A. Proof of Theorem 2

In what follows, we present proofs of Theorem 2. We start a simple sufficient condition to ensure that a group prefers classifier h to another classifier h^{\prime}. We will make use of this result to prove Theorem 2, and to design the score function for our decoupling procedure in Appendix B.

Lemma 3 (Generalization of Preferences) Consider evaluating the true risk of two classifiers h and h^{\prime} over group z. Given classifiers satisfy $\hat{\Delta}_{z}\left(h, h^{\prime}\right)>0$, then $\Delta_{z}\left(h, h^{\prime}\right)>0$ with probability at least $1-\delta$ for any $\delta \in(0,1]$ if

$$
\begin{equation*}
4 \mathfrak{R}(\mathcal{H})+\sqrt{\frac{2 \ln \frac{2}{\delta}}{n_{z}}} \leq \hat{\Delta}_{z}\left(h, h^{\prime}\right) \tag{5}
\end{equation*}
$$

where $\mathfrak{R}(\mathcal{H})$ is the Rademacher complexity of the hypothesis class \mathcal{H}.
Proof 1 For any group $z \in Z$ and any classifier $h \in \mathcal{H}$ with probability at least $1-\delta / 2$, we have that

$$
\begin{equation*}
\left|\hat{R}_{z}(h)-R_{z}(h)\right| \leq 2 \mathfrak{R}(\mathcal{H})+\sqrt{\frac{\ln \frac{2}{\delta}}{2 n_{z}}} . \tag{6}
\end{equation*}
$$

The bound in (6) holds for both h and h^{\prime} with probability at least $1-\delta$. Thus, we know that:

$$
\begin{aligned}
R_{z}\left(h^{\prime}\right)-R_{z}(h) & \left.=\left(R_{z}\left(h^{\prime}\right)-\hat{R}_{z}\left(h^{\prime}\right)\right)+\left(\hat{R}_{z}(h)\right)-R_{z}(h)\right)+\hat{R}_{z}\left(h^{\prime}\right)-\hat{R}_{z}(h) \\
& \geq-\left(2 \mathfrak{R}(\mathcal{H})+\sqrt{\frac{\ln \frac{2}{\delta}}{2 n_{z}}}\right)-\left(2 \mathfrak{R}(\mathcal{H})+\sqrt{\frac{\ln \frac{2}{\delta}}{2 n_{z}}}\right)+\hat{\Delta}_{z}\left(h, h^{\prime}\right) \\
& =-\left(4 \mathfrak{R}(\mathcal{H})+\sqrt{\frac{2 \ln \frac{2}{\delta}}{n_{z}}}\right)+\hat{\Delta}_{z}\left(h, h^{\prime}\right) \\
& \geq 0,
\end{aligned}
$$

if the condition specified in (5) holds.
We can make use of Lemma 3 to produce the following bounds on the generalization of rationality and envy-freeness. ${ }^{6}$
Corollary 4 (Generalization of Rationality) Given a set of decoupled classifiers $H_{Z}=\left\{\hat{h}_{z}\right\}_{z \in Z}$ such that

$$
\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)>0 \quad \text { for all } \quad z \in Z
$$

H_{Z} satisfies rationality with respect the pooled classifier \hat{h}_{0} with probability at least $1-\delta$, if for all groups $z \in Z$:

$$
4 \mathfrak{R}(\mathcal{H})+\sqrt{\frac{2}{n_{z}} \ln \left(\frac{2|Z|}{\delta}\right)} \leq \hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)
$$

Corollary 5 (Generalization of Envy-freeness) Given a set of decoupled classifiers $H_{Z}=\left\{\hat{h}_{z}\right\}_{z \in Z}$ such that

$$
\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)>0 \quad \text { for all } \quad z, z^{\prime} \in Z,
$$

H_{Z} satisfies envy-freeness with probability at least $1-\delta$ if, for all pairs of groups $z, z^{\prime} \in Z$:

$$
4 \Re(\mathcal{H})+\sqrt{\frac{2}{n_{z}} \ln \left(\frac{|Z|^{2}}{\delta}\right)} \leq \hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)
$$

[^0]Both results follow from repeated applications of Lemma 2. Specifically:

- Rationality requires that the pairwise preferences in Lemma 2 hold for all groups $z \in Z$. This involves preference conditions for $|Z|$ pairs of classifiers - i.e., one for each distinct pair \hat{h}_{z}, \hat{h}_{0} where $z \in Z$. Thus, we can ensure that rationality holds with probability at least $1-\delta$ by applying Lemma 2 with probability at least $1-\frac{\delta}{|Z|}$.
- Envy-freeness requires that the pairwise preferences in Lemma 2 hold for all pairs of groups $z, z^{\prime} \in Z$. This involves preference conditions on $|Z|(|Z|-1) / 2$ pairs of classifiers - i.e., one for each distinct pair $\hat{h}_{z}, \hat{h}_{z^{\prime}}$ where $z, z^{\prime} \in Z$. Since there are $|Z|(|Z|-1) / 2$ pairs, and that $|Z|(|Z|-1) / 2 \leq|Z|^{2} / 2$, we can ensure that envy-freeness hold with probability at least $1-\delta$ by applying Lemma 2 with probability at least $\frac{\delta}{|Z|^{2} / 2}$.

We are now ready to prove Theorem 2.
Proof 2 (Theorem 2) Using Massart's Lemma, we have that:

$$
\begin{equation*}
\mathfrak{R}(\mathcal{H}) \leq \sqrt{\frac{2 \log |\mathcal{H}|}{n_{z}}} \tag{7}
\end{equation*}
$$

Combining the bound on $\mathfrak{R}(\mathcal{H})$ in (7) with the bound in Corollary 4, we have that H_{Z} satisfies rationality with probability at least $1-\delta$, iffor all $z \in Z$,

$$
\begin{equation*}
n_{z} \geq \frac{64 \ln |\mathcal{H}|+4 \ln \left(\frac{2|Z|}{\delta}\right)}{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)^{2}} \tag{8}
\end{equation*}
$$

Likewise, combining the bound on $\mathfrak{R}(\mathcal{H})$ in (7) with the bound in Corollary 5, we have that H_{Z} satisfies envy-freeness with probability at least $1-\delta$ iffor all $z \in Z$,

$$
\begin{equation*}
n_{z} \geq \frac{64 \ln |\mathcal{H}|+4 \ln \left(\frac{|Z|^{2}}{\delta}\right)}{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)^{2}} \tag{9}
\end{equation*}
$$

Given the bounds in (8) and (9), we can see that H_{Z} satisfies both rationality and envy-freeness with probability at least $1-\delta$ iffor all $z \in Z$,

$$
\begin{equation*}
n_{z} \geq \max \left\{\frac{64 \ln |\mathcal{H}|+4 \ln \left(\frac{2|Z|}{\delta}\right)}{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)^{2}}, \frac{64 \ln |\mathcal{H}|+4 \ln \left(\frac{|Z|^{2}}{\delta}\right)}{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)^{2}}\right\} \tag{10}
\end{equation*}
$$

Thus, the bound in Theorem 2 holds so long as we can show that:

$$
\begin{equation*}
\frac{64 \ln |\mathcal{H}|+4 \ln \left(\frac{2|Z|^{2}}{\delta}\right)}{\hat{\epsilon}_{z}^{2}} \geq \max \left\{\frac{64 \ln |\mathcal{H}|+4 \ln \left(\frac{2|Z|}{\delta}\right)}{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)^{2}}, \frac{64 \ln |\mathcal{H}|+4 \ln \left(\frac{|Z|^{2}}{\delta}\right)}{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)^{2}}\right\} \tag{11}
\end{equation*}
$$

This follows given that we have defined $\hat{\epsilon}_{z}=\min \left(\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right), \min _{z^{\prime} \in Z /\{z\}} \hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)\right)$, and that the inequality $4 \ln \left(\frac{|Z|^{2}}{\delta}\right) \geq 4 \ln \left(\frac{2|Z|}{\delta}\right)$ holds whenever $|Z| \geq 2$.

B. Score Function

In what follows, we formally derive the score function that we present in Section 4. The score function ensures that our procedure grows a tree in a way that is aligned with the goal of minimizing the risk of a preference violation.

We wish to bound the probability that H_{T} violates rationality or envy-freeness as follows:

$$
\mathbb{P}\left(\begin{array}{c}
H_{T} \text { violates } \\
\text { rationality or } \\
\text { enyy freeness }
\end{array}\right) \leq \operatorname{ViolationScore}(T)=\sum_{z \in Z} 4 \exp \left(-\frac{n_{z}}{2} \cdot \hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)^{2}\right)+\sum_{z \in Z} \sum_{\substack{z^{\prime} \in Z \\
a\left(z^{\prime}\right) \neq a(z)}} 4 \exp \left(-\frac{n_{z}}{2} \cdot \hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)^{2}\right)
$$

We restrict our attention to cases where $\hat{\Delta}_{z}\left(z, z^{\prime}\right)>0$ since our training procedure ensures that $\hat{\Delta}_{z}\left(z, z^{\prime}\right) \geq 0$, and since $\hat{\Delta}_{z}\left(z, z^{\prime}\right)=0$ implies indifference (i.e., it does not imply a preference violation).
Given a pair groups $z, z^{\prime} \in Z$ such that $a(z) \neq a\left(z^{\prime}\right)$, we denote an event where group z prefers the classifier assigned to group z^{\prime} as $\mathcal{E}_{z \rightarrow z^{\prime}}$. . We will bound the probability of $\mathcal{E}_{z \rightarrow z^{\prime}}$ in terms of the following event:

$$
\mathcal{E}_{z, z^{\prime}}=\left\{\left|R_{z}\left(\hat{h}_{z}\right)-\hat{R}_{z}\left(\hat{h}_{z}\right)\right| \geq \frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)}{2}\right\} \cup\left\{\left|R_{z}\left(\hat{h}_{z^{\prime}}\right)-\hat{R}_{z}\left(\hat{h}_{z^{\prime}}\right)\right| \geq \frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)}{2}\right\}
$$

We observe that $\mathcal{E}_{z \rightarrow z^{\prime}} \subseteq \mathcal{E}_{z, z^{\prime}}$. We proceed to present a proof by contradiction. Suppose that $\mathcal{E}_{z \rightarrow z^{\prime}} \nsubseteq \mathcal{E}_{z, z^{\prime}}$, this means that there must exist an event $\omega \in \mathcal{E}_{z \rightarrow z^{\prime}}$ such that $\omega \notin \mathcal{E}_{z, z^{\prime}}$. The fact that $\omega \notin \mathcal{E}_{z, z^{\prime}}$ implies that both of the following inequalities must hold:

$$
\begin{array}{r}
\left|R_{z}\left(\hat{h}_{z}\right)-\hat{R}_{z}\left(\hat{h}_{z}\right)\right|<\frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)}{2} \\
\left|R_{z}\left(\hat{h}_{z^{\prime}}\right)-\hat{R}_{z}\left(\hat{h}_{z^{\prime}}\right)\right|<\frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)}{2}
\end{array}
$$

This implies:

$$
\begin{aligned}
R_{z}\left(\hat{h}_{z}\right)-R_{z}\left(\hat{h}_{z^{\prime}}\right) & =\left(R_{z}\left(\hat{h}_{z}\right)-\hat{R}_{z}\left(\hat{h}_{z}\right)\right)+\left(\hat{R}_{z}\left(\hat{h}_{z}\right)-\hat{R}_{z}\left(\hat{h}_{z^{\prime}}\right)\right)+\left(\hat{R}_{z}\left(\hat{h}_{z^{\prime}}\right)-R_{z}\left(\hat{h}_{z^{\prime}}\right)\right) \\
& <\frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)}{2}-\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)+\frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)}{2} \\
& =0
\end{aligned}
$$

Thus, we have shown that z does not envy z^{\prime}, which contradicts the fact that $\omega \in \mathcal{E}_{z \rightarrow z^{\prime}}$.
Having shown that $\mathcal{E}_{z \rightarrow z^{\prime}} \subseteq \mathcal{E}_{z, z^{\prime}}$, we can bound the probability of an envy-freeness violation as follows:

$$
\begin{align*}
\mathbb{P}\left(\cup_{z, z^{\prime}} \mathcal{E}_{z \rightarrow z^{\prime}}\right) & \leq \mathbb{P}\left(\cup_{z, z^{\prime}} \mathcal{E}_{z, z^{\prime}}\right) \tag{12}\\
& \leq \sum_{\substack{z, z^{\prime} \in Z \\
a(z) \neq a\left(z^{\prime}\right)}} \mathbb{P}\left(\mathcal{E}_{z, z^{\prime}}\right) \tag{13}\\
& \leq \sum_{\substack{z, z^{\prime} \in Z \\
a(z) \neq a\left(z^{\prime}\right)}} \mathbb{P}\left(\left|R_{z}\left(\hat{h}_{z}\right)-\hat{R}_{z}\left(\hat{h}_{z}\right)\right| \geq \frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)}{2}\right)+\mathbb{P}\left(\left|R_{z}\left(\hat{h}_{z^{\prime}}\right)-\hat{R}_{z}\left(\hat{h}_{z^{\prime}}\right)\right| \geq \frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)}{2}\right) \tag{14}\\
& \leq \sum_{\substack{z, z^{\prime} \in Z \\
a(z) \neq a\left(z^{\prime}\right)}} 2 \exp \left(-2 n_{z}\left(\frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)}{2}\right)^{2}\right)+2 \exp \left(-2 n_{z}\left(\frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)}{2}\right)^{2}\right) \tag{15}\\
& =\sum_{\substack{z, z^{\prime} \in Z \\
a(z) \neq a\left(z^{\prime}\right)}} 4 \exp \left(-\frac{n_{z}}{2} \cdot \hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{z^{\prime}}\right)^{2}\right) \tag{16}
\end{align*}
$$

Here: (12) follows from the fact that $\mathcal{E}_{z \rightarrow z^{\prime}} \subseteq \mathcal{E}_{z, z^{\prime}}$; (13) and (14) follow from the union bound; and (15) follows from inverting the bound.

We bound the probability of a rationality violation in a similar manner. We first define the following event for each $z \in Z$:

$$
\mathcal{E}_{z, 0}=\left\{\left|R_{z}\left(\hat{h}_{z}\right)-\hat{R}_{z}\left(\hat{h}_{z}\right)\right| \geq \frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)}{2}\right\} \cup\left\{\left|R_{z}\left(\hat{h}_{0}\right)-\hat{R}_{z}\left(\hat{h}_{0}\right)\right| \geq \frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)}{2}\right\}
$$

We note that $\mathcal{E}_{z \rightarrow 0} \subseteq \mathcal{E}_{z, 0}$, which can be shown by deriving an analogous contradiction to the one derived for envy-freeness. With this result, we can bound the probability of an rationality violation as follows:

$$
\begin{align*}
\mathbb{P}\left(\cup_{z \in Z} \mathcal{E}_{z \rightarrow 0}\right) & \leq \mathbb{P}\left(\cup_{z} \mathcal{E}_{z, 0}\right) \tag{17}\\
& \leq \sum_{z \in Z} \mathbb{P}\left(\mathcal{E}_{z, 0}\right) \tag{18}\\
& \leq \sum_{z \in Z} \mathbb{P}\left(\left(\left|R_{z}\left(\hat{h}_{z}\right)-\hat{R}_{z}\left(\hat{h}_{z}\right)\right| \geq \frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)}{2}\right)+\mathbb{P}\left(\left|R_{z}\left(\hat{h}_{0}\right)-\hat{R}_{z}\left(\hat{h}_{0}\right)\right| \geq \frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)}{2}\right)\right. \tag{19}\\
& \leq \sum_{z \in Z} 2 \exp \left(-2 n_{z}\left(\frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)}{2}\right)^{2}\right)+2 \exp \left(-2 n_{z}\left(\frac{\hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)}{2}\right)^{2}\right) \tag{20}\\
& =\sum_{z \in Z} 4 \exp \left(-\frac{n_{z}}{2} \cdot \hat{\Delta}_{z}\left(\hat{h}_{z}, \hat{h}_{0}\right)^{2}\right) \tag{21}
\end{align*}
$$

Here: (17) follows from the fact that $\mathcal{E}_{z \rightarrow 0} \subseteq \mathcal{E}_{z, 0}$; (18) and (19) follow from the union bound; and (20) follows from inverting the bound. Our final expression for the score function is obtained by combining the terms in (16) and (21).

[^0]: ${ }^{6}$ For the sake of clarity, we will consider a setting where each group is assigned its own classifier so that $a(z)=z$ for each $z \neq z^{\prime}$. Similar results can be derived for a setting where a single classifier can be assigned to multiple groups (see e.g., Appendix B).

