
SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver

A. Derivation of the forward pass coordinate

descent update

Our MAXSAT SDP relaxation (described in Section 3.1) is
given by

minimize
V 2Rk⇥(n+1)

hS
T
S, V

T
V i,

subject to kvik = 1, i = 0, . . . , n,
(A.1)

where S 2 Rm⇥(n+1) and vi is the ith column vector of V .

We rewrite the objective of (A.1) as hS
T
S, V

T
V i ⌘

tr((ST
S)T (V T

V)) = tr(V T
V S

T
S) by noting that ST

S

is symmetric and by cycling matrices within the trace. We
then observe that the objective terms that depend on any
given vi are given by

v
T
i

nX

j=0

s
T
j sivj = v

T
i

nX

j=0
(j 6=i)

s
T
j sivj + v

T
i s

T
i sivi, (A.2)

where si is the ith column vector of S. Observe v
T
i vi in the

last term cancels to 1, and the remaining coefficient

gi ⌘

nX

j=0
(j 6=i)

s
T
j sivj = V S

T
si � ksik

2
vi (A.3)

is constant with respect to vi. Thus, (A.2) can be simply
rewritten as

v
T
i gi + s

T
i si. (A.4)

Minimizing this expression over vi with respect to the con-
straint kvik = 1 yields the block coordinate descent update

vi = �gi/kgik. (A.5)

B. Details on backpropagation through the

MAXSAT SDP

Given the result @ /̀@VO, we next seek to compute @ /̀@VI

and @ /̀@S by pushing gradients through the SDP solution
procedure described in Section 3.1. We do this by taking the
total differential through our coordinate descent updates (3)
for each output o 2 O at the optimal fixed-point solution to
which these updates converge.

Computing the total differential. Computing the total
differential of the updates (3) and rearranging, we see that
for every o 2 O,
�
kgokIk � ksok2Po

�
dvo + Po

X

j2O

sTo sjdvj = �Po⇠o, (B.1)

where

⇠o ⌘
⇣ X

j2I0

sTo sjdvj + V dST so + V ST dso � 2dsTo sovo
⌘
,

(B.2)

and where Po ⌘ Ik � vov
T
o , o 2 O and I

0
⌘ {>} [I.

Rewriting as a linear system. Rewriting Equation B.1
over all o 2 O as a linear system, we obtain
⇣
diag(kgok)⌦ Ik + PC ⌦ Ik

⌘
vec(dVO) = �P vec(⇠o)

) vec(dVO) = �

⇣
P (
�
diag(kgok) + C

�
⌦ Ik)P

⌘†
vec(⇠o),

(B.3)
where C = S

T
O
SO � diag(ksok2), P = diag(Po), and

the second step follows from the lemma presented in Ap-
pendix C.

We then see that by the chain rule, the gradients @ /̀@VI and
@ /̀@S are given by the left matrix-vector product

✓
@`

@ vec(VO)

◆T

vec(dVO)

= �
✓

@`
@ vec(VO)

◆T ⇣
P (

�
diag(kgok) + C

�
⌦ Ik)P

⌘†

vec(⇠o)

(B.4)
where the second equality comes from plugging in the result
of (B.3).

Now, define U 2 Rk⇥n, where the columns UI = 0 and the
columns UO are given by

vec(UO) =
⇣
P (
�
diag(kgok)+C

�
⌦Ik)P

⌘†
vec

✓
@`

@ vec(VO)

◆
.

(B.5)
Then, we see that (B.4) can be written as

✓
@`

@ vec(VO)

◆T

vec(dVO) = � vec(UO)
T vec(⇠o),

(B.6)
which is the implicit linear form for our gradients.

Computing desired gradients from implicit linear form.

Once we have obtained UO (via coordinate descent), we can
explicitly compute the desired gradients @ /̀@VI and @ /̀@S

from the implicit form (B.6). For instance, to compute the
gradient @ /̀@v◆ for some ◆ 2 I, we would set dv◆ = 1 and
all other gradients to zero in Equation (B.6) (where these
gradients are captured within the terms ⇠o).

Explicitly, we compute each @ /̀@v◆j by setting dv◆j = 1 and
all other gradients to zero, i.e.

@`

@v◆j
= � vec(UO)

T vec(⇠o) = �

X

o2O

u
T
o ejs

T
◆ so

= �e
T
j

X

o2O

uos
T
o

!
s◆.

(B.7)

Similarly, we compute each @ /̀@Si,j by setting dSi,j = 1

SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver

and all other gradients to zero, i.e.

@`

@Si,j
= �

X

o2O

u
T
o ⇠o

= �

X

o2O

u
T
o visoj � u

T
i (V S

T)j + u
T
i (sijPivi)

= �v
T
i (
X

o2O

uosoj)� u
T
i (V S

T)j .

(B.8)
In matrix form, these gradients are

@`

@VI

= �

X

o2O

uos
T
o

!
SI , (B.9)

@`

@S
= �

X

o2O

uos
T
o

!T

V � (SV T)U, (B.10)

where ui is the ith column of U , and where SI denotes the
I-indexed column subset of S.

C. Proof of pseudoinverse computations

We prove the following lemma, used to derive the implicit
total differential for vec(dVO).
Lemma C.1. The quantity

vec(dVO) = (P ((D + C)⌦ Ik)P)† vec(⇠o) (C.1)

is the solution of the linear system

(D ⌦ Ik + PC ⌦ Ik) vec(dVO) = P vec(⇠o), (C.2)

where P = diag(Ik � vov
T
o), C = S

T
O
SO � diag(ksok2),

D = diag(kgik), and ⇠o is as defined in Equation (B.2).

Proof. Examining the equation with respect to dvi gives

kgikdvi + Pi

0

@
X

j

cijdvj � ⇠j

1

A = 0, (C.3)

which implies that for all i, dvi = Piyi for some yi. Substi-
tuting yi into the equality gives

(D ⌦ Ik + PC ⌦ Ik)P vec(yi) (C.4)
=P ((D + C)⌦ Ik)P vec(yi) = P vec(⇠o). (C.5)

Note that the last equation comes form D ⌦ IkP = D ⌦

IkPP = P (D ⌦ Ik)P due to the block diagonal structure
of the projection P . Thus, by the properties of projectors
and the pseudoinverse,

vec(Y) = (P ((D + C)⌦ Ik)P)†P vec(⇠o) (C.6)

= (P ((D + C)⌦ Ik)P)† vec(⇠o). (C.7)

Note that the first equation comes from the idempotence
property of P (that is, PP = P). Substituting vec(dVO) =
P vec(Y) back gives the solution of dVO.

D. Derivation of the backward pass

coordinate descent algorithm

Consider solving for UO as mentioned in Equation (B.5):

⇣
P (
�
diag(kgok)+C

�
⌦Ik)P

⌘
vec(UO) = vec

✓
@`

@ vec(VO)

◆
,

where C = S
T
O
SO � diag(ksok2). The linear system can

be computed using block coordinate descent. Specifically,
observe this linear system with respect to only the uo vari-
able. Since we start from UO = 0, we can assume that
P vec(Uo) = vec(Uo). This yields

kgokPouo + Po

⇣
UOS

T
O
so � ksok

2
uo

⌘
= Po

✓
@`

@vo

◆
.

(D.1)
Let = (UO)ST

O
. Then we have

kgokPouo = �Po(so � ksok
2
uo � @`/@vo). (D.2)

Define �dgi to be the terms contained in parentheses in the
right-hand side of the above equation. Note that dgi does not
depend on the variable uo. Thus, we have the closed-form
feasible solution

uo = �Podgo/kgok. (D.3)

After updating uo, we can maintain the term by replacing
the old u

prev
o with the new uo. This yields the rank 1 update

 := + (uo � u
prev
o)sTo . (D.4)

The above procedure is summarized in Algorithm 3. Further,
we can verify that the assumption P vec(UO) = vec(UO)
still holds after each update by the projection Po.

E. Results for the 4 ⇥ 4 Sudoku problem

We compare the performance of our SATNet architecture
on a 4 ⇥ 4 reduced version of the Sudoku puzzle against
OptNet (Amos & Kolter, 2017) and a convolutional neural
network architecture. These results (over 9K training and
1K testing examples) are shown in Figure E.1. We note that
our architecture converges quickly – in just two epochs – to
100% board-wise test accuracy.

OptNet takes slightly longer to converge to similar perfor-
mance, in terms of both time and epochs. In particular, we
see that OptNet takes 3-4 epochs to converge (as opposed
to 1 epoch for SATNet). Further, in our preliminary bench-
marks, OptNet required 12 minutes to run 20 epochs on a
GTX 1080 Ti GPU, whereas SATNet took only 2 minutes
to run the same number of epochs. In other words, we see
that SATNet requires fewer epochs to converge and takes
less time per epoch than OptNet.

SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver

Figure E.1. Results for 4⇥ 4 Sudoku. Lower loss (mean NLL loss and mean MSE loss) and higher whole-board accuracy (% puzzles
correct) are better.

Both our SATNet architecture and OptNet outperform the
traditional convolutional neural network in this setting, as
the ConvNet somewhat overfits to the training set and there-
fore does not generalize as well to the test set (achieving
93% accuracy). The ConvNetMask, which additionally re-
ceives a binary input mask, performs much better (99% test
accuracy) but does not achieve perfect performance as in
the case of OptNet and SATNet.

F. Convergence plots for 9 ⇥ 9 Sudoku

experiments

Convergence plots for our 9⇥ 9 Sudoku experiments (orig-
inal and permuted) are shown in Figure F.1. SATNet per-
forms nearly identically in both the original and permuted
settings, generalizing well to the test set at every epoch
without overfitting to the training set. The ConvNet and
ConvNetMask, on the other hand, do not generalize well.
In the original setting, both architectures overfit to the train-
ing set, showing little-to-no improvement in generalization
performance over the course of training. In the permuted set-
ting, both ConvNet and ConvNetMask make little progress
even on the training set, as they are not able to rely on spatial
locality of inputs.

Convergence plots for the visual Sudoku experiments are
shown in Figure F.2. Here, we see that SATNet general-
izes well in terms of loss throughout the training process,
and generalizes somewhat well in terms of whole-board
accuracy. The difference in generalization performance
between the logical and visual Sudoku settings can be at-
tributed to the generalization performance of the MNIST
classifier trained end-to-end with our SATNet layer. The
ConvNetMask architecture overfits to the training set, and
the ConvNet architecture makes little-to-no progress even
on the training set.

SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver

(a) Original 9⇥ 9 Sudoku

(b) Permuted 9⇥ 9 Sudoku

Figure F.1. Results for our 9⇥ 9 Sudoku experiments. Lower loss (mean NLL loss and mean MSE loss) and higher whole-board accuracy
(% puzzles correct) are better.

Figure F.2. Results for our visual Sudoku experiments. Lower loss (mean NLL loss and mean MSE loss) and higher whole-board accuracy
(% puzzles correct) are better. The theoretical “best” test accuracy plotted is for our specific choice of MNIST classifier architecture.

