Learning Dependency Structures for Weak Supervision Models

Paroma Varma* 1 Frederic Sala* 2 Ann He 2 Alexander Ratner 2 Christopher Ré 2

Abstract
Labeling training data is a key bottleneck in the modern machine learning pipeline. Recent weak supervision approaches combine labels from multiple noisy sources by estimating their accuracies without access to ground truth labels; however, estimating the dependencies among these sources is a critical challenge. We focus on a robust PCA-based algorithm for learning these dependency structures, establish improved theoretical recovery rates, and outperform existing methods on various real-world tasks. Under certain conditions, we show that the amount of unlabeled data needed can scale sublinearly or even logarithmically with the number of sources \(m \), improving over previous efforts that ignore the sparsity pattern in the dependency structure and scale linearly in \(m \). We provide an information-theoretic lower bound on the minimum sample complexity of the weak supervision setting. Our method outperforms weak supervision approaches that assume conditionally-independent sources by up to 4.64 F1 points and previous structure learning approaches by up to 4.41 F1 points on real-world relation extraction and image classification tasks.

1. Introduction
Supervised machine learning models have increasingly become dependent on a large amount of labeled training data. For most real-world applications, however, hand labeling such a large magnitude of data is a major bottleneck, especially when domain expertise is required. Recently, generative models have been used to combine noisy labels from weak supervision sources, such as user-defined heuristics or knowledge bases, to efficiently assign training labels by treating the true label as a latent variable (Alfonseca et al., 2012; Takamatsu et al., 2012; Roth & Klakow, 2013; Ratner et al., 2019). Once the labels from the multiple noisy sources are used to learn the parameters of a generative model, the distribution over the true labels is inferred and used to produce probabilistic training labels for the unlabeled data, which can then be used to train a downstream discriminative model.

Specifying how these weak supervision sources are correlated is essential to correctly estimating their accuracies. In practice, weak supervision sources often have strongly correlated outputs due to shared data sources or labeling strategies; for example, developers might contribute near-duplicate weak supervision sources. Manually enumerating these dependencies is a development bottleneck, while learning them statistically usually requires ground truth labels (Meinshausen & Bühlmann, 2006; Zhao & Yu, 2006; Ravikumar et al., 2010; Loh & Wainwright, 2013). Recently, Bach et al. (2017) proposed a structure learning method for weak supervision that requires \(\Omega(m \log m) \) samples given \(m \) sources and does not exploit the sparsity of the structure of the associated model. This high sample complexity may prevent it from identifying dependencies, thus affecting the downstream quality of training labels assigned by the generative model.

We propose using a structure learning technique for the weak supervision setting that exploits the sparsity of the model to achieve improved theoretical recovery rates. We decompose the inverse covariance matrix of the observable sources via robust principal component analysis (Candès et al., 2011; Chandrasekaran et al., 2011). The decomposition produces a sparse component encoding the underlying structure and a low-rank component due to marginalizing over the latent true label variable. We build on previous approaches using this technique (Chandrasekaran et al., 2011; Wu et al., 2017), but improve over their requirement of \(\Omega(m) \) samples under common weak supervision conditions.

The key to obtaining tighter complexity estimates is characterizing the effective rank (Vershynin, 2012) of the covariance matrix in terms of the structural information associated with the weak supervision setting. The effective rank can be unboundedly smaller than the true rank. We show that under certain reasonable conditions on the effective rank,
intuitively similar to the presence of a stronger dependency in each cluster of correlated sources, the sample complexity can be sublinear $\Omega(d^2m^r)$ for $0 < \tau < 1$ and maximum dependency degree d. Under a stronger condition equivalent to the presence of a dominant cluster of correlated supervision sources, we obtain the rate $\Omega(d^2 \log m)$ that matches the optimal supervised rate (Santhanam & Wainwright, 2012). We further study the unsupervised setting through an information-theoretic lower bound on the sample complexity, yielding a characterization of the additional cost of the weak supervision setting compared to the supervised setting. We find that, although latent-variable structure learning may result in much higher sample complexity in general, the additional number of samples required is small in the weak supervision setting.

For a variety of real-world tasks from relation extraction to image classification, correlations often naturally arise among weak supervision sources like distant supervision via dictionaries and user-defined heuristics. We show that modeling dependencies recovered by our approach improves over assuming conditional independence among the weak supervision sources by up to 4.64 F1 points, and over existing structure learning approaches by up to 4.41 F1 points.

2. Background

Related Work Manually labeling training data can be expensive and time-consuming, especially when domain expertise is required. A common alternative to hand-labeling data is using weak supervision sources. Estimating the accuracies of these sources without ground truth labels is a classic problem (Dawid & Skene, 1979). Methods like crowdsourcing (Dalvi et al., 2013; Joglekar et al., 2015; Zhang et al., 2016), and boosting (Schapire & Freund, 2012) are common; however, we focus on the case in which no labeled data is required. Recently, generative models have been used to combine various sources of weak supervision in such settings (Alfonseca et al., 2012; Takamatsu et al., 2012; Roth & Klakow, 2013; Rainer et al., 2019).

Dependencies occur naturally among weak supervision sources for a variety of reasons: sources may operate over the same input (Varma et al., 2017b), distant supervision sources may refer to similar information from a single knowledge base (Mintz et al., 2009), and heuristics over ontologies may operate over the exact same subtree (Mallory et al., 2015). Not accounting for these dependencies in the generative model can lead to incorrectly estimating the accuracy of the weak supervision sources. Dependencies are difficult to specify manually in cases with hundreds of sources, potentially developed by many users. Therefore, there is a need to learn dependencies directly from the labels assigned by the weak supervision sources without using ground truth labels.

Structure learning has a rich history outside of the weak supervision setting. The supervised, fully observed setting includes node-wise and matrix-wise methods. Node-wise methods, like Ravikumar et al. (2010), use regression on a particular node to recover that node’s neighborhood. Matrix-wise methods use the inverse covariance matrix to determine the structure (Friedman et al., 2008; Ravikumar et al., 2011; Loh & Wainwright, 2013). In the latent variable setting, works like Chandrasekaran et al. (2012); Meng et al. (2014); Wu et al. (2017) perform structure learning via robust-PCA like approaches. In contrast, we focus on the weak supervision setting, providing a tighter characterization that leads to improved rates, and provide further details in the Appendix.

The major work for structure learning in weak supervision is Bach et al. (2017), which uses a ℓ_1-regularized node-wise pseudo-likelihood method to obtain a sample complexity of $\Omega(m \log m)$. This expression does not depend on the maximum dependency degree d. Our approach fundamentally differs—we use a matrix-wise method that scales better with key parameters (like the sparsity of the graph d) and offers improved performance for several real-world tasks.

Problem Setup We formally describe our setup and the generative model to assign probabilistic training labels. given a set of noisy labels from weak supervision sources. $X \in \mathcal{X}$ is a data point, $Y \in \mathcal{Y}$ is a label with (X,Y) drawn i.i.d. from some distribution D. In the weak supervision setting, we never have access to the true label Y; instead we rely on m weak supervision sources that produce noisy labels λ_i for $1 \leq i \leq m$.

Example 1. In a text relation extraction setting, X could be be a tuple of two words, such as names of people, and $Y \in \{0,1\}$ then represents whether the relation of interest exists between the two words, for example whether these two people are being described as married. Potential weak supervision sources can use information from the sentence, such as whether the word “married” appears between the two words, to heuristicaly—and thus noisily—assign a label for a data point X. An example of an erring label is produced by applying the heuristic to the sentence “Bob and Alice were meant to get married in 2018, but postponed the wedding by 3 years.”

We model the joint distribution of $\lambda_1, \lambda_2, \ldots, \lambda_m, Y$ via a Markov random field with associated graph $G = (V,E)$ with $V = \{\lambda_1, \ldots, \lambda_m\} \cup \{Y\}$. If λ_i is not independent of λ_j conditioned on Y and the other sources, then (λ_i, λ_j) is an edge in G. For simplicity, we assume $\mathcal{X}, \mathcal{Y} = \{0,1\}$,
Although our results easily extend. The density f_G is
\[
f_G(\lambda_1, \ldots, \lambda_m, y) = \frac{1}{Z} \exp \left(\sum_{\lambda_i \in V} \theta_i \lambda_i + \sum_{(\lambda_i, \lambda_j) \in E} \theta_{i,j} \lambda_i \lambda_j + \theta_Y y + \sum_{\lambda_i \in V} \theta_Y, i y \lambda_i \right),
\]
(1)
where Z is a partition function to ensure f_G is a normalized distribution, and θ_i and $\theta_{i,j}$ represent the canonical parameters associated with the sources. We can think of $\theta_{i,j}$ as the strength of the correlation between sources λ_i and λ_j, and θ_Y as a measure of accuracy of the source λ_i. Once these parameters are learned, the generative model assigns probabilistic training labels by computing $f_G(Y|\lambda_1, \ldots, \lambda_m)$ for each object X in the unlabeled training set, which can be used to train any downstream model.

In the conditionally independent model, $\theta_{i,j} = 0 \forall i, j$. In cases with dependencies, the structure of G is user-defined or inferred from source metadata. Our approach learns the dependency structure, then applies previous work that samples from the posterior of a graphical model directly (Ratner et al., 2016) or uses a matrix completion approach to solve for the source parameters (Ratner et al., 2019).

We also rely on the singleton separator set assumption (Ratner et al., 2019), which implies the sources form s fully-connected clusters. This is common for weak supervision settings, motivated by the intuition that groups of weak supervision sources may share common data resources.

3. Learning Structures in the Weak Supervision Regime

Our goal is to learn the dependency structure among weak supervision sources, i.e. graph G, directly from data, without observing the latent true label Y. We introduce this latent structure learning problem, which we focus on for the remainder of the paper, in Section 3.1. We provide background on robust PCA in Section 3.2, and describe our algorithm adapting it to weak supervision in Section 3.3.

3.1. Structure Learning Objective

We want to learn the structure of graph G given access to noisy labels from m weak supervision sources and no ground truth labels. Let $O = \{\lambda_1, \ldots, \lambda_m\}$ be the observed labels from the weak supervision sources, and $S = \{Y\}$ be the unobserved latent variable. Then,
\[
\text{Cov} [O \cup S] := \Sigma = \begin{bmatrix} \Sigma_O & \Sigma_{OS} \\ \Sigma_{OS}^T & \Sigma_S \end{bmatrix}.
\]
We rely on a common weak supervision assumption that the graph is sparse, which implies the inverse covariance matrix
\[
\Sigma^{-1} := K = \begin{bmatrix} K_O & K_OS \\ K_OS^T & K_S \end{bmatrix}.
\]
is graph-structured; there is no edge between λ_i and λ_j in G when the corresponding term in Σ^{-1} is 0, or, equivalently, λ_i and λ_j are independent conditioned on all of the other terms (Loh & Wainwright, 2013). However, a key difficulty is that we never know Y, so we cannot observe the full covariance matrix Σ, or the graph-structured Σ^{-1}.

However, we can take advantage of the fact that the sub-block of the inverse covariance matrix K_O is graph-structured. In turn, this implies that K_O^{-1} is a permutation of a block-diagonal matrix with s blocks corresponding to the s source clusters, where each block is no larger than $(d + 1) \times (d + 1)$, where d is the maximum dependency degree. From the block matrix inversion formula,
\[
K_O = \Sigma_O^{-1} + \epsilon \Sigma_O^{-1} \Sigma_{OS} \Sigma_{OS}^T \Sigma_O^{-1},
\]
where $\epsilon = (\Sigma_S - \Sigma_{OS} \Sigma_O^{-1} \Sigma_{OS})^{-1} \in \mathbb{R}^+$. Let $z = \sqrt{\epsilon} \Sigma_O^{-1} \Sigma_{OS}$; we can write (2) as
\[
\Sigma_O^{-1} = K_O - zz^T.
\]
While we cannot observe Σ since it contains the true label Y, we can observe Σ_O and thus Σ_O^{-1}. We form the empirical covariance matrix of observed labels $\Sigma^{(n)}_O \in \mathbb{R}^{m \times m}$:
\[
\Sigma^{(n)}_O = \frac{1}{n} \Lambda \Lambda^T - vv^T,
\]
where Λ represents the $m \times n$ matrix of labels from the weak supervision sources assigned to the unlabeled data, n represents the total number of datapoints, and $v \in \mathbb{R}^{m \times 1}$ is the average label assigned by the weak supervision sources.

Our goal is to calculate K_O, which is graph-structured and allows us to read off the structure of G from its entries. We therefore have to decompose the observable $\Sigma^{(n)}_O$ into K_O and zz^T, unknown sparse and low-rank components. This inspires the use of robust principal component analysis (Candès et al., 2011; Chandrasekaran et al., 2011).

3.2. Robust PCA

The robust PCA setup consists of a matrix $M \in \mathbb{R}^{m \times m}$ that is equal to the sum of a low-rank matrix and a sparse matrix, $M = L + S$, where $\text{rank}(L) = r$ and $|\text{supp}(S)| = k$. The name is inspired by the observation that although standard PCA recovers a low-dimensional subspace in the presence of bounded noise, it is not robust to gross corruptions (modeled by the entries of the sparse matrix). Note that the decomposition $M = L + S$ is not identifiable without additional conditions. For example, if $M = e_i e_j^T$, M is itself both
We now adapt the robust PCA setting to our setup: write the identifiability condition in terms of the extreme when a unique decomposition can be recovered. These two quantities govern how well-aligned the sparse and low-rank, and thus the pairs \((L, S) = (M, 0)\) and \((L, S) = (0, M)\) are equally valid solutions. Therefore, the fundamental question of robust PCA is to determine when a unique decomposition can be recovered.

The two seminal works on robust PCA (Candès et al., 2011; Chandrasekaran et al., 2011) studied transversality conditions for identifiability. In particular, the solution spaces \(L, S\) can only intersect at 0. For the sparse component, let
\[
\Omega(S) = \{N \in \mathbb{R}^{m \times m} \mid \supp(N) \subseteq \supp(S)\}.
\]

For the low-rank component, let \(L = UDV^T\) be the SVD of \(L\) with rank \(r\). Then, let
\[
T(L) = \{UX^T + YV^T \mid X, Y \in \mathbb{R}^{m \times r}\}.
\]

The key notion for identifiability in robust PCA problems is to ensure these subspaces are transverse—so that neither the low-rank components are too sparse, nor the sparse component too low-rank. We measure these notions via the functions \(\mu, \xi\) (Chandrasekaran et al., 2011):
\[
\mu(\Omega(S)) = \max_{N \in \Omega(S), \|N\|_\infty = 1} \|N\|_\infty, \quad \text{and} \quad \xi(T(L)) = \max_{N \in T(L), \|N\| \leq 1} \|N\|_\infty.
\]

These two quantities govern how well-aligned the sparse matrix \(S\) is with the coordinate axes and how spread out the low-rank matrix \(L\) is. For the decomposition of \(M = L + S\) to be identifiable, the required condition is
\[
\mu(\Omega(S))\xi(T(L)) < 1. \tag{3}
\]

3.3. Adapting Robust PCA for Weak Supervision

We now adapt the robust PCA setting to our setup: \(S = K_O\) and \(L = zz^T\), a rank one matrix. First, we determine identifiability in the noiseless case: if we do not have identifiability even with the true \(\Sigma_O\) matrix, we have no hope of recovering structure in the sampled case \(\Sigma_O^{(n)}\).

Let \(a_{\min}, a_{\max}\) be the smallest and largest terms in \(\Sigma_{OS}\), respectively. These represent the smallest and largest covariances between the true label \(Y\) and the weak supervision sources \(\lambda_i\), which are the smallest and largest accuracies of the sources. Similarly, we let \(c_{\min}, c_{\max}\) be the smallest and largest terms in \(\Sigma_O\), respectively, representing the smallest and largest correlations among the sources. We can now write the identifiability condition in terms of the extreme values of the source accuracies and correlations.

Lemma 1. Let \(K_O\) be the block of the inverse covariance matrix \(\Sigma^{-1}\) corresponding to the observed variables, and let \(a_{\min}, a_{\max}, c_{\min}, c_{\max}\) be defined as above. Then,
\[
\mu(\Omega(K_O))\xi(T(zz^T)) \leq \frac{6A_d}{\sqrt{m}} \left(\frac{c_{\max}}{c_{\min}}\right) \left(\frac{a_{\max}}{a_{\min}}\right),
\]

4. Analysis

Our goal is to provide guarantees on the probability that Algorithm 1 successfully recovers the exact dependency structure. The critical quantity in establishing these guarantees is \(\|\Sigma^{(n)} - \Sigma_O\|\), the spectral norm of the estimation error of the covariance matrix. We control it by characterizing the effective rank of the covariance matrix \(\Sigma_O\) in Section 4.1. We then introduce two different conditions on the effective rank, which enable us to derive our main result of improved sample complexities in Section 4.2.

4.1. Controlling the Covariance Estimation Error

Structure learning algorithms for the supervised case (Ravikumar et al., 2011; Loh & Wainwright, 2013) recover the structure with high probability given \(\Omega(d^k \log m)\) samples, where \(k \geq 2\) depends on the approach taken. The
unsupervised (latent variable) algorithms in Chandrasekaran et al. (2012); Wu et al. (2017) require $\Omega(m)$ samples.

The critical difference between these classes of algorithms is in their objectives. The objective function for Ravikumar et al. (2011); Loh & Wainwright (2013) contains the regularizer $\| \cdot \|_1$, while the algorithms in Chandrasekaran et al. (2012); Wu et al. (2017) instead have $\| \cdot \|_1 + \| \cdot \|_*$. The presence of the $\| \cdot \|_*$ norm in the objective for the latent settings is the key difference. Both classes of algorithms rely on the primal-dual witness approach for their proofs of consistency.

Characterizing the Effective Rank
To reduce this sampling rate, we leverage a refined measure of rank, the effective rank (Vershynin, 2012), defined as

$$ r_e(\Sigma_O) = \text{tr}(\Sigma_O)/\|\Sigma_O\|. $$

The effective rank may be much smaller than the true rank; the notion that data matrices are approximately low-rank is well-known (Udell & Townsend, 2018). Characterizing the effective rank in the weak supervision setting enables us to apply sharper concentration inequalities. We build on the analyses in Chandrasekaran et al. (2012); Wu et al. (2017) while providing improved rates. We note that Meng et al. (2014) also considered the effective rank for a related problem; we additionally cover a wider range of cases in the weak supervision setting and give a tighter characterization.

Recall that the structure of K^{-1}_O contains our key problem parameters—but Σ_O does not. We show that

$$ r_e(\Sigma_O) \leq r_e(K^{-1}_O) + \frac{\|v\|^2}{\|K^{-1}_O\|}. $$

Therefore, the effective rank of Σ_O can be controlled via the effective rank of K^{-1}_O. We can then characterize $r_e(\Sigma_O)$ in terms of structural information about the supervision sources. More details on this process are in the Appendix.

4.2. Conditions on the Effective Rank & Main Results

We provide two separate conditions on the effective rank, which lead to two different improved regimes for recovery in Algorithm 1. Let $0 < \tau \leq 1$ be a constant and d the maximum dependency degree.

Definition 1 (SBD Condition). The matrix Σ_O satisfies the source block decay (SBD) condition if its effective rank $r_e(\Sigma_O)$ satisfies

$$ r_e(\Sigma_O) \leq \frac{m^\tau}{(1 + \tau) \log m}. $$

This condition represents a mild assumption on the structure of Σ_O (and, equivalently K^{-1}_O). It corresponds to mild eigenvalue decay in the source blocks, and a condition limiting the total number of blocks. In the weak supervision setting, this translates to the strength of some of the correlations in a cluster differing. By exploiting this decay and controlling the total number of blocks s, we can obtain a sublinear sample complexity of $\Omega(d^2 m^\tau)$ for Algorithm 1.

Definition 2 (SSB Condition). The matrix Σ_O satisfies the strong source block (SSB) condition if its effective rank $r_e(\Sigma_O)$ satisfies $r_e(\Sigma_O) \leq cd$, where c is a constant.

The alternate condition is equivalent to the presence of a cluster of sources that forms a strong voting block, dominating the other sources. With this condition, we can retrieve the optimal rate of $\Omega(d^2(1 + \tau) \log m)$ from the supervised case. We provide a more precise characterization for the effective rank bounds in the proof of the theorem in the Appendix.

Additional Standard Conditions
Next, we highlight the general conditions used by Chandrasekaran et al. (2012) and Wu et al. (2017) whose work we build on; we require these to hold in addition to the SBD or SSB conditions we define above. Specifically, we use a series of standard quantities that control transversality, introduced by Chandrasekaran et al. (2012) and Wu et al. (2017). Let

$$ h_X(Y) = \frac{1}{2}(XY + YX). $$

Let P_S denote orthogonal projection onto subspace S. The following terms are used to control the behavior of $h_X(\cdot)$ on the spaces $\Omega(S)$ and $T(L)$. For convenience, we simply

<table>
<thead>
<tr>
<th>Cond.</th>
<th>$r_e(\Sigma_O)$</th>
<th>s</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bach</td>
<td>none</td>
<td>none</td>
<td>$\Omega(m \log m)$</td>
</tr>
<tr>
<td>Wu</td>
<td>none</td>
<td>none</td>
<td>$\Omega(d^2 m)$</td>
</tr>
<tr>
<td>SBD</td>
<td>$O(\frac{m^\tau}{\log m})$</td>
<td>$O\left(\left(\frac{m}{\log m}\right)^{\tau/(2-\tau)}\right)$</td>
<td>$\Omega(d^2 m^\tau)$</td>
</tr>
<tr>
<td>SSB</td>
<td>$O(d)$</td>
<td>none</td>
<td>$\Omega(d^2 \log m)$</td>
</tr>
</tbody>
</table>

Table 1. Conditions and rates for latent variable structure learning.
use Ω and T to denote these spaces. Let
\[
\alpha_\Omega = \min_{M \in \Omega, \|M\| = 1} \|P_I h_{\Sigma_O}(M)\|_\infty,
\]
\[
\delta_\Omega = \min_{M \in \Omega, \|M\| = 1} \|P_I h_{\Sigma_O}(M)\|_\infty,
\]
\[
\alpha_T = \min_{M \in T, \|M\| = 1} \|P_T h_{\Sigma_O}(M)\|,
\]
\[
\delta_T = \min_{M \in T, \|M\| = 1} \|P_T h_{\Sigma_O}(M)\|,
\]
\[
\beta_T = \max_{M \in T, \|M\| = 1} \|h_{\Sigma_O}(M)\|_\infty,
\]
\[
\beta_\Omega = \max_{M \in \Omega, \|M\| = 1} \|h_{\Sigma_O}(M)\|.
\]

We set
\[
\alpha = \min\{\alpha_\Omega, \alpha_T\}, \beta = \max\{\beta_T, \beta_\Omega\}, \delta = \max\{\delta_\Omega, \delta_T\}.
\]

The following irrepresentability conditions are inherited from Wu et al. (2017) and are generalizations of standard conditions from the graphical model literature (Ravikumar et al., 2011; Zhang & Zou, 2014): there exists $\nu \in (0, 1/2)$
\[
\delta < 2\nu, \quad \text{and} \quad \mu(\Omega) \xi(T) \leq \frac{1}{2} \left(\frac{\nu \alpha}{(2 - \nu)\beta} \right)^2.
\]

Finally, let ψ_1 be the largest eigenvalue of Σ_O, ψ_m be the smallest, let $K_{O,\text{min}}$ be the smallest non-zero entry in K_O, and σ be the non-zero eigenvalue of zz^T. We set
\[
\gamma = \frac{\nu \alpha}{2d\beta(2 - \nu)}.
\]

Main Results We now present the formal result for the consistency of Algorithm 1. First, the SBD case:

Theorem 1 (Source Block Decay Case). Let $0 < \tau \leq 1$ be a constant. Suppose that the standard conditions above and the SBD condition are met. Set
\[
\lambda_n = \max\{1, \gamma^{-1}\} \frac{(3 - 2\nu)c_1\psi_1\sqrt{m^{7}}}{\psi_m^2 n}.
\]

Let
\[
\rho_1 = \left[\frac{6c_2(3 - 2\nu)(2 - \nu)\psi_1}{\nu \alpha^2 \psi_m} \max\{\gamma, K_{O,\text{min}}, \sigma^{-1}, \psi_m^{-1}\} \right]^2.
\]

If the number of samples n satisfies
\[
n > \rho_1 d^2 m^\tau,
\]
and we run Algorithm 1, then, with probability at least $1 - m^{-\tau}$, we recover the exact structure G.

Next, the SSB case:

Theorem 1 (Strong Source Block Case). Suppose instead that in addition to the standard conditions, the SSB condition holds. Set
\[
\lambda_n = \max\{1, \gamma^{-1}\} \frac{(3 - 2\nu)c_4 c_2 \psi_1 d(1 + \tau) \log(m)}{\psi_m n}.
\]

Let
\[
\rho_2 = \left[\frac{6c_2(3 - 2\nu)(2 - \nu)\psi_1}{\nu \alpha^2 \psi_m} \max\{\gamma, K_{O,\text{min}}, \sigma^{-1}, \psi_m^{-1}\} \right]^2.
\]

If the number of samples n satisfies
\[
n > \rho_2 (1 + \tau) d^2 \log(m),
\]
then, with probability at least $1 - m^{-\tau}$, we recover the exact structure G.

We provide a formal proof of Theorem 1 in the Appendix. The proof modifies the proof technique in Wu et al. (2017) by applying stronger concentration inequalities.

5. Information-Theoretic Lower Bound

So far, we analyzed a specific algorithm, showing that under the stronger of our two conditions, the sample complexity matches the optimal one of $\Omega(d^2 \log m)$ for supervised structure learning. Now we explore the general question of the fundamental limits of structure learning with latent variables. We derive the information-theoretic lower bounds on sample complexity: bounds that show that for any such algorithm, at least a certain number of samples is required to avoid incurring a particular probability of error.

First, we consider the general latent-variable case. We do not need to have Y connected to each of the λ_i source variables; Y may be connected to just some of these sources. Even if we ensure that the class of graphs we are working over is connected overall, there are graphs that cannot be distinguished, with any number of samples. One such example is shown in Figure 1. Here, we have two graphs, G_1 and G_2, where the only difference is that in one case, there is an edge between Y and λ_1, while in the other, there is an edge between Y and λ_2. By observing only λ_1 and λ_2, but not Y, we cannot distinguish between these two graphs.

Working in the fully-general latent structure learning setting leads to uninteresting results. Instead, we again work in the weak supervision setting where Y is connected to all of the λ_i’s. We already know, from our algorithmic analysis, that in certain cases we can recover the structure with $\Omega(d^2 \log m)$ samples, and this quantity is optimal even in the supervised case. Certainly we expect that the presence of the latent variable Y will require more samples (in terms of lower bounds). In Theorem 2 we quantify this difference.
Learning Dependency Structures for Weak Supervision Models

As expected, that the number of samples here is larger than supervised version, where we require $\theta \to 0$ to avoid an exponential sample complexity (Santhanam & Wainwright, 2012). Then, the relative version of the cost above can be upper bounded by 2. That is, we need no more than twice as many samples as in the supervised case to avoid an unreliable encoder.

As expected, latent variable structure learning requires more samples than the fully-supervised version; potentially, infinitely more. However, the weak-supervision setting provides us with a tractable scenario, where the lower bounds are not much larger than the supervised equivalents.

We briefly comment on the approach to Theorem 2. The collection considered is takes the graphs where all of the λ_i’s have no edge between them and adds a single edge between λ_i and λ_s, $s \neq t \in \{1, \ldots, m\}$. Thus there are $\binom{m}{2}$ such graphs in the collection. In the supervised setting, there is just one such edge per graph since there is no latent variable Y; in our setting, there are m additional edges between each λ_i and Y. Intuitively, the challenge when distinguishing between graphs is to ascertain whether a pair of nodes is connected by an edge; this is harder in our setting since all pairs of nodes are connected through Y.

6. Experimental Results

We evaluate our structure learning method on real-world applications ranging from medical image classification to relation extraction over text. We compare our performance to several common weak supervision baselines: an unweighted majority vote of the weak supervision source labels, a generative modeling approach that assumes independence among weak supervision sources (Ratner et al., 2016), and a generative model using dependency structure learned with an existing structure learning approach for weak supervision (Bach et al., 2017). We report performance of the discriminative model trained on labels from these generative models in Table 2. Finally, we run simulations to explore the performance of our method under two conditions from Section 3.

6.1. Real-World Tasks

Task Descriptions We describe the different weak supervision tasks, the associated weak supervision sources, and the discriminative model used to perform classification. The Bone Tumor task is to classify tumors in X-rays as aggressive or non-aggressive (Varma et al., 2017b). The discriminative model is a logistic regression model over hundreds of shape, texture, and intensity-based image features. The supervision sources are user-defined heuristics and decision trees over features extracted from the X-rays.

The CDR task is to detect relations among chemicals and disease mentions in PubMed abstracts (Bach et al., 2017a).
Table 2. Statistics for weak supervision tasks (m: number of sources, s: number of cliques, d: max. degree of source). F1 scores of discriminative models trained on labels generated by majority vote (MV), a generative model with no dependencies (Indep.), a generative model with dependencies learned by a prior structure learning approach for weak supervision (Bach et al), and by our approach (Ours).

<table>
<thead>
<tr>
<th>Application</th>
<th>m</th>
<th>(s, d)</th>
<th>MV</th>
<th>Indep.</th>
<th>Bach et al.</th>
<th>Ours</th>
<th>Improvement Over</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Tumor</td>
<td>17</td>
<td>(2,3)</td>
<td>65.72</td>
<td>67.32</td>
<td>67.83</td>
<td>71.96</td>
<td>+4.64</td>
</tr>
<tr>
<td>CDR</td>
<td>33</td>
<td>(22,14)</td>
<td>47.74</td>
<td>54.60</td>
<td>55.90</td>
<td>56.81</td>
<td>+2.21</td>
</tr>
<tr>
<td>IMDb</td>
<td>5</td>
<td>(1,4)</td>
<td>55.21</td>
<td>58.80</td>
<td>60.23</td>
<td>62.71</td>
<td>+3.91</td>
</tr>
<tr>
<td>MS-COCO</td>
<td>3</td>
<td>(1,2)</td>
<td>57.95</td>
<td>59.47</td>
<td>59.47</td>
<td>63.88</td>
<td>+4.41</td>
</tr>
</tbody>
</table>

2017; Wei et al., 2015). The discriminative model is an LSTM (Graves & Schmidhuber, 2005) that takes as input sentences containing the mentions. The supervision sources are distant supervision from the Comparative Toxigenomics Database (Davis et al., 2016) and user-defined heuristics. The IMDb task is to classify plot summaries as describing action or romantic movies (Varma et al., 2017c). The discriminative model is an LSTM that takes as input the entire plot summary. The supervision sources are user-defined heuristics that look for mentions of specific words. The MS-COCO task is to classify images as containing a person (Varma et al., 2017a). The discriminative model is GoogLeNet. The supervision sources are user-defined heuristics written over associated captions.

Performance Our method learns dependencies among the supervision sources for each of the tasks described above, which leads to an average improvement of 3.80 F1 points over the model that assumes independence. For the MS-COCO task, Bach et al. (2017) is unable to learn any dependencies while our method learns a single pairwise dependency, which improves performance by 4.41 F1 points. For the Bone Tumor task, our method identifies 2 cliques with 3 supervision sources. The first clique consists of heuristics that all rely on features related to edge sharpness along the lesion contour of the tumor, while the sources in the second clique rely on features describing the morphology of the tumor. Incorporating these dependencies in the generative model improves over Bach et al. (2017) by 4.13 F1 points. Finally, for the IMDb task, our method learns a clique involving 4 sources while Bach et al. (2017) only learns 3 pairwise dependencies among the same sources. Learning a clique improves performance by 2.48 F1 points.

6.2. Simulations

We also perform simulations over synthetic data using 200 weak supervision sources to explore how our performance compares to Bach et al. (2017) under the two conditions on effective rank described in Section 4, the SSB condition and the SBD condition. We define success as how often these methods are able to learn the true dependencies and plot our results in Figure 2. We first generate labels from supervision sources to match the SSB condition by ensuring there exists a single cluster of strongly correlated sources along with other more weakly correlated sources. We observe that our method performs significantly better than Bach et al. (2017), and is capable of recovery in the regime where n is roughly in the range $(\log m, m)$. Second, we simulate the SBD condition by generating multiple cliques of sources where a single dependency in each clique is stronger than the rest. We continue to perform better compared to Bach et al. (2017) under this condition and across all values of n.

7. Conclusion

The dependency structure of generative models significantly affects the quality of the generated labels. However, learning this structure without any ground truth labels is challenging. We present a structure learning method that relies on robust principal component analysis to estimate the dependencies among the different weak supervision sources. We prove that the amount of unlabeled data required to estimate the true structure can scale sublinearly or even logarithmically with the number of weak supervision sources, improving over the standard sample complexity, which is linear. Under certain conditions, we match the information-theoretic optimal lower bound in the supervised case. Empirically, this translates to our method outperforming traditional structure learning approaches by up to 4.41 F1 points and methods that assume independence by up to 4.64 F1 points.
Acknowledgements

We gratefully acknowledge the support of DARPA under Nos. FA87501720095 (D3M) and FA86501827865 (SDH), NIH under No. U54EB020405 (Mobilize), NSF under Nos. CCF1763315 (Beyond Sparsity) and CCF1563078 (Volume to Velocity), ONR under No. N000141712266 (Unifying Weak Supervision), the Moore Foundation, NXP, Xilinx, LETI-CEA, Intel, Google, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices, the Okawa Foundation, and American Family Insurance, Google Cloud, Swiss Re, the National Science Foundation (NSF) Graduate Research Fellowship under No. DGE-114747, Joseph W. and Hon Mai Goodman Stanford Graduate Fellowship, and members of the Stanford DAWN project: Intel, Microsoft, Teradata, Facebook, Google, Ant Financial, NEC, SAP, VMWare, and Infosys. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views, policies, or endorsements, either expressed or implied, of DARPA, NSF, NIH, ONR, or the U.S. Government.

References

Learning Dependency Structures for Weak Supervision Models

