Supplementary material for paper: Optimal Transport for structured data and its application on graphs

1. Proofs

First we recall the notations from the paper :
Let two graphs \mathcal{G}_{1} and \mathcal{G}_{2} described respectively by their probability measure $\mu=\sum_{i=1}^{n} h_{i} \delta_{\left(x_{i}, a_{i}\right)}$ and $\nu=$ $\sum_{i=1}^{m} g_{j} \delta_{\left(y_{j}, b_{j}\right)}$, where $h \in \Sigma_{n}$ and $g \in \Sigma_{m}$ are histograms with $\Sigma_{n}=\left\{h \in\left(\mathbb{R}_{+}^{*}\right)^{n}, \sum_{i=1}^{n} h_{i}=1,\right\}$.
We introduce $\Pi(h, g)$ the set of all admissible couplings between h and g, i.e. the set
$\Pi(h, g)=\left\{\pi \in \mathbb{R}_{+}^{n \times m}\right.$ s.t. $\left.\sum_{i=1}^{n} \pi_{i, j}=h_{j}, \sum_{j=1}^{m} \pi_{i, j}=g_{i}\right\}$,
where $\pi_{i, j}$ represents the amount of mass shifted from the bin h_{i} to g_{j} for a coupling π.

Let $\left(\Omega_{f}, d\right)$ be a compact measurable space acting as the feature space. We denote the distance between the features as $M_{A B}=\left(d\left(a_{i}, b_{j}\right)\right)_{i, j}$, a $n \times m$ matrix.

The structure matrices are denoted C_{1} and C_{2}, and μ_{X} and μ_{A} (resp. ν_{Y} and ν_{B}) the marginals of μ (resp. ν) w.r.t. the structure and feature respectively. We also define the similarity between the structures by measuring the similarity between all pairwise distances within each graph thanks to the 4-dimensional tensor $L\left(C_{1}, C_{2}\right)$:

$$
L_{i, j, k, l}\left(C_{1}, C_{2}\right)=\left|C_{1}(i, k)-C_{2}(j, l)\right| .
$$

We also consider the following notations :

$$
\begin{gather*}
J_{q}\left(C_{1}, C_{2}, \pi\right)=\sum_{i, j, k, l} L_{i, j, k, l}\left(C_{1}, C_{2}\right)^{q} \pi_{i, j} \pi_{k, l} \tag{1}\\
H_{q}\left(M_{A B}, \pi\right)=\sum_{i, j} d\left(a_{i}, b_{j}\right)^{q} \pi_{i, j} \tag{2}\\
E_{q}\left(M_{A B}, C_{1}, C_{2}, \pi\right)=\left\langle(1-\alpha) M_{A B}^{q}+\alpha L\left(C_{1}, C_{2}\right)^{q} \otimes \pi, \pi\right\rangle \\
=\sum_{i, j, k, l}(1-\alpha) d\left(a_{i}, b_{j}\right)^{q}+\alpha L_{i, j, k, l}\left(C_{1}, C_{2}\right)^{q} \pi_{i, j} \pi_{k, l} \tag{3}
\end{gather*}
$$

1

Respectively J_{q}, H_{q} and E_{q} designate the GromovWasserstein (GW) loss, the Wasserstein (W) loss and the $F G W$ loss so that :

$$
\begin{gather*}
F G W_{q, \alpha}(\mu, \nu)=\min _{\pi \in \Pi(h, g)} E_{q}\left(M_{A B}, C_{1}, C_{2}, \pi\right) \tag{4}\\
W_{q}\left(\mu_{A}, \nu_{B}\right)^{q}=\min _{\pi \in \Pi(h, g)} H_{q}\left(M_{A B}, \pi\right) \tag{5}\\
G W_{q}\left(\mu_{X}, \nu_{Y}\right)^{q}=\min _{\pi \in \Pi(h, g)} J_{q}\left(C_{1}, C_{2}, \pi\right) \tag{6}
\end{gather*}
$$

Please note that the minimum exists since we minimize a continuous function over a compact subset of $\mathbb{R}^{n \times m}$ and hence the $F G W$ distance is well defined.

1.1. Bounds

We first introduce the following lemma:
Lemma 1.1. $F G W_{q, \alpha}(\mu, \nu)$ is lower-bounded by the straight-forward interpolation between $W_{q}\left(\mu_{A}, \nu_{B}\right)^{q}$ and $G W_{q}\left(\mu_{X}, \nu_{Y}\right)^{q}:$

$$
\begin{equation*}
F G W_{q, \alpha}(\mu, \nu) \geq(1-\alpha) W_{q}\left(\mu_{A}, \nu_{B}\right)^{q}+\alpha G W_{q}\left(\mu_{X}, \nu_{Y}\right)^{q} \tag{7}
\end{equation*}
$$

Proof. Let π^{α} be the coupling that minimizes $E_{q}\left(M_{A B}, C_{1}, C_{2}, \cdot\right)$. Then we have:

$$
\begin{aligned}
F G W_{q, \alpha}(\mu, \nu) & =E_{q}\left(M_{A B}, C_{1}, C_{2}, \pi^{\alpha}\right) \\
& =(1-\alpha) H_{q}\left(M_{A B}, \pi^{\alpha}\right)+\alpha J_{q}\left(C_{1}, C_{2}, \pi^{\alpha}\right)
\end{aligned}
$$

But also:

$$
\begin{aligned}
W_{q}\left(\mu_{A}, \nu_{B}\right)^{q} & \leq H_{q}\left(M_{A B}, \pi^{\alpha}\right) \\
G W_{q}\left(\mu_{X}, \nu_{Y}\right)^{q} & \leq J_{q}\left(C_{1}, C_{2}, \pi^{\alpha}\right)
\end{aligned}
$$

The provided inequality is then derived.
We also have two other straight-forward lower bounds for $F G W$:

$$
\begin{equation*}
F G W_{q, \alpha}(\mu, \nu) \geq(1-\alpha) W_{q}\left(\mu_{A}, \nu_{B}\right)^{q} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
F G W_{q, \alpha}(\mu, \nu) \geq \alpha G W_{q}\left(\mu_{X}, \nu_{Y}\right)^{q} \tag{9}
\end{equation*}
$$

1.2. Interpolation properties

We now claim the following theorem:
Theorem 1.2. Interpolation properties.
As α tends to zero, the $F G W$ distance recovers $W_{q}\left(\mu_{A}, \nu_{B}\right)^{q}$ between the features, and as α tends to one, we recover $G W_{q}\left(\mu_{X}, \nu_{Y}\right)^{q}$ between the structures:

$$
\begin{aligned}
\lim _{\alpha \rightarrow 0} F G W_{q, \alpha}(\mu, \nu) & =W_{q}\left(\mu_{A}, \nu_{B}\right)^{q} \\
\lim _{\alpha \rightarrow 1} F G W_{q, \alpha}(\mu, \nu) & =G W_{q}\left(\mu_{X}, \nu_{Y}\right)^{q}
\end{aligned}
$$

Proof. Let $\pi^{W} \in \Pi(h, g)$ be the optimal coupling for the Wasserstein distance $W_{q}\left(\mu_{A}, \nu_{B}\right)$ between μ_{A} and ν_{B} and let $\pi^{\alpha} \in \Pi(h, g)$ be the optimal coupling for the $F G W$ distance $F G W_{q, \alpha}(\mu, \nu)$. We consider :

$$
\begin{aligned}
& F G W_{q, \alpha}(\mu, \nu)-(1-\alpha) W_{q}\left(\mu_{A}, \nu_{B}\right)^{q} \\
& =E_{q}\left(M_{A B}, C_{1}, C_{2}, \pi^{\alpha}\right)-(1-\alpha) H_{q}\left(M_{A B}, \pi^{W}\right) \\
& \stackrel{*}{\leq} E_{q}\left(M_{A B}, C_{1}, C_{2}, \pi^{W}\right)-(1-\alpha) H_{q}\left(M_{A B}, \pi^{W}\right) \\
& =\sum_{i, j, k, l} \alpha\left|C_{1}(i, k)-C_{2}(j, l)\right|^{q} \pi_{i, j}^{W} \pi_{k, l}^{W} \\
& =\alpha J_{q}\left(C_{1}, C_{2}, \pi^{W}\right)
\end{aligned}
$$

In $\left({ }^{*}\right)$ we used the suboptimality of the coupling π^{W} w.r.t the $F G W$ distance. In this way we have proven :
$F G W_{q, \alpha}(\mu, \nu) \leq(1-\alpha) W_{q}\left(\mu_{A}, \nu_{B}\right)^{q}+\alpha J_{q}\left(C_{1}, C_{2}, \pi^{W}\right)$

Now let $\pi^{G W} \in \Pi(h, g)$ the optimal coupling for the Gromov-Wasserstein distance $G W_{q}\left(\mu_{X}, \nu_{Y}\right)$ between μ_{X} and ν_{Y}. Then :

$$
\begin{aligned}
& F G W_{q, \alpha}(\mu, \nu)-\alpha G W_{q}\left(\mu_{X}, \nu_{Y}\right)^{q} \\
& =E_{q}\left(M_{A B}, C_{1}, C_{2}, \pi^{\alpha}\right)-\alpha J_{q}\left(C_{1}, C_{2}, \pi^{G W}\right) \\
& \stackrel{*}{\leq} E_{q}\left(M_{A B}, C_{1}, C_{2}, \pi^{G W}\right)-\alpha J_{q}\left(C_{1}, C_{2}, \pi^{G W}\right) \\
& =(1-\alpha) \sum_{i, j, k, l}(1-\alpha) d\left(a_{i}, b_{j}\right)^{q} \pi_{i, j}^{G W} \\
& =(1-\alpha) H_{q}\left(M_{A B}, \pi^{G W}\right)
\end{aligned}
$$

where in $\left(^{*}\right)$ we used the suboptimality of the coupling $\pi^{G W}$ w.r.t the $F G W$ distance so that :

As α goes to zero Eq. (10) and Eq. (8) give $\lim _{\alpha \rightarrow 0} F G W_{q, \alpha}(\mu, \nu)=W_{q}\left(\mu_{A}, \nu_{B}\right)^{q}$ and as α goes to one Eq. (11) and Eq. (9) give $\lim _{\alpha \rightarrow 1} F G W_{q, \alpha}(\mu, \nu)=$ $G W_{q}\left(\mu_{X}, \nu_{Y}\right)^{q}$

1.3. $F G W$ is a distance

For the following proofs we suppose that C_{1} and C_{2} are distance matrices, $n \geq m$ and $\alpha \in] 0, \ldots, 1[$. We claim the following theorem :
Theorem 1.3. FGW defines a metric for $q=1$ and a semi-metric for $q>1$.
$F G W$ defines a metric over the space of structured data quotiented by the measure preserving isometries that are also feature preserving. More precisely, FGW satisfies the triangle inequality and is nul iff $n=m$ and there exists a bijection $\sigma:\{1, . ., n\} \rightarrow\{1, . ., n\}$ such that :

$$
\begin{gather*}
\forall i \in\{1, . ., n\}, h_{i}=g_{\sigma(i)} \tag{12}\\
\forall i \in\{1, . ., n\}, a_{i}=b_{\sigma(i)} \tag{13}\\
\forall i, k \in\{1, . ., n\}^{2}, C_{1}(i, k)=C_{2}(\sigma(i), \sigma(k)) \tag{14}
\end{gather*}
$$

If $q>1$, the triangle inequality is relaxed by a factor 2^{q-1} such that $F G W$ defines a semi-metric

We first prove the equality relation for any $q \geq 1$ and we discuss the triangle inequality in the next section.

1.3.1. EQUALITY RELATION

Theorem 1.4. For all $q \geq 1, F G W_{q, \alpha}(\mu, \nu)=0$ iff there exists an application $\sigma:\{1, . ., n\} \rightarrow\{1, . ., m\}$ which verifies (12), (13) and (14)

Proof. First, let us suppose that $n=m$ and that such a bijection exists. Then if we consider the transport map π^{*} associated with $i \rightarrow i$ and $j \rightarrow \sigma(i)$ i.e the map $\pi^{*}=$ ($I_{d} \times \sigma$) with I_{d} the identity map.
By eq (12), $\pi^{*} \in \Pi(h, g)$ and clearly using (13) and (14):

$$
\begin{aligned}
E_{q}\left(C_{1}, C_{2}, \pi^{*}\right) & =(1-\alpha) \sum_{i, k} d\left(a_{i}, b_{\sigma(i)}\right)^{q} h_{i} g_{\sigma(i)} h_{k} g_{\sigma(k)} \\
& +\alpha \sum_{i, k}\left|C_{1}(i, k)-C_{2}(\sigma(i), \sigma(k))\right|^{q} h_{i} g_{\sigma(i)} h_{k} g_{\sigma(k)} \\
& =0
\end{aligned}
$$

$F G W_{q, \alpha}(\mu, \nu) \leq \alpha G W_{q}\left(\mu_{X}, \nu_{Y}\right)^{q}+(1-\alpha) H_{q}\left(M_{A B}, \pi^{G W}\right)$
(11) We can conclude that $F G W_{q, \alpha}(\mu, \nu)=0$.

Conversely, suppose that $F G W_{q, \alpha}(\mu, \nu)=0$ and $q \geq 1$. We define :

$$
\begin{equation*}
\forall i, k \in\{1, \ldots, n\}^{2}, \hat{C}_{1}(i, k)=\frac{1}{2} C_{1}(i, k)+\frac{1}{2} d\left(a_{i}, a_{k}\right) \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\forall j, l \in\{1, \ldots, m\}^{2}, \hat{C}_{2}(j, l)=\frac{1}{2} C_{2}(j, l)+\frac{1}{2} d\left(b_{j}, b_{l}\right) \tag{17}
\end{equation*}
$$

To prove the existence of a bijection σ satisfying the theorem properties we will prove that the Gromov-Wasserstein distance $G W_{q}\left(\hat{C}_{1}, \hat{C}_{2}, \mu, \nu\right)$ vanishes.
Let $\pi \in \Pi(h, g)$ be any admissible transportation plan. Then for $n \geq 1$, :

$$
\begin{aligned}
& J_{n}\left(\hat{C}_{1}, \hat{C}_{2}, \pi\right)=\sum_{i, j, k, l} L\left(\hat{C}_{1}(i, k), \hat{C}_{2}(j, l)\right)^{n} \pi_{i, j} \pi_{k, l} \\
& =\sum_{i, j, k, l}\left|\frac{1}{2}\left(C_{1}(i, k)-C_{2}(j, l)\right)+\frac{1}{2}\left(d\left(a_{i}, a_{k}\right)-d\left(b_{j}, b_{l}\right)\right)\right|^{n} \\
& \stackrel{*}{\leq} \sum_{i, j, k, l} \frac{1}{2}\left|C_{1}(i, k)-C_{2}(j, l)\right|^{n} \pi_{i, j} \pi_{k, l} \\
& +\sum_{i, j, k, l} \frac{1}{2}\left|d\left(a_{i}, a_{k}\right)-d\left(b_{j}, b_{l}\right)\right|^{n} \pi_{i, j} \pi_{k, l}
\end{aligned}
$$

In (*) we used the convexity of $t \rightarrow t^{n}$ and Jensen inequality. We denote the first term (I) and $(I I)$ the second term. Combining triangle inequalities $d\left(a_{i}, a_{k}\right) \leq d\left(a_{i}, b_{j}\right)+d\left(b_{j}, a_{k}\right)$ and $d\left(b_{j}, a_{k}\right) \leq d\left(b_{j}, b_{l}\right)+d\left(b_{l}, a_{k}\right)$ we have :

$$
\begin{equation*}
d\left(a_{i}, a_{k}\right) \leq d\left(a_{i}, b_{j}\right)+d\left(a_{k}, b_{l}\right)+d\left(b_{j}, b_{l}\right) \tag{18}
\end{equation*}
$$

We split (II) in two parts $S_{1}=\left\{i, j, k, l ; d\left(a_{i}, a_{k}\right)-\right.$ $\left.d\left(b_{j}, b_{l}\right) \geq 0\right\}$ and $S_{2}=\left\{i, j, k, l ; d\left(a_{i}, a_{k}\right)-d\left(b_{j}, b_{l}\right) \leq\right.$ $0\}$ such that

$$
\begin{aligned}
(I I) & =\sum_{i, j, k, l \in S_{1}}\left(d\left(a_{i}, a_{k}\right)-d\left(b_{j}, b_{l}\right)\right)^{n} \pi_{i, j} \pi_{k, l} \\
& \left.+\sum_{i, j, k, l \in S_{2}}\left(d\left(b_{j}, b_{l}\right)\right)-d\left(a_{i}, a_{k}\right)\right)^{n} \pi_{i, j} \pi_{k, l}
\end{aligned}
$$

In the same way as Eq. (18) we have :

$$
\begin{equation*}
d\left(b_{j}, b_{l}\right) \leq d\left(a_{i}, a_{k}\right)+d\left(a_{i}, b_{j}\right)+d\left(a_{k}, b_{l}\right) \tag{19}
\end{equation*}
$$

So Eq. (18) and (19) give :

$$
\begin{align*}
(I I) & \leq \sum_{i, j, k, l} \frac{1}{2}\left|d\left(a_{i}, b_{j}\right)+d\left(a_{k}, b_{l}\right)\right|^{n} \pi_{i, j}, \pi_{k, l} \tag{20}\\
& \stackrel{\text { def }}{=} M_{n}(\pi)
\end{align*}
$$

Finally we have shown that :
$\forall \pi \in \Pi(h, g), \forall n \geq 1, J_{n}\left(\hat{C}_{1}, \hat{C}_{2}, \pi\right) \leq \frac{1}{2} J_{n}\left(C_{1}, C_{2}, \pi\right)+M_{n}(\pi)$

Now let π^{*} be the optimal coupling for $F G W_{q, \alpha}(\mu, \nu)$. If $F G W_{q, \alpha}(\mu, \nu)=0$ then since $E_{q}\left(C_{1}, C_{2}, \pi^{*}\right) \geq \alpha J_{q}\left(C_{1}, C_{2}, \pi^{*}\right) \quad$ and $E_{q}\left(C_{1}, C_{2}, \pi^{*}\right) \geq(1-\alpha) H_{q}\left(M_{A B}, \pi^{*}\right)$, we have:

$$
\begin{equation*}
J_{q}\left(C_{1}, C_{2}, \pi^{*}\right)=0 \tag{22}
\end{equation*}
$$

n and
$\pi_{i, j} \pi_{k, l}$

$$
H_{q}\left(M_{A B}, \pi^{*}\right)=0
$$

Then $\sum_{i, j} d\left(a_{i}, b_{j}\right)^{q} \pi_{i, j}^{*}=0$. Since all terms are positive we can conclude that $\forall m \in \mathbb{N}^{*}, \sum_{i, j} d\left(a_{i}, b_{j}\right)^{m} \pi_{i, j}^{*}=0$.
In this way :

$$
\begin{align*}
M_{q}\left(\pi^{*}\right) & =\frac{1}{2} \sum_{h}\binom{q}{p}\left(\sum_{i, j} d\left(a_{i}, b_{j}\right)^{p} \pi_{i, j}^{*}\right)\left(\sum_{k, l} d\left(a_{k}, b_{l}\right)^{q-p} \pi_{k, l}^{*}\right) \\
& =0 \tag{23}
\end{align*}
$$

Using equations (21) and (22) we have shown :

$$
J_{q}\left(\hat{C}_{1}, \hat{C}_{2}, \pi^{*}\right)=0
$$

So π^{*} is the optimal coupling for $G W_{q}\left(\hat{C}_{1}, \hat{C}_{2}, \mu, \nu\right)$ and $G W_{q}\left(\hat{C}_{1}, \hat{C}_{2}, \mu, \nu\right)=0$. By virtue to Gromov-Wasserstein properties (see (Memoli, 2011)), there exists an isomorphism between the metric spaces associated with μ and ν. In the discrete case this results in the existence of a function $\sigma:\{1, . ., m\} \rightarrow\{1, . ., n\}$ which is a weight preserving isometry and thus bijective. In this way, we have $m=n$ and σ verifiying Eq (12). The isometry property leads also to :

$$
\begin{equation*}
\forall i, k \in\{1, . ., n\}^{2}, \hat{C}_{1}(i, k)=\hat{C}_{2}(\sigma(i), \sigma(k)) \tag{24}
\end{equation*}
$$

Moreover, since π^{*} is the optimal coupling for $G W_{q}\left(\hat{C}_{1}, \hat{C}_{2}, \mu, \nu\right)$ leading to a zero cost, then π^{*} is supported by σ, in particular $\pi^{*}=\left(I_{d} \times \sigma\right)$
So $H_{q}\left(M_{A B}, \pi^{*}\right)=\sum_{i} d\left(a_{i}, b_{\sigma(i)}\right)^{q} h_{i} g_{\sigma(i)}$. Since $H_{q}\left(M_{A B}, \pi^{*}\right)=0$ and all the weights are strictly positive we can conclude that $a_{i}=b_{\sigma(i)}$.
In this way, $d\left(a_{i}, a_{k}\right)=d\left(b_{\sigma(i)}, b_{\sigma(k)}\right)$, so using the equality (24) and the definition of \hat{C}_{1} and \hat{C}_{2} in (16) and (17) we can conclude that :
$\forall i, k \in\{1, . ., n\} \times\{1, . ., n\}, C_{1}(i, k)=C_{2}(\sigma(i), \sigma(k))$
which concludes the proof.

1.3.2. TRIANGLE INEQUALITY

Theorem 1.5. For all $q=1, F G W$ verifies the triangle inequality.

Proof. To prove the triangle inequality of $F G W$ distance for arbitrary measures we will use the gluing lemma (see (Villani, 2008)) which stresses the existence of couplings with a prescribed structure. Let $h, g, f \in \Sigma_{n} \times \Sigma_{m} \times \Sigma_{k}$. Let also $\mu=\sum_{i=1}^{n} h_{i} \delta_{a_{i}, x_{i}}, \nu=\sum_{j=1}^{m} g_{j} \delta_{b_{j}, y_{j}}$ and $\gamma=$ $\sum_{p=1}^{k} f_{p} \delta_{c_{p}, z_{p}}$ be three structured data as described in the paper. We note $C_{1}(i, k)$ the distance between vertices x_{i} and $x_{k}, C_{2}(i, k)$ the distance between vertices y_{i} and y_{k} and $C_{3}(i, k)$ the distance between vertices z_{i} and z_{k}.

Let P and Q be two optimal solutions of the $F G W$ transportation problem between μ and ν and ν and γ respectively.
We define :

$$
S=P \operatorname{diag}\left(\frac{1}{g}\right) Q
$$

(note that S is well defined since $g_{j} \neq 0$ for all j). Then by definition $S \in \Pi(h, f)$ because :
$S 1_{m}=P \operatorname{diag}\left(\frac{1}{g}\right) Q 1_{m}=P \operatorname{diag}\left(\frac{g}{g}\right)=P 1_{m}=h($ same reasoning for f).

We first prove the triangle inequality for the case $q=1$. By suboptimality of S :

$$
\begin{aligned}
& F G W_{1, \alpha}\left(C_{1}, C_{3}, \mu, \gamma\right) \\
& \leq \sum_{i, j, k, l}(1-\alpha) d\left(a_{i}, c_{j}\right)+\alpha L\left(C_{1}(i, k), C_{3}(j, l)\right) S_{i, j} S_{k, l} \\
& =\sum_{i, j, k, l}\left((1-\alpha) d\left(a_{i}, c_{j}\right)+\alpha L\left(C_{1}(i, k), C_{3}(j, l)\right)\right. \\
& \times\left(\sum_{e} \frac{P_{i, e} Q_{e, j}}{g_{e}}\right)\left(\sum_{o} \frac{P_{k, o} Q_{o, l}}{g_{o}}\right) \\
& =\sum_{i, j, k, l}\left((1-\alpha) d\left(a_{i}, c_{j}\right)+\alpha\left|C_{1}(i, k)-C_{3}(j, l)\right|\right) \\
& \times\left(\sum_{e} \frac{P_{i, e} Q_{e, j}}{g_{e}}\right)\left(\sum_{o} \frac{P_{k, o} Q_{o, l}}{g_{o}}\right) \\
& \stackrel{*}{\leq} \sum_{i, j, k, l, e, o}\left((1-\alpha)\left(d\left(a_{i}, b_{e}\right)+d\left(b_{e}, c_{j}\right)\right)\right. \\
& \left.+\alpha\left|C_{1}(i, k)-C_{2}(e, o)+C_{2}(e, o)-C_{3}(j, l)\right|\right) \\
& \times\left(\frac{P_{i, e} Q_{e, j}}{g_{e}}\right)\left(\frac{P_{k, o} Q_{o, l}}{g_{o}}\right) \\
& \stackrel{* *}{\leq} \sum_{i, j, k, l, e, o}\left((1-\alpha) d\left(a_{i}, b_{e}\right)+\alpha L\left(C_{1}(i, k), C_{2}(e, o)\right)\right) \\
& \times \frac{P_{i, e} Q_{e, j}}{g_{e}} \frac{P_{k, o} Q_{o, l}}{g_{o}} \\
& +\sum_{i, j, k, l, e, o}\left((1-\alpha) d\left(b_{e}, c_{j}\right)+\alpha L\left(C_{2}(e, o), C_{3}(j, l)\right)\right) \\
& \times \frac{P_{i, e} Q_{e, j}}{g_{e}} \frac{P_{k, o} Q_{o, l}}{g_{o}}
\end{aligned}
$$

where in $(*)$ we use the triangle inequality of d and in $\left({ }^{* *}\right)$ the triangle inequality of $|$.

Moreover we have :
$\sum_{j} \frac{Q_{e, j}}{g_{e}}=1, \sum_{l} \frac{Q_{o, l}}{g_{o}}=1, \sum_{i} \frac{P_{i, e}}{g_{e}}=1, \sum_{k} \frac{P_{k, o}}{g_{o}}=1$
So,

$$
\begin{aligned}
& F G W_{1, \alpha}\left(C_{1}, C_{3}, \mu, \gamma\right) \\
& \leq \sum_{i, k, e, o}\left((1-\alpha) d\left(a_{i}, b_{e}\right)+\alpha L\left(C_{1}(i, k), C_{2}(e, o)\right)\right) P_{i, e} P_{k, o} \\
& +\sum_{l, j, e, o}\left((1-\alpha) d\left(b_{e}, c_{j}\right)+\alpha L\left(C_{2}(e, o), C_{3}(j, l)\right)\right) Q_{e, j} Q_{o, l}
\end{aligned}
$$

Since P and Q are the optimal plans we have :

$$
\begin{aligned}
F G W_{1, \alpha}\left(C_{1}, C_{3}, \mu, \gamma\right) & \leq F G W_{1, \alpha}\left(C_{1}, C_{2}, \mu, \nu\right) \\
& +F G W_{1, \alpha}\left(C_{2}, C_{3}, \nu, \gamma\right)
\end{aligned}
$$

which prove the triangle inequality for $q=1$.

Theorem 1.6. For all $q>1, F G W$ verifies the relaxed triangle inequality :

$$
\begin{aligned}
F G W_{q, \alpha}\left(C_{1}, C_{3}, \mu, \gamma\right) & \leq 2^{q-1}\left(F G W_{q, \alpha}\left(C_{1}, C_{2}, \mu, \nu\right)\right. \\
& \left.+F G W_{q, \alpha}\left(C_{2}, C_{3}, \nu, \gamma\right)\right)
\end{aligned}
$$

Proof. Let $q>1$, We have :

$$
\begin{equation*}
\forall x, y \in \mathbb{R}_{+},(x+y)^{q} \leq 2^{q-1}\left(x^{q}+y^{q}\right) \tag{25}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& (x+y)^{q}=\left(\left(\frac{1}{2^{q-1}}\right)^{\frac{1}{q}} \frac{x}{\left(\frac{1}{2^{q-1}}\right)^{\frac{1}{q}}}+\left(\frac{1}{2^{q-1}}\right)^{\frac{1}{q}} \frac{y}{\left(\frac{1}{2^{q-1}}\right)^{\frac{1}{q}}}\right)^{q} \leq \\
& {\left[\left(\frac{1}{2^{q-1}}\right)^{\frac{1}{q-1}}+\left(\frac{1}{2^{q-1}}\right)^{\frac{1}{q-1}}\right]^{q-1}\left(\frac{x^{q}}{\frac{1}{2^{q-1}}}+\frac{y^{q}}{\frac{1}{2^{q-1}}}\right)} \\
& =\frac{x^{q}}{\frac{1}{2^{q-1}}}+\frac{y^{q}}{\frac{1}{2^{q-1}}}
\end{aligned}
$$

Last inequality is a consequence of Hölder inequality. Then using same notations :

$$
\begin{aligned}
& F G W_{q, \alpha}\left(C_{1}, C_{3}, \mu, \gamma\right) \\
& \leq \sum_{i, j} \sum_{k, l}(1-\alpha) d\left(a_{i}, c_{j}\right)^{q}+\alpha L\left(C_{1}(i, k), C_{3}(j, l)\right)^{q} S_{i, j} S_{k, l} \\
& =\sum_{i, j} \sum_{k, l}\left((1-\alpha) d\left(a_{i}, c_{j}\right)^{q}+\alpha L\left(C_{1}(i, k), C_{3}(j, l)\right)^{q}\right. \\
& \times\left(\sum_{e} \frac{P_{i, e} Q_{e, j}}{g_{e}}\right)\left(\sum_{o} \frac{P_{k, o} Q_{o, l}}{g_{o}}\right) \\
& =\sum_{i, j, k, l}\left((1-\alpha) d\left(a_{i}, c_{j}\right)^{q}+\alpha\left|C_{1}(i, k)-C_{3}(j, l)\right|^{q}\right) \\
& \times\left(\sum_{e} \frac{P_{i, e} Q_{e, j}}{g_{e}}\right)\left(\sum_{o} \frac{P_{k, o} Q_{o, l}}{g_{o}}\right) \\
& \stackrel{*}{\leq} \sum_{i, j, k, l, e, o}\left((1-\alpha)\left(d\left(a_{i}, b_{e}\right)+d\left(b_{e}, c_{j}\right)\right)^{q}\right. \\
& \left.+\alpha\left|C_{1}(i, k)-C_{2}(e, o)+C_{2}(e, o)-C_{3}(j, l)\right|^{q}\right) \\
& \times\left(\frac{P_{i, e} Q_{e, j}}{g_{e}}\right)\left(\frac{P_{k, o} Q_{o, l}}{g_{o}}\right) \\
& \stackrel{* *}{\leq} 2^{q-1} \sum_{i, j, k, e, o}\left((1-\alpha) d\left(a_{i}, b_{e}\right)^{q}+\alpha L\left(C_{1}(i, k), C_{2}(e, o)\right)^{q}\right) \\
& \times \frac{P_{i, e} Q_{e, j}}{g_{e}} \frac{P_{k, o} Q_{o, l}}{g_{o}} \\
& +2^{q-1} \sum_{i, j, k, l, e, o}\left((1-\alpha) d\left(b_{e}, c_{j}\right)^{q}+\alpha L\left(C_{2}(e, o), C_{3}(j, l)\right)^{q}\right) \\
& \times \frac{P_{i, e} Q_{e, j}}{g_{e}} \frac{P_{k, o} Q_{o, l}}{g_{o}}
\end{aligned}
$$

where in $(*)$ we use the triangle inequality of d and in (**) the triangle inequality of $|$.$| and (25).$
Since P and Q are the optimal plans we have :

$$
\begin{aligned}
F G W_{q, \alpha}\left(C_{1}, C_{3}, \mu, \gamma\right) & \leq 2^{q-1}\left(F G W_{q, \alpha}\left(C_{1}, C_{2}, \mu, \nu\right)\right. \\
& \left.+F G W_{q, \alpha}\left(C_{2}, C_{3}, \nu, \gamma\right)\right)
\end{aligned}
$$

Table 1. Percentage of α chosen in $] 0, \ldots, 1[$ compared to $\{0,1\}$ for discrete labeled graphs

DISCRETE ATTR.	MUTAG	NCI1	PTC
FGW RAW SP	100%	100%	98%
FGW WL H=2 SP	100%	100%	88%
FGW WL H=4 SP	100%	100%	88%

Table 2. Percentage of α chosen in $] 0, \ldots, 1[$ compared to $\{0,1\}$ for vector attributed graphs

VECTOR ATTRIBUTES	BZR	COX2	CUNEIFORM	ENZYMES	PROTEIN	SYNTHETIC
FGW SP	100%	90%	100%	100%	100%	100%

Which prove that $F G W_{q, \alpha}$ defines a semi metric for $q>1$ with coefficient 2^{q-1} for the triangle inequality relaxation.

2. Comparaison with W and $G W$

Cross validation results During the nested cross validation, we divided the dataset into 10 and use 9 folds for training, where α is chosen within $[0,1]$ via a $10-\mathrm{CV}$ crossvalidation, 1 fold for testing, with the best value of α (with the best average accuracy on the $10-\mathrm{CV}$) previously selected. The experiment is repeated 10 times for each dataset except for MUTAG and PTC where it is repeated 50 times. Table 2 and 2 report the average number of time α was chose within] $0, \ldots 1$ [without 0 and 1 corresponding to the Wasserstein and Gromov-Wasserstein distances respectively. Results suggests that both structure and feature pieces of information are necessary as α is consistently selected inside $] 0, \ldots 1[$ except for PTC and COX2.

Nested CV results We report in tables 3 and 4 the average classification accuracies of the nested classification procedure by taking W and $G W$ instead of $F G W$ (i.e by taking $\alpha=0,1$). Best result for each dataset is in bold. A $(*)$ is added when best score does not yield to a significative improvement compared to the second best score. The significance is based on a Wilcoxon signed rank test between the best method and the second one.

Results illustrates that $F G W$ encompasses the two cases of W and $G W$, as scores of $F G W$ are usually greater or equal on every dataset than scores of both W and $G W$ and when it is not the case the difference is not statistically significant.

Table 3. Average classification accuracy on the graph datasets with vector attributes.

VECTOR ATTRIBUTES	BZR	COX2	CUNEIFORM	ENZYMES	PROTEIN	SYNTHETIC
FGW SP	85.12 ± 4.15	$\mathbf{7 7 . 2 3}^{2} \pm \mathbf{4 . 8 6}^{*}$	$\mathbf{7 6 . 6 7} \pm \mathbf{7 . 0 4}$	71.00 ± 6.76	74.55 ± 2.74	$\mathbf{1 0 0 . 0 0} \pm \mathbf{0 . 0 0}$
W	$\mathbf{8 5 . 3 6} \pm \mathbf{4 . 8 7 *}$	77.23 ± 3.16	61.48 ± 10.23	$\mathbf{7 1 . 1 6} \pm \mathbf{6 . 3 2} *$	$\mathbf{7 5 . 9 8} \pm \mathbf{1 . 9 7 *}$	34.07 ± 11.33
GW SP	82.92 ± 6.72	77.65 ± 5.88	50.66 ± 8.91	23.66 ± 3.63	71.96 ± 2.40	41.66 ± 4.28

Table 4. Average classification accuracy on the graph datasets with discrete attributes.

DISCRETE ATTR.	MUTAG	NCI1	PTC-MR
FGW RAW SP	83.26 ± 10.30	72.82 ± 1.46	55.71 ± 6.74
FGW WL H=2 SP	86.42 ± 7.81	85.82 ± 1.16	63.20 ± 7.68
FGW WL H=4 SP	$\mathbf{8 8 . 4 2} \pm \mathbf{5 . 6 7}$	$\mathbf{8 6 . 4 2} \pm \mathbf{1 . 6 3} *$	65.31 ± 7.90
W RAW SP	79.36 ± 3.49	70.5 ± 4.63	54.79 ± 5.76
W WL H=2 SP	87.78 ± 8.64	85.83 ± 1.75	63.90 ± 7.66
W WL H=4 SP	87.15 ± 8.23	86.42 ± 1.64	$\mathbf{6 6 . 2 8} \pm \mathbf{6 . 9 5} *$
GW SP	82.73 ± 9.59	73.40 ± 2.80	54.45 ± 6.89

Timings In this paragraph we provide some timings for the discrete attributed datasets. Table 5 displays the average timing for computing $F G W$ between two pair of graphs.

Table 5. Average timings for the computation of $F G W$ between two pairs of graph

DISCRETE ATTR.	MUTAG	NCI1	PTC-MR
FGW	2.5 MS	7.3 MS	3.7 MS

References

Memoli, F. Gromov wasserstein distances and the metric approach to object matching. Foundations of Computational Mathematics, pp. 1-71, 2011. ISSN 1615-3375. URL http://dx.doi.org/10.1007/ s10208-011-9093-5. 10.1007/s10208-011-9093-5.

Villani, C. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer, 2009 edition, September 2008. ISBN 3540710493.

