Supplementary Material: Large-Scale Sparse Kernel Canonical Correlation Analysis

Viivi Uurtio¹² Sahely Bhadra³ Juho Rousu¹²

 $\partial \mathbf{u}$

1. The Gradients with Respect to u

The objective function, when applying the polynomial kernel, is

$$\rho_{\text{poly}} = \frac{\left((\mathbf{X} \cdot \mathbf{u} + \mathbf{r}_x)^{d_x} \right)^\top \cdot \mathbf{k}}{||(\mathbf{X} \cdot \mathbf{u} + \mathbf{r}_x)^{d_x})|| \cdot ||\mathbf{k}||}$$
(1)

where \mathbf{k} denotes the polynomial kernel on $\mathbf{Y}\mathbf{v}$. The gradient of the objective function, with respect to u:

$$\begin{split} \frac{\partial \rho_{\text{poly}}}{\partial \mathbf{u}} &= d_x \cdot (((\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{d_x})^\top \cdot (\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{d_x})^{-\frac{1}{2}} \\ &\cdot (\mathbf{k}^\top \cdot \mathbf{k})^{-\frac{1}{2}} \cdot (\mathbf{k} \odot (\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{(d_x - 1)})^\top \\ &\cdot \mathbf{X} - ((d_x \cdot (((\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{d_x})^\top \\ &\cdot (\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{d_x})^{-\frac{3}{2}} \cdot (\mathbf{k}^\top \cdot \mathbf{k})^{-\frac{1}{2}})/2 \\ &\cdot \mathbf{k}^\top \cdot (\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{d_x} \cdot ((\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{d_x} \\ &\odot (\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{(d_x - 1)})^\top \cdot \mathbf{X} \\ &+ (d_x \cdot (((\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{d_x})^\top \\ &\cdot (\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{d_x})^{-\frac{3}{2}} \cdot (\mathbf{k}^\top \cdot \mathbf{k})^{-\frac{1}{2}})/2 \\ &\cdot ((\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{d_x})^\top \cdot \mathbf{k} \cdot ((\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{d_x} \\ &\odot (\mathbf{r}_x + \mathbf{X} \cdot \mathbf{u})^{(d_x - 1)})^\top \cdot \mathbf{X}). \end{split}$$

The gradient with respect to \mathbf{v} is obtained similarly. The dominating computational cost arises from the matrix-vector product $\mathbf{X} \cdot \mathbf{u}$ which lead to O((p+q)n) time-complexity per update where $\mathbf{X} \in \mathbb{R}^{n \times p}$.

The objective function, when applying the Gaussian (RBF) kernel, is

$$\rho_{\text{RBF}} = \frac{\exp(-\frac{\mathbf{x}}{2\cdot\sigma^2} + \frac{\mathbf{X}\cdot\mathbf{u}}{2\cdot\sigma^2} - \frac{\|\mathbf{u}\|_2^2}{(2\cdot\sigma^2}\cdot\mathbf{1})^\top \cdot \mathbf{k}}{\|\exp(-\frac{\mathbf{x}}{2\cdot\sigma^2} + \frac{\mathbf{X}\cdot\mathbf{u}}{2\cdot\sigma^2} - \frac{\|\mathbf{u}\|_2^2}{(2\cdot\sigma^2}\cdot\mathbf{1}\|\cdot\|\mathbf{k}\|)}$$
(2)

where \mathbf{x} is the vector of norms of examples of \mathbf{X} and \mathbf{k} denotes the Gaussian kernel on Yv. The gradient of the

Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s).

objective function, with respect to u:

^{*}Equal contribution ¹Department of Computer Science, Aalto University, Espoo, Finland ²Helsinki Institute for Information Technology, Helsinki, Finland ³Computer Science and Engineering, Indian Institute of Technology Palakkad, Palakkad, India. Correspondence to: Viivi Uurtio <viivi.uurtio@aalto.fi>.

The gradient with respect to \mathbf{v} is obtained similarly. The dominating computational cost arises from the matrix-vector product $\mathbf{X} \cdot \mathbf{u}$ which lead to O((p+q)n) time-complexity per update where $\mathbf{X} \in \mathbb{R}^{n \times p}$.

2. Proof of Theorems 4.3

In general cases, pre-image x for is chosen such that the squared distance of \mathbf{w}_x and $\phi_x(\mathbf{u})$ is minimized.

$$\tilde{\mathbf{u}}(\mathbf{w}_x) = \arg \min_{\mathbf{u} \in \mathbb{R}^p} \|\mathbf{w}_x - \phi_x(\mathbf{u})\|_2$$

$$\tilde{\mathbf{v}}(\mathbf{w}_y) = \arg \min_{\mathbf{v} \in \mathbb{R}^q} \|\mathbf{w}_y - \phi_y(\mathbf{v})\|_2$$
(3)

And hence the bounds on pre-image errors are then defined as

$$B_{\mathbf{X}} = \max_{\mathbf{w}_{x} \in \mathcal{L}(\phi_{x}, \mathbf{X})} \|\mathbf{w}_{x} - \phi_{x}(\tilde{\mathbf{u}}(\mathbf{w}_{x}))\|_{2}$$
$$B_{\mathbf{Y}} = \max_{\mathbf{w}_{y} \in \mathcal{L}(\phi_{y}, \mathbf{Y})} \|\mathbf{w}_{y} - \phi_{x}(\tilde{\mathbf{v}}(\mathbf{w}_{y}))\|_{2}.$$
(4)

Theorem 2.1. Let us assume that norm in \mathcal{H}_x and \mathcal{H}_y are upper bounded by M_x and M_y , i.e.,

$$\begin{aligned} \forall \, \phi_x(\mathbf{u}) \in \mathcal{H}_{\S}, \, \|\phi_x(\mathbf{u})\| &\leq M_x \\ and \qquad \forall \, \phi_y(\mathbf{v}) \in \mathcal{H}_{\dagger}, \, \|\phi_y(\mathbf{v})\| &\leq M_y. \end{aligned} \tag{5}$$

Then,

$$ho_{gradKCCA} \ge
ho_{preimage} \ge
ho_{kcca} - (rac{B_y}{M_y} + rac{B_x}{M_x})$$

Proof. Form bound of norm in Hilbert spaces:

$$\begin{aligned} &\forall (\mathbf{u} \text{ and } \mathbf{x}_i), \\ &-M_x^2 \leq \langle \phi_x(\mathbf{u}), \phi_x(\mathbf{x}_i) \rangle = k^x(\mathbf{x}_i, \mathbf{u}) \leq M_x^2 \\ &\text{and } \forall (\mathbf{v} \text{ and } \mathbf{y}_i), \\ &-M_y^2 \leq \langle \phi_x(\mathbf{v}), \phi_y(\mathbf{y}_i) \rangle k^y(\mathbf{y}_i, \mathbf{v}) \leq M_y^2. \end{aligned}$$
(6)

As $\rho_{kcca} \ge 0$, the correlation achieved by pre-images is also positive. For positive ρ_{preimage} :

$$\rho_{\text{preimage}} = \frac{\mathbf{k}^{x}(\tilde{\mathbf{u}}(\mathbf{w}_{x}))^{T}\mathbf{k}^{y}(\tilde{\mathbf{v}}(\mathbf{w}_{y}))}{||\mathbf{k}^{x}(\tilde{\mathbf{u}}(\mathbf{w}_{x}))||||\mathbf{k}^{y}(\tilde{\mathbf{v}}(\mathbf{w}_{y})))||} \\
= \frac{\mathbf{k}^{x}(\tilde{\mathbf{u}}(\mathbf{w}_{x}))^{T}\mathbf{k}^{y}(\tilde{\mathbf{v}}(\mathbf{w}_{y}))}{\sqrt{\sum_{i}k^{x}(\mathbf{x}_{i},\tilde{\mathbf{u}}(\mathbf{w}_{x}))^{2}}\sqrt{\sum_{i}k^{y}(\mathbf{y}_{i},\tilde{\mathbf{u}}(\mathbf{w}_{y}))^{2}}} \\
\geq \frac{\mathbf{k}^{x}(\tilde{\mathbf{u}}(\mathbf{w}_{x}))^{T}\mathbf{k}^{y}(\tilde{\mathbf{v}}(\mathbf{w}_{y}))}{nM_{x}^{2}M_{y}^{2}} \tag{7}$$

Note that, there always exist a pair of solution α^* and β^* which gives optimal solution for KCCA and also satisfies $\|\mathbf{K}^x {m lpha}^*\| = \sqrt{n} M_x^2$ and $\|\mathbf{K}^y {m eta}^*\| = \sqrt{n} M_y^2$ (simple scaling of optimal solution). Given such solution α^* and β^* for KCCA, the corresponding pre-image solution $\tilde{\mathbf{u}}(\mathbf{w}_{x}^{*})$ and $\tilde{\mathbf{v}}(\mathbf{w}_y^*)$ is obtained by plugging the KCCA optimum $\mathbf{w}_x^* = \sum_i \alpha_i^* \phi_x(\mathbf{x}_i)$ and $\mathbf{w}_y^* = \sum_i \beta_i^* \phi_y(\mathbf{y}_i)$ into (3) (i.e. equation (8) and (9) in main manuscript).

The difference between the correlation found by KCCA and by its pre-image $\mathbf{u}(\mathbf{w}_x^*)$ and $\mathbf{v}(\mathbf{w}_y^*)$ is

$$\begin{split} \rho_{\text{kcca}} & -\rho_{\text{preimage}} \\ = & \frac{\boldsymbol{\alpha}^{*T} \mathbf{K}^{x} \mathbf{K}^{y} \boldsymbol{\beta}^{*}}{\|\mathbf{K}^{x} \boldsymbol{\alpha}^{*}\| \|\mathbf{K}^{y} \boldsymbol{\beta}^{*}\|} - \frac{\mathbf{k}^{x} (\tilde{\mathbf{u}}(\mathbf{w}_{x}^{*}))^{T} \mathbf{k}^{y} (\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*}))}{\|\mathbf{k}^{x} (\tilde{\mathbf{u}}(\mathbf{w}_{x}^{*}))\| \|\mathbf{k}^{y} (\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*}))\|} \\ \leq & \frac{\boldsymbol{\alpha}^{*T} \mathbf{K}^{x} \mathbf{K}^{y} \boldsymbol{\beta}^{*}}{n M_{x}^{2} M_{y}^{2}} - \frac{\mathbf{k}^{x} (\tilde{\mathbf{u}}(\mathbf{w}_{x}^{*}))^{T} \mathbf{k}^{y} (\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*}))}{n M_{x}^{2} M_{y}^{2}} \\ & \text{[using (7) and the fact } \|\mathbf{K}^{x} \boldsymbol{\alpha}^{*}\| = \sqrt{n} M_{x}^{2} \\ & \text{and } \|\mathbf{K}^{y} \boldsymbol{\beta}^{*}\| = \sqrt{n} M_{y}^{2}] \\ = & \frac{\boldsymbol{\alpha}^{*T} \mathbf{K}^{x} \mathbf{K}^{y} \boldsymbol{\beta}^{*} - \boldsymbol{\alpha}^{*T} \mathbf{K}^{x} \mathbf{k}^{y} (\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*}))}{n M_{x}^{2} M_{y}^{2}} \\ & + \frac{\boldsymbol{\alpha}^{*T} \mathbf{K}^{x} \mathbf{k}^{y} (\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*})) - \mathbf{k}^{x} (\tilde{\mathbf{u}}(\mathbf{w}_{x}^{*}))^{T} \mathbf{k}^{y} (\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*}))}{n M_{x}^{2} M_{y}^{2}} \\ & \text{[by adding and subtracting same term]} \end{split}$$

$$= \left(\frac{\mathbf{K}^{x}\boldsymbol{\alpha}^{*}}{nM_{x}^{2}M_{y}^{2}}\right)^{T} \left(\mathbf{K}^{y}\boldsymbol{\beta}^{*} - \mathbf{k}^{y}(\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*}))\right) + \left(\mathbf{K}^{x}\boldsymbol{\alpha}^{*} - \mathbf{k}^{x}(\tilde{\mathbf{u}}(\mathbf{w}_{x}^{*}))\right)^{T} \frac{\mathbf{k}^{y}((\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*})))}{nM_{x}^{2}M_{y}^{2}}$$
(8)

Where,

$$\begin{pmatrix} \mathbf{K}^{x} \boldsymbol{\alpha}^{*} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{K}^{y} \boldsymbol{\beta}^{*} - \mathbf{k}^{y} (\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*})) \end{pmatrix}$$

$$\leq \| \mathbf{K}^{x} \boldsymbol{\alpha}^{*} \| \| \mathbf{K}^{y} \boldsymbol{\beta}^{*} - \mathbf{k}^{y} (\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*})) \|$$

$$= \sqrt{n} M_{x}^{2} \sqrt{\sum_{i} \langle \phi_{y}(\mathbf{y}_{i}), (\mathbf{w}_{y} - \phi_{y}(\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*})) \rangle^{2}}$$

$$\leq \sqrt{n} M_{x}^{2} \sqrt{\sum_{i} \| \phi_{y}(\mathbf{y}_{i}) \|^{2} \| (\mathbf{w}_{y} - \phi_{y}(\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*})) \|^{2}}$$

$$\leq \sqrt{n} M_{x}^{2} \sqrt{\sum_{i} M_{y}^{2} B_{y}^{2}}$$

$$= \sqrt{n} M_{x}^{2} (\sqrt{n} M_{y} B_{y})$$

$$= n M_{x}^{2} M_{y} B_{y}$$

$$(9)$$

Again similarly,

$$\begin{pmatrix} \mathbf{K}^{x} \boldsymbol{\alpha}^{*} - \mathbf{k}^{x} (\tilde{\mathbf{u}}(\mathbf{w}_{x}^{*})) \end{pmatrix}^{T} \mathbf{k}^{y} ((\tilde{\mathbf{v}}(\mathbf{w}_{y}^{*})) \\ \leq n M_{x} M_{y}^{2} B_{x}$$

$$(10)$$

Hence from (8) we get,

$$\rho_{\text{kcca}} - \rho_{\text{preimage}}$$

$$\leq \frac{nM_x^2M_yB_y}{nM_x^2M_y^2} + \frac{nM_xM_y^2B_x}{nM_x^2M_y^2}$$

$$= \frac{B_y}{M_y} + \frac{B_x}{M_x}$$
(11)

Hence using Lemma 4.2

$$ho_{
m gradKCCA} \ge
ho_{
m preimage} \ge
ho_{
m kcca} - (rac{B_y}{M_y} + rac{B_x}{M_x})$$