2009;
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Prashanth & Ghavamzadeh, 2013; Chow & Ghavamzadeh,
2014; Tamar et al., 2015; Pinto et al., 2017; Morimura et al.,
2010), it was originally introduced in economics research
as a tool for quantifying the risk associated with a portfo-
lio (Rockafellar & Uryasev, 2000). For an introduction to
CVaR and VaR see, for example, the works of Pflug (2000)
and Acerbi & Tasche (2002).

In machine learning research and applications, it is often
not enough to estimate the performance of a method. Such
estimates usually include some amount of error, and without
quantification of how much error there is in an estimate, it is
not clear how much the estimate can be trusted. It is there-
fore important that we not only estimate the performance
of an algorithm, but we provide a confidence interval along
with our estimate. That is, if the goal is to optimize for the
expected value of a random variable and we estimate this
expected value from random samples, we should provide a
confidence interval that quantifies how much our estimate
can be trusted. The same applies when the goal is to op-
timize for CVaR: when estimating the CVaR of a random
variable from samples, we should also provide a confidence
interval.

Confidence intervals on estimates are often given by con-
centration inequalities: inequalities that describe how far
sample statistics (e.g., estimates of performance) deviate
from the statistics that they approximate (e.g., true perfor-
mance). There are many concentration inequalities for the
mean of a random variable (Massart, 2007; Student, 1908),
which allow for tight confidence intervals around estimates
of performance that are based on the mean. However, there
are relatively few concentration inequalities for CVaR—to
the best of our knowledge, the current state of the art for
concentration inequalities for CVaR were derived by Brown
(2007).

In this paper we improve upon the concentration inequal-
ities derived by Brown (2007). Specifically, we derive
two new concentration inequalities for the CVaR of a ran-
dom variable—one provides a high-probability upper bound
on CVaR, and the other provides a high-probability lower
bound on CVaR. Not only are our concentration inequalities
applicable in common settings where Brown’s are not (e.g.,
when the random variable is only bounded above or below,
but not both, or when the random variable is discrete), but
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we prove that our high-probability upper bound is a strict
improvement over Brown’s (given practical assumptions),
and show analytically that our high-probability lower-bound
is often significantly tighter than Brown’s.

Our inequalities have a few notable drawbacks relative to
Brown’s. First, they have O(n ln(n)) time complexity as
opposed to the O(n) time complexity of Brown’s. Second,
they are not expressed in a form that clearly shows a confi-
dence interval being added or subtracted from the sample
CVaR (although we show later in the proof of Theorem 5
that a looser form of our bounds can be written in this form).
Finally, our inequalities do not provide improved asymp-
totic behavior. This means that, although our inequalities
should be used in place of Brown’s for any actual implemen-
tations, for purely theoretical asymptotic analysis, they do
not provide improvement beyond their reliance on weaker
assumptions.

In the remainder of this paper we first formally define CVaR
and VaR before formalizing the problem of constructing
new concentration inequalities for CVaR (Section 2). We
then review Brown’s concentration inequalities in Section
3 before presenting our new concentration inequalities in
Section 4. Finally, we provide analytic and empirical com-
parisons of our and Brown’s inequalities in Sections 5 and
6 respectively before concluding in Section 7.

2. Problem
Let (Ω,Σ, P ) be a probability space. The conditional value
at risk (CVaR) at level α ∈ (0, 1) of a random variable
X : Ω→ R is

CVaRα(X) := inf
x

{
x+

1

α
E
[
(X − x)+

]}
,

where x+ := max{x, 0} (Brown, 2007).1 Acerbi & Tasche
(2002) showed that, if X is a continuous random variable,
then

CVaRα(X) = E [X|X ≥ VaRα(X)] ,

where VaRα(X) denotes the value at risk (VaR) of X , and
is defined as

VaRα(X) := sup {x ∈ R|Pr(X ≥ x) ≥ α} .

Figure 1 illustrates the concepts of CVaR and VaR. Due to
space restrictions, hereafter we use the shorthand:

C(X) := CVaRα(X).

1Conventions differ about whether larger X are more desirable
(Pflug, 2000; Acerbi & Tasche, 2002) or less desirable (Brown,
2007), and thus whether CVaR should focus on the larger or smaller
values that X can take. We adopt the notation of the most closely
related prior work—that of Brown (2007)—wherein larger values
of X are less desirable.

VaR𝛼𝛼 CVaR𝛼𝛼

Figure 1. Illustrative example of VaR and CVaR, where the curve
denotes the probability density function of a continuous random
variable, with larger values denoting undesirable outcomes. VaRα
is the largest value such that at least 100α% of samples will be
larger than it. That is, in the figure above the area of the shaded re-
gion has area α. CVaRα is the expected value if we only consider
the samples that are at least VaRα—it is the expected value if we
were to view the shaded region as a probability density function
(which would require it to be normalized to integrate to one).

Let X1, . . . , Xn be n independent and identically dis-
tributed (i.i.d.) random variables with the same distribution
as X , i.e., Xi and X are i.i.d. for all i ∈ {1, . . . , n}. In this
paper we consider the problem of finding functions f and
g such that the following hold (in some cases given further
assumptions on X):

Pr (C(X) ≥ f(α, δ,X1(ω), . . . , Xn(ω))) ≥ 1− δ,

and

Pr (C(X) ≤ g(α, δ,X1(ω), . . . , Xn(ω))) ≥ 1− δ.

That is, f and g should produce high-confidence lower and
upper bounds on CVaR, respectively.

3. Brown’s Inequalities
Let

Ĉ := inf
x∈R

{
x+

1

nα

n∑
i=1

(Xi(ω)− x)+

}
denote a sample-based estimate of C(X) (Brown, 2007).
Brown (2007) proved the following two inequalities that
bound the deviation of the sample CVaR from the true CVaR
with high probability.
Theorem 1. If supp(X) ⊆ [a, b] and X has a continuous
distribution function, then for any δ ∈ (0, 1],

Pr

(
C(X) ≤ Ĉ + (b− a)

√
5 ln (3/δ)

αn

)
≥ 1− δ.

Theorem 2. If supp(X) ⊆ [a, b], then for any δ ∈ (0, 1],

Pr

(
C(X) ≥ Ĉ− b− a

α

√
ln (1/δ)

2n

)
≥ 1− δ.

4. New Concentration Inequalities for CVaR
We present two new concentration inequalities for CVaR in
Theorems 3 and 4 (for clarity they span both columns and
are therefore presented in Figure 2).
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Theorem 3. If X1, . . . , Xn are independent and identically distributed random variables and Pr(X1 ≤ b) = 1 for some
finite b, then for any δ ∈ (0, 0.5],

Pr

CVaRα(X1) ≤ Zn+1 −
1

α

n∑
i=1

(Zi+1 − Zi)

(
i

n
−
√

ln(1/δ)

2n
− (1− α)

)+
 ≥ 1− δ,

where Z1, . . . , Zn are the order statistics (i.e., X1, . . . , Xn sorted in ascending order), Zn+1 = b, and x+ := max{0, x}
for all x ∈ R.

Theorem 4. If X1, . . . , Xn are independent and identically distributed random variables and Pr(X1 ≥ a) = 1 for some
finite a, then for any δ ∈ (0, 0.5],

Pr

CVaRα(X1) ≥ Zn −
1

α

n−1∑
i=0

(Zi+1 − Zi)

(
min

{
1,
i

n
+

√
ln(1/δ)

2n

}
− (1− α)

)+
 ≥ 1− δ,

whereZ1, . . . , Zn are the order statistics (i.e.,X1, . . . , Xn sorted in ascending order), Z0 = a, and where x+ := max{0, x}
for all x ∈ R.

Figure 2. Main results, presented in a standalone fashion, and where x+ := max{0, x} for all x ∈ R.

Before providing proofs for these two theorems in the fol-
lowing subsections, we present a lemma that is used in the
proofs of both theorems. Let H : R→ [0, 1] be the cumula-
tive distribution function (CDF) for a random variable, Y .
That is,

H(y) = Pr(Y ≤ y).

Our first lemma provides an expression for the CVaR of Y
in terms of its CDF, H:

Lemma 1. If H is the CDF for a random variable, Y , and
H(b) = 1 for some finite b, then

C(Y ) = b− 1

α

∫ b

−∞
(H(y)− (1− α))+ dy. (1)

Proof. Acerbi & Tasche (2002) showed that expected short-
fall and CVaR are equivalent. They also gave the following
expression for expected shortfall, and thus CVaR (Acerbi &
Tasche, 2002, Proposition 3.2):2

C(Y ) =
1

α

∫ 1

1−α
VaRγ(Y ) dγ. (2)

This form for CVaR is depicted in Figure 3. Following the
reasoning presented in Figure 3, (2) can be written as:

C(Y ) =
1

α

(
αb−

∫ b

−∞
max{0, H(y)− (1− α)} dy

)
,

from which Lemma 1 follows by algebraic manipulations.

2Notice that Acerbi & Tasche use the alternate convention
where larger values of X are more desirable. The expression we
present can be derived by applying their expression to −X .

1

0
𝑏𝑏

1 − 𝛼𝛼

0

Figure 3. The green curve depicts a possible CDF, H , for a hybrid
(both continuous and discrete) distribution, where H(b) = 1.
CVaRα(Y ), as given by (2), is 1/α times the area of the red region
(which spans horizontally from zero to the CDF, and vertically
from 1 − α to 1). We will express this area as the area of the
rectangle formed by the red and blue regions, which is αb, minus
the area of the blue region, which is

∫ b
−∞max{0, H(y) − (1 −

α)}) dy.

4.1. Proof of Theorem 3

We begin by reviewing the Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality (Dvoretzky et al., 1956) using the tight
constants found by Massart (1990). Let F : R→ [0, 1] be
the CDF of X and Fω : R→ [0, 1] be the empirical CDF:

Fω(x) :=
1

n

n∑
i=1

1{Xi(ω)≤x}.

The DKW inequality bounds the probability that the empiri-
cal CDF, Fω, will be far from the true CDF, F , where the
distance between CDFs is measured using a variant of the
Kolmogorov-Smirnov statistic, supx∈R(Fω(x)− F (x)).
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Figure 4. Illustration (not to scale) of a possible empirical CDF,
Fω , where n = 6. Also shown is G−ω , the 1− δ confidence lower
bound on Fω produced by the DKW inequality. Thus, by (5) we
have that with probability at least 1 − δ, the true CDF will lie
entirely within the shaded region (if Z1, . . . , Z6 are viewed as
random variables).

Property 1 (DKW Inequality). For any λ ≥
√

ln(2)
2n ,

Pr

(
sup
x∈R

(Fω(x)− F (x)) > λ

)
≤ exp

(
−2nλ2

)
. (3)

Notice that the DKW inequality holds for any distribution
function, F , not just continuous distribution functions (Mas-
sart, 1990, Page 1271, Comment (iii)).

Next, we will perform basic manipulations to convert the
DKW inequality into the form that we will require later.
Let δ := exp(−2nλ2), so that λ =

√
ln(1/δ)/(2n).

Thus, the requirement that λ ≥
√

ln(2)/(2n) becomes
that

√
ln(1/δ)/(2n) ≥

√
ln(2)/(2n), which is the same

as requiring that ln(1/δ) ≥ ln(2), or equivalently, that
δ ∈ (0, 0.5]. Furthermore, using this definition of δ, we can
rewrite (3) as:

Pr

(
sup
x∈R

(Fω(x)− F (x)) >

√
ln(1/δ)

2n

)
≤ δ,

or, by the complement rule,

Pr

(
sup
x∈R

(Fω(x)− F (x)) ≤
√

ln(1/δ)

2n

)
≥ 1− δ,

which implies that

Pr

(
∀x ∈ R, Fω(x)−

√
ln(1/δ)

2n
≤ F (x)

)
≥ 1− δ.

Furthermore, because F is a CDF, F (x) ≥ 0 for all x, and
so

Pr

∀x ∈ R,

(
Fω(x)−

√
ln(1/δ)

2n

)+

≤ F (x)

 ≥ 1−δ.

(4)

By the assumption that Pr(X1 ≤ b) = 1, F (x) = 1 for all
x ≥ b, and so we can tighten (4):

Pr
(
∀x ∈ R, G−ω (x) ≤ F (x)

)
≥ 1− δ, (5)

where

G−ω (x) :=


1 if x ≥ b(
Fω(x)−

√
ln(1/δ)

2n

)+

otherwise.

We now have, in (5), the form of the DKW inequality that
we require later. A visualization of (5) is provided in Figure
4.

Intuitively, the next step of this proof is to argue that, since
the true CDF of X is within the shaded blue region of
Figure 4 with high probability, CVaRα(X) is, with high
probability, at most the maximum CVaRα possible for ran-
dom variables with CDFs that do not leave the shaded blue
region. To show this formally, let H−ω be the set of CDFs
that are greater than or equal to G−ω at all points (the CDFs
that are contained within the shaded blue region of Figure
4):

H−ω =
{
H : R→ [0, 1]

∣∣∀x ∈ R, G−ω (x) ≤ H(x)
}
.

Furthermore, we abuse notation and redefine C to be a
function that takes as input a distribution function rather
than a random variable. That is, C(H) is equivalent to
C(Y ) if Y is a random variable with CDF H .

Let uω denote the largest possible CVaRα associated with
a CDF that does not leave the shaded blue region of Figure
4. Formally,

uω := sup
H∈H−

ω

C(H).

Notice that, if ∀x, G−ω (x) ≤ F (x), then F ∈ H−ω and so
uω ≥ C(F ) = C(X). Thus, from (5) we have that

Pr (C(X) ≤ uω) ≥ 1− δ.

In the remainder of the proof of Theorem 3 we derive an
expression for uω by showing that it is the CVaR of the
distribution characterized by G−ω , and then leverage the fact
that G−ω is a step function to obtain a simple expression for
uω. By Lemma 1, we have that, for any CDF, H , where
H(b) = 1 (which is the case for all H ∈ H−ω ):

C(H) = b− 1

α

∫ b

−∞
(H(y)− (1− α))+ dy. (6)

This expression is maximized when H is minimized (since
the integral is subtracted from b). By the definition ofH−ω
we have that for all H ∈ H−ω and all x ∈ R, G−ω (x) ≤
H(x). So, G−ω is the CDF in H−ω that maximizes C, and
thus uw = C(G−ω ).



Concentration Inequalities for CVaR

Since G−ω is a step function, its CVaR is straightforward to
compute from (6) as:

C(G−ω ) = Zn+1︸ ︷︷ ︸
=b

− 1

α

n∑
i=1

(Zi+1 − Zi)︸ ︷︷ ︸
step width

×

(
i

n
−
√

ln(1/δ)

2n
− (1− α)

)+

︸ ︷︷ ︸
step height

,

where × denotes scalar multiplication split across two lines.

4.2. Proof of Theorem 4

This proof follows the same steps as the proof of Theorem
3, but begins with an alternate form of the DKW inequality
(Dvoretzky et al., 1956; Massart, 1990):

Property 2. For any λ ≥
√

ln(2)
2n ,

Pr

(
sup
x∈R

(F (x)− Fω(x)) > λ

)
≤ exp

(
−2nλ2

)
.

If follows from Property 2 that

Pr
(
∀x ∈ R, G+

ω (x) ≥ F (x)
)
≥ 1− δ, (7)

where

G+
ω (x) :=

0 if x ≤ a

min

{
1, Fω(x) +

√
ln(1/δ)

2n

}
otherwise.

Let

H+
ω =

{
H : R→ [0, 1]

∣∣∀x ∈ R, G+
ω (x) ≥ H(x)

}
,

and lω := infH∈H+
ω

C(H). If ∀x,G+
ω (X) ≥ F (x), then

F ∈ H+
ω and so lω ≤ C(X). Thus, from (7) we have that

Pr (C(X) ≥ lω) ≥ 1− δ.

As a consequence of Lemma 1, for all H ∈ H+
ω :

C(H) ≥ Zn −
1

α

∫ ∞
a

(H(x)− (1− α))+ dx,

where the inequality holds with equality if H = G+
ω . This

expression is minimized when H is maximized, and so G+
ω

is the H ∈ H+
ω that minimizes C. Thus, lω = C(G+

ω ).
Since G+

ω is a step function, like G−ω , it is also straightfor-
ward to compute as:

C(G+
ω ) =Zn −

1

α

n−1∑
i=0

(Zi+1 − Zi)

×

(
min

{
1,
i

n
+

√
ln(1/δ)

2n

}
− (1− α)

)+

.

5. Discussion
By considering the derivations of Theorems 3 and 4, we
can obtain some intuition for the complicated forms of our
inequalities. At a high level, the right sides of our inequali-
ties are the CVaR associated with a CDF (G−ω or G+

ω ) that
is the sum of the sample CDF and a term that comes from
the DKW inequality. The term from the DKW inequality
scales with 1/

√
n, and so as n → ∞, this term converges

to zero. Hence, as n→∞, the right sides of our inequali-
ties become the CVaR of the sample CDF, which converges
almost surely to the true CVaR.

In the remainder of this section we show that our inequal-
ities are a significant improvement over those of Brown
(2007). We begin by considering the relationship between
our lower bound and Brown’s, i.e., Theorem 4 and Theorem
2. First, notice the difference in requirements. Brown’s
inequality requires the random variable, X , to be bounded
both above and below, while our inequality only requires it
to be bounded below. Thus, our bound will be applicable
is cases where Brown’s will not—when X has no upper
bound, such as if X has log-normal distribution. However,
Brown’s inequality allows for δ ∈ (0, 1], while ours only
allows for δ ∈ (0, 0.5]. Thus, Brown’s inequality can be
applied in cases where ours cannot. However, these cases
are rare: typically we want guarantees that hold with proba-
bility greater than 0.5 (i.e., bounds that hold at least 50% of
the time).

Next, consider the setting where both Brown’s and our in-
equalities can be applied. In Theorem 5 we prove that our
lower bound is a strict improvement over Brown’s if n > 2
(for nearly all practical applications, n will be much larger
than 2):

Theorem 5. Under the conditions required by Theorems
2 4, and if n > 3, then Theorem 4 is strictly tighter than
Theorem 2.

Proof. For clarity, we present the proof at the end of this
paper in Section 8.

The proof of Theorem 5 provides some insight into when
our inequality will be much tighter than Brown’s, and when
our inequality may only be slightly tighter than Brown’s.
Specifically, an intermediate step shows that

Zn+1 −
1

α

n∑
i=1

(Zi+1 − Zi)

(
i

n
−
√

ln(1/δ)

2n
− (1− α)

)+

(8)

>Ĉ − 1

α

√
ln(1/δ)

2n
(Zn − Z0),

which provides a strict loosening of Theorem 4 that puts it
into the same form as Brown’s inequality (the sample CVaR
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minus a term). Since Zn − Z0 ≤ (b − a), the right side
of (8) is always at least as tight as the corresponding term
in Theorem 2. So, whereas Brown’s inequality depends
on b, the upper bound on X , ours is strictly tighter than a
bound that is similar to Brown’s, but which depends only on
the largest observed sample, Zn. This will yield significant
improvements for random variables with heavy upper tails—
cases where the upper bound, b, is likely far larger than the
largest observed sample, Zn.

We now turn to comparing our upper bound to Brown’s,
i.e., Theorem 3 to Theorem 1. In this case, Brown’s in-
equality requires X to be bounded both above and below,
while our inequality only requires X to be bounded above
with probability one. Another difference between our and
Brown’s upper bounds, which was not present when con-
sidering lower bounds, is that Brown’s requires X to be
a continuous random variable, while ours does not. This
means that, again, our inequality will be applicable when
Brown’s is not. However, just as with the lower bounds, our
bound only holds for δ ∈ (0, 0.5], while Brown’s holds for
δ ∈ (0, 1].

Unlike with the lower bounds, further comparison is more
challenging. Neither bound is a strict improvement on the
other in the settings where both are applicable. Our in-
equality has no dependence on the upper bound, and so for
random variables with large upper bounds that are rarely
realized, our inequality tends to perform better. However,
our confidence interval scales with 1/α, while Brown’s
scales with 1/

√
α. Since α < 1, this means that Brown’s

inequality has a better dependence on α.3

Theorems 3 and 4 can be used to create high-confidence
upper and lower bounds on CVaR, and are presented in the
form that would be used to do so. Although concentration
inequalities are sometimes expressed in this form (Maurer
& Pontil, 2009, Theorem 11), they are also sometimes ex-
pressed in an alternative form (Hoeffding, 1963). In this
alternative form, a predetermined tolerance, t, is specified,
and the probability of the sample statistic (sample CVaR)
deviating from the target statistic (CVaR) by more than t is
bounded. A limitation of Theorems 3 and 4 is that it is not
clear how they could be converted into this form, which is
the form originally used by Brown (2007), since the standard
approach of setting t equal to the high-probability upper or
lower bounds and then solving for δ in terms of t would
result in the probability of the bound containing a random
variable.

3Just as we loosened our lower bound to produce an in-
equality that is in a form similar to Hoeffding’s inequality,
we can loosen our upper bound to: Pr(C(X) ≤ Ĉ +

(b− a)α−1
√

ln(1/δ)/2n ≥ 1 − δ. This inequality is not em-
phasized because it is never tighter than our bound and is often
looser than Brown’s.

6. Empirical Comparisons
In order to better visualize the benefits of our new inequali-
ties relative to those of Brown (2007), we conducted a series
of empirical comparisons. The results of these comparisons
are presented in Figure 8. These experiments do not test
coverage rates because both our approach and Brown’s pro-
vide guaranteed coverage. Instead, in these experiments
we compare the upper and lower bounds produced by our
approach and Brown’s, for a variety of different distribu-
tions and values of n, δ, and α. Specifically, we considered
seven different possible distributions for the random vari-
able X: one log-normal, five beta, and one where −X is
log-normal. The probability density functions (PDFs) of
these distributions are depicted in the top row of images in
Figure 8.

The remainder of the rows show the upper and lower bounds
produced by the different methods using various settings. In
all cases, the left-most column denotes whether a row shows
upper or lower bounds along with what label should be on
the horizontal axis of all plots in that row (they were omitted
to save vertical space). Also, unless otherwise specified, we
always used n = 10,000 samples, α = 0.05, and δ =
0.05. The second and right-most columns correspond to
distributions that are not bounded above and below. Brown’s
inequalities therefore are not valid for these two columns,
and so their corresponding curves are omitted. Also, in all
plots the blue curves correspond to bounds produced by
Brown’s inequalities, red curves correspond to the bounds
produced by our inequalities, and the dotted black curve is
the sample CVaR.

Since the quantity of primary interest is the width of the
confidence intervals, rather than report the true CVaR along
with our bounds, we report the sample CVaR. So, the gap
between the dotted black line and the solid lines shows
exactly the amount added or subtracted from the sample
CVaR by the different bounds. Due to the large sample
sizes, in most cases the sample CVaR is a good estimate of
the true CVaR—except for when n is small and when using
a log-normal distribution (the long tail makes it difficult to
accurately estimate CVaR from samples).

Rows 2 and 3 of Figure 8 show how the upper and lower
bounds change as the confidence level, δ, of the bounds
is varied from 0 to 0.5. As δ becomes larger, the desired
confidence level decreases and the bounds become tighter.
In all cases, our inequalities were tighter.

Rows 4 and 5 of Figure 8 show how the upper and lower
bounds change as the percentile, α, is varied. Notice that
changing α changes the true value of CVaRα(X), and so
the dotted black line is not a horizontal line. This setting
where α is varied is of particular interest because Brown’s
upper bound has a better dependence on α than our bound.
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However, in almost all cases the better dependence on α is
dwarfed by our bound’s better constants, dependence on δ,
and lack of dependence on the true range of the random vari-
able. One would expect Brown’s upper bound to perform
well when samples near the lower bound, a, are frequent so
that the benefit of our inequality not depending on a is miti-
gated. This occurs in the distribution depicted in the second
column. Furthermore, one would expect Brown’s inequality
to perform better when α is small. Notice that in the plot
in the second column and fourth row, we show the upper
bounds in exactly this case, and when α is sufficiently small,
we find the single instance in these plots where Brown’s
inequality outperforms ours.

The sixth and seventh rows of Figure 8 show how the upper
and lower bounds change as the amount of data, n, is varied.
As seen elsewhere, we find that out bound remains tighter
than Brown’s in all cases.

7. Conclusion and Future Work
We have derived new concentration inequalities for CVaR,
and shown that they compare favorably, analytically and em-
pirically, to those of Brown (2007). The Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality (Dvoretzky et al., 1956) served
as the foundation for the derivations of our new concentra-
tion inequalities. This high-level approach has also been
used to produce concentration inequalities for the mean
(Anderson, 1969), entropy (Learned-Miller & DeStefano,
2008), and variance (Romano & Wolf, 2002). One limita-
tion of this approach is that the DKW inequality bounds
the Kolmogorov-Smirnov statistic, which results in a uni-
form confidence interval around the empirical CDF. There
may exist non-uniform confidence intervals that result in
tighter high-probability bounds for each of these statistics
(including CVaR).

8. Proof of Theorem 5
First, we provide a useful property:

Property 3. If x1, . . . , xn are n real numbers, z1, . . . , zn
are these numbers sorted into ascending order, z0 is any
real number, and α ∈ (0, 1), then:

inf
x∈R

{
x+

1

nα

n∑
i=1

(xi − x)+
}

=zn −
1

α

n−1∑
i=0

(zi+1 − zi)
(
i

n
− (1− α)

)+

.

Proof. It is known that the sample CVaR, Ĉ, is equivalent
to the CVaR of the distribution characterized by the sample
CDF (Gao & Wang, 2011, Equation 1.4). That is, if Hn

is the sample CDF built from samples x1, . . . , xn, then

infx∈R

{
x+ 1

nα

∑n
i=1(xi−x)+

}
= C(Hn),whereC(Hn)

uses the abuse of notation described in the proof of Lemma
1. Because Hn is a step function, its CVaR, as expressed in
(1), can be written as:

C(Hn) = zn︸︷︷︸
b

− 1

α

n−1∑
i=0

(zi+1 − zi)︸ ︷︷ ︸
step width

(
i

n
− (1− α)

)+

︸ ︷︷ ︸
step height

.

We now show that

Zn−
1

α

n−1∑
i=0

(Zi+1−Zi)
(

min

{
1,
i

n
+ s

}
−(1− α)

)+

is strictly greater than Ĉ− b−a
α s, where s is shorthand for√

ln(1/δ)
2n . That is:

Zn −
1

α

n−1∑
i=0

(Zi+1−Zi)
(

min

{
1,
i

n
+s

}
−(1−α)

)+

(a)
>Zn −

1

α

n−1∑
i=0

(Zi+1 − Zi)
(
i

n
+ s− (1− α)

)+

(b)
≥Zn −

1

α

n−1∑
i=0

(Zi+1 − Zi)

((
i

n
− (1− α)

)+

+ s

)
(c)
=Ĉ − 1

α

n−1∑
i=0

(Zi+1 − Zi)s

=Ĉ − 1

α
s(Zn − Z0)

(d)
=Ĉ − Zn − a

α
s

≥Ĉ− b− a
α

s,

where (a) holds because the min with 1 can only decrease
the amount that is subtracted from Zn, (b) holds because
(ln(1/δ)/2n)1/2 is positive, (c) holds by Property 3, and (d)
holds because Z0 = a. Notice that (a) is a strict inequality
because when i = n− 1:

n− 1

n
+

√
ln(1/δ)

2n
≥n− 1

n
+

√
ln(1/0.5)

2n

=1− 1

n
+

√
ln(2)

2

1√
n

(a)
>1,

where (a) holds by the assumption that n > 3.
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