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Supplementary material for paper:
Optimal Transport for structured data and its application on graphs

1. Proofs
First we recall the notations from the paper :

Let two graphs G1 and G2 described respectively by
their probability measure µ =

∑n
i=1 hiδ(xi,ai) and ν =∑m

i=1 gjδ(yj ,bj), where h ∈ Σn and g ∈ Σm are histograms
with Σn = {h ∈ (R∗+)n,

∑n
i=1 hi = 1, }.

We introduce Π(h, g) the set of all admissible couplings
between h and g, i.e. the set

Π(h, g) = {π ∈ Rn×m+ s.t.
n∑
i=1

πi,j = hj ,

m∑
j=1

πi,j = gi},

where πi,j represents the amount of mass shifted from the
bin hi to gj for a coupling π.

Let (Ωf , d) be a compact measurable space acting as the
feature space. We denote the distance between the features
as MAB = (d(ai, bj))i,j , a n×m matrix.

The structure matrices are denoted C1 and C2, and µX and
µA (resp. νY and νB) the marginals of µ (resp. ν) w.r.t.
the structure and feature respectively. We also define the
similarity between the structures by measuring the similarity
between all pairwise distances within each graph thanks to
the 4-dimensional tensor L(C1, C2):

Li,j,k,l(C1, C2) = |C1(i, k)− C2(j, l)|.

We also consider the following notations :

Jq(C1, C2, π) =
∑
i,j,k,l

Li,j,k,l(C1, C2)qπi,j πk,l (1)

Hq(MAB , π) =
∑
i,j

d(ai, bj)
qπi,j (2)

Eq(MAB , C1, C2, π) =
〈
(1− α)Mq

AB + αL(C1, C2)q ⊗ π, π
〉

=
∑
i,j,k,l

(1− α)d(ai, bj)
q + αLi,j,k,l(C1, C2)qπi,jπk,l

(3)

Respectively Jq, Hq and Eq designate the Gromov-
Wasserstein (GW ) loss, the Wasserstein (W ) loss and the
FGW loss so that :

FGW q,α(µ, ν) = min
π∈Π(h,g)

Eq(MAB , C1, C2, π) (4)

Wq(µA, νB)q = min
π∈Π(h,g)

Hq(MAB , π) (5)

GWq(µX , νY )q = min
π∈Π(h,g)

Jq(C1, C2, π) (6)

Please note that the minimum exists since we minimize a
continuous function over a compact subset of Rn×m and
hence the FGW distance is well defined.

1.1. Bounds

We first introduce the following lemma:
Lemma 1.1. FGW q,α(µ, ν) is lower-bounded by the
straight-forward interpolation between Wq(µA, νB)q and
GWq(µX , νY )q:

FGW q,α(µ, ν) ≥ (1−α)Wq(µA, νB)q+αGWq(µX , νY )q

(7)

Proof. Let πα be the coupling that minimizes
Eq(MAB , C1, C2, ·). Then we have:

FGW q,α(µ, ν) = Eq(MAB , C1, C2, π
α)

= (1− α)Hq(MAB , π
α) + αJq(C1, C2, π

α)

But also:

Wq(µA, νB)q ≤ Hq(MAB , π
α)

GWq(µX , νY )q ≤ Jq(C1, C2, π
α)

The provided inequality is then derived.

We also have two other straight-forward lower bounds for
FGW :

FGW q,α(µ, ν) ≥ (1− α) Wq(µA, νB)q (8)
1
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FGW q,α(µ, ν) ≥ α GWq(µX , νY )q (9)

1.2. Interpolation properties

We now claim the following theorem:

Theorem 1.2. Interpolation properties.

As α tends to zero, the FGW distance recoversWq(µA, νB)q

between the features, and as α tends to one, we recover
GW q(µX , νY )q between the structures:

lim
α→0

FGW q,α(µ, ν) = Wq(µA, νB)q

lim
α→1

FGW q,α(µ, ν) = GWq(µX , νY )q

Proof. Let πW ∈ Π(h, g) be the optimal coupling for the
Wasserstein distance Wq(µA, νB) between µA and νB and
let πα ∈ Π(h, g) be the optimal coupling for the FGW
distance FGW q,α(µ, ν). We consider :

FGW q,α(µ, ν)− (1− α)Wq(µA, νB)q

= Eq(MAB , C1, C2, π
α)− (1− α)Hq(MAB , π

W )
∗
≤ Eq(MAB , C1, C2, π

W )− (1− α)Hq(MAB , π
W )

=
∑
i,j,k,l

α|C1(i, k)− C2(j, l)|qπWi,jπWk,l

= αJq(C1, C2, π
W )

In (*) we used the suboptimality of the coupling πW w.r.t
the FGW distance. In this way we have proven :

FGW q,α(µ, ν) ≤ (1−α)Wq(µA, νB)q+αJq(C1, C2, π
W )

(10)

Now let πGW ∈ Π(h, g) the optimal coupling for the
Gromov-Wasserstein distance GWq(µX , νY ) between µX
and νY . Then :

FGW q,α(µ, ν)− αGWq(µX , νY )q

= Eq(MAB , C1, C2, π
α)− αJq(C1, C2, π

GW )
∗
≤ Eq(MAB , C1, C2, π

GW )− αJq(C1, C2, π
GW )

= (1− α)
∑
i,j,k,l

(1− α)d(ai, bj)
qπGWi,j

= (1− α)Hq(MAB , π
GW )

where in (*) we used the suboptimality of the coupling πGW

w.r.t the FGW distance so that :

FGW q,α(µ, ν) ≤ αGWq(µX , νY )q+(1−α)Hq(MAB , π
GW )

(11)

As α goes to zero Eq. (10) and Eq. (8) give
lim
α→0

FGW q,α(µ, ν) = Wq(µA, νB)q and as α goes to

one Eq. (11) and Eq. (9) give lim
α→1

FGW q,α(µ, ν) =

GWq(µX , νY )q

1.3. FGW is a distance

For the following proofs we suppose that C1 and C2 are
distance matrices, n ≥ m and α ∈]0, ..., 1[. We claim the
following theorem :

Theorem 1.3. FGW defines a metric for q = 1 and a
semi-metric for q > 1.

FGW defines a metric over the space of structured data
quotiented by the measure preserving isometries that are
also feature preserving. More precisely, FGW satisfies the
triangle inequality and is nul iff n = m and there exists a
bijection σ : {1, .., n} → {1, .., n} such that :

∀i ∈ {1, .., n}, hi = gσ(i) (12)

∀i ∈ {1, .., n}, ai = bσ(i) (13)

∀i, k ∈ {1, .., n}2, C1(i, k) = C2(σ(i), σ(k)) (14)

If q > 1, the triangle inequality is relaxed by a factor 2q−1

such that FGW defines a semi-metric

We first prove the equality relation for any q ≥ 1 and we
discuss the triangle inequality in the next section.

1.3.1. EQUALITY RELATION

Theorem 1.4. For all q ≥ 1, FGW q,α(µ, ν) = 0 iff there
exists an application σ : {1, .., n} → {1, ..,m} which veri-
fies (12), (13) and (14)

Proof. First, let us suppose that n = m and that such a
bijection exists. Then if we consider the transport map π∗

associated with i → i and j → σ(i) i.e the map π∗ =
(Id × σ) with Id the identity map.

By eq (12), π∗ ∈ Π(h, g) and clearly using (13) and (14):

Eq(C1, C2, π
∗) = (1− α)

∑
i,k

d(ai, bσ(i))
qhigσ(i)hkgσ(k)

+ α
∑
i,k

|C1(i, k)− C2(σ(i), σ(k))|qhigσ(i)hkgσ(k)

= 0

(15)

We can conclude that FGW q,α(µ, ν) = 0.
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Conversely, suppose that FGW q,α(µ, ν) = 0 and q ≥ 1.
We define :

∀i, k ∈ {1, ..., n}2, Ĉ1(i, k) =
1

2
C1(i, k) +

1

2
d(ai, ak)

(16)

∀j, l ∈ {1, ...,m}2, Ĉ2(j, l) =
1

2
C2(j, l) +

1

2
d(bj , bl)

(17)

To prove the existence of a bijection σ satisfying the theo-
rem properties we will prove that the Gromov-Wasserstein
distance GW q(Ĉ1, Ĉ2, µ, ν) vanishes.

Let π ∈ Π(h, g) be any admissible transportation plan.
Then for n ≥ 1, :

Jn(Ĉ1, Ĉ2, π) =
∑
i,j,k,l

L(Ĉ1(i, k), Ĉ2(j, l))nπi,jπk,l

=
∑
i,j,k,l

∣∣∣∣12(C1(i, k)− C2(j, l)) +
1

2
(d(ai, ak)− d(bj , bl))

∣∣∣∣n πi,jπk,l
∗
≤
∑
i,j,k,l

1

2
|C1(i, k)− C2(j, l)|n πi,jπk,l

+
∑
i,j,k,l

1

2
|d(ai, ak)− d(bj , bl)|n πi,jπk,l

In (*) we used the convexity of t→ tn and Jensen inequality.
We denote the first term (I) and (II) the second term. Com-
bining triangle inequalities d(ai, ak) ≤ d(ai, bj)+d(bj , ak)
and d(bj , ak) ≤ d(bj , bl) + d(bl, ak) we have :

d(ai, ak) ≤ d(ai, bj) + d(ak, bl) + d(bj , bl) (18)

We split (II) in two parts S1 = {i, j, k, l ; d(ai, ak) −
d(bj , bl) ≥ 0} and S2 = {i, j, k, l ; d(ai, ak)− d(bj , bl) ≤
0} such that

(II) =
∑

i,j,k,l∈S1

(d(ai, ak)− d(bj , bl))
nπi,jπk,l

+
∑

i,j,k,l∈S2

(d(bj , bl))− d(ai, ak))nπi,jπk,l

In the same way as Eq. (18) we have :

d(bj , bl) ≤ d(ai, ak) + d(ai, bj) + d(ak, bl) (19)

So Eq. (18) and (19) give :

(II) ≤
∑
i,j,k,l

1

2
|d(ai, bj) + d(ak, bl)|nπi,j , πk,l

def
= Mn(π)

(20)

Finally we have shown that :

∀π ∈ Π(h, g), ∀n ≥ 1, Jn(Ĉ1, Ĉ2, π) ≤ 1

2
Jn(C1, C2, π)+Mn(π)

(21)

Now let π∗ be the optimal coupling for
FGW q,α(µ, ν). If FGW q,α(µ, ν) = 0 then
since Eq(C1, C2, π

∗) ≥ αJq(C1, C2, π
∗) and

Eq(C1, C2, π
∗) ≥ (1− α)Hq(MAB , π

∗), we have:

Jq(C1, C2, π
∗) = 0 (22)

and

Hq(MAB , π
∗) = 0

Then
∑
i,j d(ai, bj)

qπ∗i,j = 0. Since all terms are positive
we can conclude that ∀m ∈ N∗,

∑
i,j d(ai, bj)

mπ∗i,j = 0.

In this way :

Mq(π
∗) =

1

2

∑
h

(
q

p

)(∑
i,j

d(ai, bj)
pπ∗
i,j

)(∑
k,l

d(ak, bl)
q−pπ∗

k,l

)
= 0

(23)

Using equations (21) and (22) we have shown :

Jq(Ĉ1, Ĉ2, π
∗) = 0

So π∗ is the optimal coupling for GW q(Ĉ1, Ĉ2, µ, ν) and
GW q(Ĉ1, Ĉ2, µ, ν) = 0. By virtue to Gromov-Wasserstein
properties (see (Memoli, 2011)), there exists an isomor-
phism between the metric spaces associated with µ and ν.
In the discrete case this results in the existence of a function
σ : {1, ..,m} → {1, .., n} which is a weight preserving
isometry and thus bijective. In this way, we have m = n
and σ verifiying Eq (12). The isometry property leads also
to :

∀i, k ∈ {1, .., n}2, Ĉ1(i, k) = Ĉ2(σ(i), σ(k)) (24)
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Moreover, since π∗ is the optimal coupling for
GW q(Ĉ1, Ĉ2, µ, ν) leading to a zero cost, then π∗ is sup-
ported by σ, in particular π∗ = (Id × σ)

So Hq(MAB , π
∗) =

∑
i d(ai, bσ(i))

qhigσ(i). Since
Hq(MAB , π

∗) = 0 and all the weights are strictly positive
we can conclude that ai = bσ(i).

In this way, d(ai, ak) = d(bσ(i), bσ(k)), so using the equal-
ity (24) and the definition of Ĉ1 and Ĉ2 in (16) and (17) we
can conclude that :

∀i, k ∈ {1, .., n} × {1, .., n}, C1(i, k) = C2(σ(i), σ(k))

which concludes the proof.

1.3.2. TRIANGLE INEQUALITY

Theorem 1.5. For all q = 1, FGW verifies the triangle
inequality.

Proof. To prove the triangle inequality of FGW distance
for arbitrary measures we will use the gluing lemma (see
(Villani, 2008)) which stresses the existence of couplings
with a prescribed structure. Let h, g, f ∈ Σn × Σm × Σk.
Let also µ =

∑n
i=1 hiδai,xi , ν =

∑m
j=1 gjδbj ,yj and γ =∑k

p=1 fpδcp,zp be three structured data as described in the
paper. We note C1(i, k) the distance between vertices xi
and xk, C2(i, k) the distance between vertices yi and yk
and C3(i, k) the distance between vertices zi and zk.

Let P and Q be two optimal solutions of the FGW trans-
portation problem between µ and ν and ν and γ respectively.

We define :

S = Pdiag(
1

g
)Q

(note that S is well defined since gj 6= 0 for all j). Then by
definition S ∈ Π(h, f) because :

S1m = Pdiag( 1
g )Q1m = Pdiag( gg ) = P1m = h (same

reasoning for f ).

We first prove the triangle inequality for the case q = 1.

By suboptimality of S :

FGW1,α(C1, C3, µ, γ)

≤
∑
i,j,k,l

(1− α)d(ai, cj) + αL(C1(i, k), C3(j, l))Si,jSk,l

=
∑
i,j,k,l

((1− α)d(ai, cj) + αL(C1(i, k), C3(j, l))

×
(∑

e

Pi,eQe,j
ge

)(∑
o

Pk,oQo,l
go

)
=
∑
i,j,k,l

(
(1− α)d(ai, cj) + α|C1(i, k)− C3(j, l)|

)
×
(∑

e

Pi,eQe,j
ge

)(∑
o

Pk,oQo,l
go

)
∗
≤

∑
i,j,k,l,e,o

(
(1− α)(d(ai, be) + d(be, cj))

+ α|C1(i, k)− C2(e, o) + C2(e, o)− C3(j, l)|
)

×
(Pi,eQe,j

ge

)(Pk,oQo,l
go

)
∗∗
≤

∑
i,j,k,l,e,o

(
(1− α)d(ai, be) + αL(C1(i, k), C2(e, o))

)
× Pi,eQe,j

ge

Pk,oQo,l
go

+
∑

i,j,k,l,e,o

(
(1− α)d(be, cj) + αL(C2(e, o), C3(j, l))

)
× Pi,eQe,j

ge

Pk,oQo,l
go

where in (*) we use the triangle inequality of d and in (**)
the triangle inequality of |.|

Moreover we have :

∑
j

Qe,j
ge

= 1,
∑
l

Qo,l
go

= 1,
∑
i

Pi,e
ge

= 1,
∑
k

Pk,o
go

= 1

So,

FGW1,α(C1, C3, µ, γ)

≤
∑
i,k,e,o

(
(1− α)d(ai, be) + αL(C1(i, k), C2(e, o))

)
Pi,ePk,o

+
∑
l,j,e,o

(
(1− α)d(be, cj) + αL(C2(e, o), C3(j, l))

)
Qe,jQo,l

Since P and Q are the optimal plans we have :

FGW1,α(C1, C3, µ, γ) ≤ FGW1,α(C1, C2, µ, ν)

+ FGW1,α(C2, C3, ν, γ)

which prove the triangle inequality for q = 1.
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Theorem 1.6. For all q > 1, FGW verifies the relaxed
triangle inequality :

FGWq,α(C1, C3, µ, γ) ≤ 2q−1(FGWq,α(C1, C2, µ, ν)

+ FGWq,α(C2, C3, ν, γ)
)

Proof. Let q > 1, We have :

∀x, y ∈ R+, (x+ y)q ≤ 2q−1
(
xq + yq

)
(25)

Indeed,

(x + y)q =
(
( 1

2q−1 )
1
q x

( 1

2q−1 )
1
q

+ ( 1
2q−1 )

1
q y

( 1

2q−1 )
1
q

)q ≤[
( 1

2q−1 )
1

q−1 + ( 1
2q−1 )

1
q−1
]q−1( xq

1

2q−1
+ yq

1

2q−1

)
= xq

1

2q−1
+ yq

1

2q−1

Last inequality is a consequence of Hölder inequality. Then
using same notations :

FGWq,α(C1, C3, µ, γ)

≤
∑
i,j

∑
k,l

(1− α)d(ai, cj)
q + αL(C1(i, k), C3(j, l))qSi,jSk,l

=
∑
i,j

∑
k,l

((1− α)d(ai, cj)
q + αL(C1(i, k), C3(j, l))q

×
(∑

e

Pi,eQe,j
ge

)(∑
o

Pk,oQo,l
go

)
=
∑
i,j,k,l

(
(1− α)d(ai, cj)

q + α|C1(i, k)− C3(j, l)|q
)

×
(∑

e

Pi,eQe,j
ge

)(∑
o

Pk,oQo,l
go

)
∗
≤

∑
i,j,k,l,e,o

(
(1− α)(d(ai, be) + d(be, cj))

q

+ α|C1(i, k)− C2(e, o) + C2(e, o)− C3(j, l)|q
)

×
(Pi,eQe,j

ge

)(Pk,oQo,l
go

)
∗∗
≤ 2q−1

∑
i,j,k,l,e,o

(
(1− α)d(ai, be)

q + αL(C1(i, k), C2(e, o))q
)

× Pi,eQe,j
ge

Pk,oQo,l
go

+ 2q−1
∑

i,j,k,l,e,o

(
(1− α)d(be, cj)

q + αL(C2(e, o), C3(j, l))q
)

× Pi,eQe,j
ge

Pk,oQo,l
go

where in (*) we use the triangle inequality of d and in (**)
the triangle inequality of |.| and (25).

Since P and Q are the optimal plans we have :

FGWq,α(C1, C3, µ, γ) ≤ 2q−1(FGWq,α(C1, C2, µ, ν)

+ FGWq,α(C2, C3, ν, γ)
)

Table 1. Percentage of α chosen in ]0, ..., 1[ compared to {0, 1}
for discrete labeled graphs

DISCRETE ATTR. MUTAG NCI1 PTC

FGW RAW SP 100% 100% 98%
FGW WL H=2 SP 100% 100% 88%
FGW WL H=4 SP 100% 100% 88%

Table 2. Percentage of α chosen in ]0, ..., 1[ compared to {0, 1}
for vector attributed graphs

VECTOR ATTRIBUTES BZR COX2 CUNEIFORM ENZYMES PROTEIN SYNTHETIC

FGW SP 100 % 90% 100% 100% 100% 100%

Which prove that FGWq,α defines a semi metric for q > 1
with coefficient 2q−1 for the triangle inequality relaxation.

2. Comparaison with W and GW

Cross validation results During the nested cross valida-
tion, we divided the dataset into 10 and use 9 folds for
training, where α is chosen within [0, 1] via a 10-CV cross-
validation, 1 fold for testing, with the best value of α (with
the best average accuracy on the 10-CV) previously selected.
The experiment is repeated 10 times for each dataset except
for MUTAG and PTC where it is repeated 50 times. Table 2
and 2 report the average number of time α was chose within
]0, ...1[ without 0 and 1 corresponding to the Wasserstein
and Gromov-Wasserstein distances respectively. Results
suggests that both structure and feature pieces of informa-
tion are necessary as α is consistently selected inside ]0, ...1[
except for PTC and COX2.

Nested CV results We report in tables 3 and 4 the av-
erage classification accuracies of the nested classification
procedure by taking W and GW instead of FGW (i.e by
taking α = 0, 1). Best result for each dataset is in bold. A
(*) is added when best score does not yield to a significative
improvement compared to the second best score. The sig-
nificance is based on a Wilcoxon signed rank test between
the best method and the second one.

Results illustrates that FGW encompasses the two cases of
W andGW , as scores of FGW are usually greater or equal
on every dataset than scores of both W and GW and when
it is not the case the difference is not statistically significant.
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Table 3. Average classification accuracy on the graph datasets with vector attributes.
VECTOR ATTRIBUTES BZR COX2 CUNEIFORM ENZYMES PROTEIN SYNTHETIC

FGW SP 85.12±4.15 77.23±4.86* 76.67±7.04 71.00±6.76 74.55±2.74 100.00±0.00

W 85.36±4.87* 77.23±3.16 61.48±10.23 71.16±6.32* 75.98± 1.97* 34.07±11.33

GW SP 82.92±6.72 77.65±5.88 50.66±8.91 23.66±3.63 71.96± 2.40 41.66±4.28

Table 4. Average classification accuracy on the graph datasets with
discrete attributes.

DISCRETE ATTR. MUTAG NCI1 PTC-MR

FGW RAW SP 83.26±10.30 72.82±1.46 55.71±6.74
FGW WL H=2 SP 86.42±7.81 85.82±1.16 63.20±7.68
FGW WL H=4 SP 88.42±5.67 86.42±1.63* 65.31±7.90

W RAW SP 79.36±3.49 70.5±4.63 54.79±5.76
W WL H=2 SP 87.78±8.64 85.83±1.75 63.90±7.66
W WL H=4 SP 87.15±8.23 86.42±1.64 66.28±6.95*

GW SP 82.73±9.59 73.40±2.80 54.45± 6.89

Timings In this paragraph we provide some timings for
the discrete attributed datasets. Table 5 displays the average
timing for computing FGW between two pair of graphs.

Table 5. Average timings for the computation of FGW between
two pairs of graph

DISCRETE ATTR. MUTAG NCI1 PTC-MR

FGW 2.5 MS 7.3 MS 3.7 MS
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