
Decoupled Classifiers with Preference Guarantees

A. Proof of Theorem 2

In what follows, we present proofs of Theorem 2. We start a simple sufficient condition to ensure that a group prefers
classifier h to another classifier h0

. We will make use of this result to prove Theorem 2, and to design the score function for
our decoupling procedure in Appendix B.

Lemma 3 (Generalization of Preferences) Consider evaluating the true risk of two classifiers h and h
0 over group z.

Given classifiers satisfy �̂z(h, h0) > 0, then �z(h, h0) > 0 with probability at least 1� � for any � 2 (0, 1] if
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where R(H) is the Rademacher complexity of the hypothesis class H.

Proof 1 For any group z 2 Z and any classifier h 2 H with probability at least 1� �/2, we have that
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The bound in (6) holds for both h and h
0 with probability at least 1� �. Thus, we know that:
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if the condition specified in (5) holds.

We can make use of Lemma 3 to produce the following bounds on the generalization of rationality and envy-freeness. 6

Corollary 4 (Generalization of Rationality) Given a set of decoupled classifiers HZ = {ĥz}z2Z such that

�̂z(ĥz, ĥ0) > 0 for all z 2 Z,

HZ satisfies rationality with respect the pooled classifier ĥ0 with probability at least 1� �, if for all groups z 2 Z:
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Corollary 5 (Generalization of Envy-freeness) Given a set of decoupled classifiers HZ = {ĥz}z2Z such that

�̂z(ĥz, ĥz0) > 0 for all z, z
0
2 Z,

HZ satisfies envy-freeness with probability at least 1� � if, for all pairs of groups z, z0 2 Z:
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6For the sake of clarity, we will consider a setting where each group is assigned its own classifier so that a(z) = z for each z 6= z
0
.

Similar results can be derived for a setting where a single classifier can be assigned to multiple groups (see e.g., Appendix B).
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Both results follow from repeated applications of Lemma 2. Specifically:

• Rationality requires that the pairwise preferences in Lemma 2 hold for all groups z 2 Z. This involves preference
conditions for |Z| pairs of classifiers – i.e., one for each distinct pair ĥz, ĥ0 where z 2 Z. Thus, we can ensure that
rationality holds with probability at least 1� � by applying Lemma 2 with probability at least 1� �

|Z|
.

• Envy-freeness requires that the pairwise preferences in Lemma 2 hold for all pairs of groups z, z0 2 Z. This involves
preference conditions on |Z|(|Z|� 1)/2 pairs of classifiers – i.e., one for each distinct pair ĥz, ĥz0 where z, z

0
2 Z. Since

there are |Z|(|Z|� 1)/2 pairs, and that |Z|(|Z|� 1)/2  |Z|
2
/2, we can ensure that envy-freeness hold with probability

at least 1� � by applying Lemma 2 with probability at least �

|Z|2/2 .

We are now ready to prove Theorem 2.

Proof 2 (Theorem 2) Using Massart’s Lemma, we have that:
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Combining the bound on R(H) in (7) with the bound in Corollary 4, we have that HZ satisfies rationality with probability
at least 1� �, if for all z 2 Z,
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Likewise, combining the bound on R(H) in (7) with the bound in Corollary 5, we have that HZ satisfies envy-freeness with
probability at least 1� � if for all z 2 Z,
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Given the bounds in (8) and (9), we can see that HZ satisfies both rationality and envy-freeness with probability at least
1� � if for all z 2 Z,
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,

64 ln |H|+ 4 ln
⇣

|Z|
2

�

⌘
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Thus, the bound in Theorem 2 holds so long as we can show that:
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B. Score Function

In what follows, we formally derive the score function that we present in Section 4. The score function ensures that our
procedure grows a tree in a way that is aligned with the goal of minimizing the risk of a preference violation.

We wish to bound the probability that HT violates rationality or envy-freeness as follows:
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2
⌘
+
X

z2Z

X

z
0
2Z

a(z0) 6=a(z)

4 exp
⇣
�

nz
2 · �̂z(ĥz, ĥz0)
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We restrict our attention to cases where �̂z(z, z0) > 0 since our training procedure ensures that �̂z(z, z0) � 0, and since
�̂z(z, z0) = 0 implies indifference (i.e., it does not imply a preference violation).

Given a pair groups z, z0 2 Z such that a(z) 6= a(z0), we denote an event where group z prefers the classifier assigned to
group z

0 as Ez!z0 .. We will bound the probability of Ez!z0 in terms of the following event:
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We observe that Ez!z0 ✓ Ez,z0 . We proceed to present a proof by contradiction. Suppose that Ez!z0 6✓ Ez,z0 , this means
that there must exist an event ! 2 Ez!z0 such that ! /2 Ez,z0 . The fact that ! /2 Ez,z0 implies that both of the following
inequalities must hold:
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Thus, we have shown that z does not envy z
0, which contradicts the fact that ! 2 Ez!z0 .

Having shown that Ez!z0 ✓ Ez,z0 , we can bound the probability of an envy-freeness violation as follows:

P
�
[z,z

0Ez!z0
�
 P ([z,z0Ez,z0) (12)



X

z,z
0
2Z

a(z) 6=a(z0)

P (Ez,z0) (13)



X

z,z
0
2Z

a(z) 6=a(z0)

P
⇣
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Here: (12) follows from the fact that Ez!z0 ✓ Ez,z0 ; (13) and (14) follow from the union bound; and (15) follows from
inverting the bound.
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We bound the probability of a rationality violation in a similar manner. We first define the following event for each z 2 Z:
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We note that Ez!0 ✓ Ez,0, which can be shown by deriving an analogous contradiction to the one derived for envy-freeness.
With this result, we can bound the probability of an rationality violation as follows:
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�̂z(ĥz,ĥ0)
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Here: (17) follows from the fact that Ez!0 ✓ Ez,0; (18) and (19) follow from the union bound; and (20) follows from
inverting the bound. Our final expression for the score function is obtained by combining the terms in (16) and (21).


