
State-Regularized Recurrent Neural Networks
Supplementary Material

Cheng Wang 1 Mathias Niepert 1

A. Proofs of Theorems 3.1 and 3.2
A.1. Theorem 3.1

The state transition behavior of a SR-RNN without∞-
memory using equation 4 is identical to that of a proba-
bilistic finite automaton.

Proof. The state transition function δ of a probabilistic fi-
nite state machine is identical to that of a finite deterministic
automaton (see section 2) with the exception that it returns
a probability distribution over states. For every state q and
every input token a the transition mapping δ returns a prob-
ability distribution α = (α1, ..., αk) that assigns a fixed
probability to each possible state q ∈ Q with |Q| = k.
The automaton transitions to the next state according to this
distribution. Since by assumption the SR-RNN is using
equation 4, we only have to show that the probability distri-
bution over states computed by the stochastic component of
a SR-RNN without∞-memory is identical for every state
q and every input token a irrespective of the previous input
sequence and corresponding state transition history.

More formally, for every pair of input token sequences
a1 and a2 with corresponding pair of resulting state se-
quences q1 = (qi1 , ..., qin , q) and q2 = (qj1 , ..., qjm , q) in
SR-RNN without∞-memory, we have to prove, for every
token a ∈ Σ, that α1 and α2, the probability distributions
over the states returned by the stochastic component for
state q and input token a, are identical. Now, since the RNN
is, by assumption, without ∞-memory, we have for both
a1,q1 and a2,q2 that the only inputs to the RNN cell are
exactly the centroid sq corresponding to state q and the vec-
tor representation of token a. Hence, under the assumption
that the parameter weights of the RNN are the same for both
state sequences q1 and q2, we have that the output u of
the recurrent component (the base RNN cell) is identical
for q1 and q2. Finally, since by assumption the centroids
s1, ..., sk are fixed, we have that the returned probability

1NEC Laboratories Europe, Heidelberg, Germany. Correspon-
dence to: Cheng Wang <cheng.wang@neclab.eu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

distributions α1 and α2 are identical. Hence, the transition
behavior of SR-RNN without∞-memory is identical to that
of a probabilistic finite automaton.

A.2. Theorem 3.2

For τ → 0 the state transition behavior of a SR-RNN
without ∞-memory (using equations 4 or 5) is equiva-
lent to that of a deterministic finite automaton.

Proof. Let us consider the softmax function with tempera-
ture parameter τ

αi =
exp (bi/τ)∑k
i=1 exp (bi/τ)

for 1 ≤ i ≤ k. SR-RNNs use this softmax function to
normalize the scores (from a dot product) into a probability
distribution. First, we show that for τ → 0+, that there is
exactly one M ∈ {1, ..., k} such that αM = 1 and αi = 0
for all i ∈ {1, ..., k} with i 6= M . Without loss of generality,
we assume that there is a M ∈ {1, ..., k} such that bM > bi
for all i ∈ {1, ..., k}, i 6= M . Hence, we can write for
ε1, ..., εk > 0 as shown in equations (1-3).

Now, for τ → 0 we have that αM → 1 and for all other i 6=
M we have that αi → 0. Hence, the probability distribution
α of the SR-RNN is always the one-hot encoding of a
particular centroid.

By an argument analog to the one we have made for The-
orem 3.1, we can prove that for every state q ∈ Q and
every input token a ∈ Σ, the probability distribution α of
the SR-RNN is the same irrespective of the previous in-
put sequences and visited states. Finally, by plugging in
the one-hot encoding α in both equations 4 and 5, we can
conclude that the transition function of a SR-RNN without
∞-memory is identical to that of a DFA, because we always
chose exactly one new state.

B. Implementation Details
Unless otherwise indicated we always (a) use single-layer
RNNs, (b) learn an embedding for input tokens before feed-
ing it to the RNNs, (c) apply ADADELTA (Zeiler, 2012)

State-Regularized Recurrent Neural Networks

αi =
exp (bi/τ)

exp((bM − ε1)/τ) + ...+ exp (bM/τ) + ...+ exp((bM − εk)/τ)
(1)

=
exp (bi/τ)

exp(bM/τ) exp(ε1/τ)−1 + ...+ exp(bM/τ) + ...+ exp(bM/τ) exp(εk/τ)−1
(2)

=
exp (bi/τ)

exp(bM/τ) [exp(ε1/τ)−1 + ...+ 1 + ...+ exp(εk/τ)−1]
. (3)

Task Architecture Units Centroids (k) Train Valid Test

Tomita 1 SR-GRU 100 5, 10, 50 265 (12) 182 (4) –
Tomita 2 SR-GRU 100 10, 50 257 (6) 180 (2) –
Tomita 3 SR-GRU 100 50 2141 (1028) 1344 (615) –
Tomita 4 SR-GRU 100 50 2571 (1335) 2182(1087) –
Tomita 5 SR-GRU 100 50 1651 (771) 1298(608) –
Tomita 6 SR-GRU 100 50 2523 (1221) 2222(1098) –
Tomita 7 SR-GRU 100 50 1561 (745) 680(288) –
BP (large) SR-LSTM (-P) 100 5 22286 (13025) 6704 (3582) 1K
BP (small) SR-LSTM (-P) 100 2,5,10,50,100 1008 (601) 268 (142) 1K
Palindrome SR-LSTM (-P) 100 5 229984 (115040) 50K(25K) 1K
IMDB (full) SR-LSTM (-P) 256 2,5,10 25K – 25K
IMDB (small) SR-LSTM (-P) 256 2,5,10 25K – 25K
MNIST SR-LSTM (-P) 256 10,50,100 60K – 10K
Fashion-MNIST SR-LSTM (-P) 256 10 55K 5K 10K
Copying Memory SR-LSTM (-P) 128, 256 5,10,20 100K – 10K
Wikipedia SR-LSTM (-P) 300 1000 22.5M 1.2M 1.2M

Table 1. A summary of dataset and experiment characteristics. The values in parentheses are the number of positive sequences.

Task Train l & d Valid l & d Test l & d

Tomita 1 -7 l = 0∼13, 16, 19, 22 l = 1, 4,..., 28 –
BP (large) d ∈ [1, 5] d ∈ [6, 10] d ∈ [1, 20]
BP (small) d ∈ [1, 5] d ∈ [6, 10] d ∈ [1, 20]
Palindrome l ∈ [1, 25] l ∈ [26, 50] l ∈ [50, 500]
IMDB (full) l ∈ [11, 2820], laver = 285 – l ∈ [8, 2956], laver = 278
IMDB (small) l = 10 – l ∈ [100, 200]
MNIST l = 784 l = 784 l = 784
Fashion-MNIST l = 784 l = 784 l = 784
Copying Memory l = 100, 500 – l = 100, 500
Wikipedia l = 22.5M l = 1.2M l = 1.2M

Table 2. The lengths (l) and depths (d) of the sequences in the training, validation, and test sets of the various tasks.

for regular language and RMSPROP (Tieleman & Hinton,
2012) with a learning rate of 0.01 and momentum of 0.9 for
the rest; (d) do not use dropout or batch normalization of
any kind; and (e) use state-regularized RNNs based on equa-
tions 3 and 5 with a temperature of τ = 1 (standard softmax).
We implemented SR-RNNs with Theano (Theano Develop-
ment Team, 2016) 1. All experiments were performed on
a single Titan Xp with 12G memory. The hyper-parameter

1http://www.deeplearning.net/software/
theano/

were tuned to make sure the vanilla RNNs achieves the best
performance. For SR-RNNs we tuned the weight initial-
ization values for the centroids and found that sampling
uniformly from the interval [−0.5, 0.5] works well across
different datasets. Table 1 lists some statistics about the
datasets and the experimental set-ups. Table 2 shows the
length and nesting depth (if applicable) for the sequences in
the train, validation, and test datasets.

http://www.deeplearning.net/software/theano/
http://www.deeplearning.net/software/theano/

State-Regularized Recurrent Neural Networks

0 100 200 300 400 500
Iterations(×103)

0.1

0.2

0.3

0.4

C
ro

ss
 E

n
tr

o
p
y

Time Lag = 100

LSTM

SR-LSTM-P(k=5)

SR-LSTM-P(k=10)

Baseline

0 100 200 300 400 500
Iterations(×103)

0.02

0.04

0.06

0.08

0.10

C
ro

ss
 E

n
tr

o
p
y

Time Lag = 500

LSTM

SR-LSTM-P(k=10)

SR-LSTM-P(k=20)

Baseline

Figure 1. The results (test cross entropy loss) on copying memory problem for time lags T = 100 (left) and T = 500 (right). We used
one recurrent layer with 128 hidden units for T = 100, and 256 hidden units for T = 500.

C. Experiments on Copying Memory Problem
Besides the introduced balanced paretness, palindrome task,
we also conducted experiment on the copying memory prob-
lem (Hochreiter & Schmidhuber, 1997). We follow the
similar setup as described in (Hochreiter & Schmidhuber,
1997; Arjovsky et al., 2016; Jing et al., 2017). The alphabet
Σ has 10 characters Σ = {ci}9i=0. The input and output
sequences have lengths of T + 2n, where T is the time lag
and n is the length of sequence that need to be memorized
and copied. The exemplary input and output are listed as
follows.

Input: c1c4c2c1c8c4c7c3c5c6 c9

Output: c1c4c2c1c8c4c7c3c5c6

We use n = 10, the first n symbols of input sequence are
uniformly sampled from [c1, c8], the c0 is used as “blank”
symbol (as shown as “ ” in above examples. The length
of “blank” sequence is T). The c9 is used as an indicator
to require algorithms or models to reproduce the first n
symbols with exactly same sequential order. The task is to
minimize the average categorical cross entropy at each time
step. Similar to (Jing et al., 2017), we used 100000 samples
for training and 10000 for test. Differently, all RNN models
have only one recurrent layer. We used 128 hidden units
for T = 100 and 256 hidden units for T = 500. The batch
size is set to 128. We use RMSPROP with a learning rate of
0.001 and decay of 0.9. A simple baseline is a memoryless
strategy, which has categorical cross entropy 10 log(8)

T+20 .

Figure 1 presents the performance of the proposed method
on copying memory problem for T = 100 and T = 500.
For time log T = 100, both standard LSTM and SR-LSTM-
Ps are able to beat baseline. Clearly we can see the faster
convergence of SR-LSTM-Ps. For T = 500, LSTM is hard

to beat the baseline, while SR-LSTM-Ps outperforms base-
line in a certain margin. Both figures demonstrate the mem-
orization capability of SR-LSTM-Ps over standard LSTM.

D. Experiments on Language Modeling
We evaluated the SR-LSTMs on language modeling task
with the Wikipedia dataset (Daniluk et al., 2017)2. It con-
sists of 7500 English Wikipedia articles. We used the same
experimental setup as in previous work (Daniluk et al.,
2017). We used the provided training, validation, and test
dataset: 22.5M words in the training set, 1.2M in the val-
idation, and 1.2M words in the test set. We used the 77k
most frequent words from the training set as vocabulary.
We report the results in Table 3. We used the model with
the best perplexity on the on the validation set. Note that
we only tuned the number of centroids for SR-LSTM and
SR-LSTM-P and used the same hyperparameters that were
used for the vanilla LSTMs.

The results show that the perplexity results for the SR-
LSTM and SR-LSTM-P outperform those of the vanilla
LSTM and LSTM with peephole connection. The differ-
ence, however, is modest and we conjecture that the ability
to model long-range dependencies is not that important for
this type of language modeling tasks. This is an observation
that has also been made by previous work (Daniluk et al.,
2017). The perplexity of the SR-LSTMs cannot reach that
of state of the art methods. The methods, however, all utilize
a mechanism (such as attention) that allows the next-word
decision to be based on a number of past hidden states. The
SR-LSTMs, in contrast, makes the next-word decision only
based on the current hidden state.

2The wikipedia corpus is available at https://goo.gl/s8cyYa

State-Regularized Recurrent Neural Networks

Model a θW+M θM Dev Test

RNN - 47.0M 23.9M 121.7 125.7
LSTM - 47.0M 23.9M 83.2 85.2
FOFE HORNN(3-rd order)(Soltani & Jiang, 2016) - 47.0M 23.9M 116.7 120.5
Gated HORNN(3-rd order)(Soltani & Jiang, 2016) - 47.0M 23.9M 93.9 97.1
RM(+tM-g) (Tran et al., 2016) 15 93.7M 70.6M 78.2 80.1
Attention (Daniluk et al., 2017) 10 47.0M 23.9M 80.6 82.0
Key-Value (Daniluk et al., 2017) 10 47.0M 23.9M 77.1 78.2
Key-Value Predict (Daniluk et al., 2017) 5 47.0M 23.9M 74.2 75.8
4-gram RNN (Daniluk et al., 2017) - 47.0M 23.9M 74.8 75.9

LSTM-P - 47.0M 23.9M 85.8 86.9
SR-LSTM (k = 1000) - 47.3M 24.2M 80.9 82.7
SR-LSTM-P (k = 1000) - 47.3M 24.2M 80.2 81.3

Table 3. The perplexity results for the SR-LSTMs and the state of the art methods. Here, θW+M are the number of model parameters and
θM the number of model parameters without word representations. a is the attention window size. The numbers of baseline methods are
taken from (Daniluk et al., 2017)

Grammars Descriptions

1 1∗

2 (10)∗

3 An odd number of consecutive 1s is followed by an even number of consecutive 0s
4 Strings not contain a substring “000”
5 The numbers of 1s and 0s are even
6 The difference of the numbers of 1s and 0s is a multiple of 3
7 0∗1∗0∗1∗

Table 4. The seven Tomita grammars (Tomita, 1982).

E. Tomita Grammars and DFA Extraction
The Tomita grammars are a collection of 7 regular languages
over the alphabet {0,1} (Tomita, 1982). Table 4 lists the
regular grammars defining the Tomita grammars.

We follow previous work (Wang et al., 2018; Schellhammer
et al., 1998) to construct the transition function of the DFA
(deterministic finite automata).

We follow earlier work (Weiss et al., 2018) and attempt to
train a GRU to reach 100% accuracy for both training and
validation data. We first trained a single-layer GRU with
100 units on the data. We use GRUs since they are RNNs
without∞-memory. Whenever the GRU converged within
1 hour to a training accuracy of 100%, we also trained a SR-
GRU based on equations 3 and 5 with k = 50 and τ = 1.
This was the case for the grammars 1-4 and 7. For grammar
5 and 6, our experiments show that both vanilla GRU and SR-
GRU were not able to achieve 100% accuracy. In this case,
SR-GRU (97.2% train and 96.8% valid accuracy) could
not extract the correct DFA for grammar 5 and 6. The
exploration of deeper GRUs and their corresponding SR-

GRUs (2 layers as in (Weiss et al., 2018)) for DFA extraction
could be interesting future work.

Algorithm 1 lists the pseudo-code of the algorithm that
constructs the transition function of the DFA. Figure 2 shows
the extracted DFA for grammar 7. All DFA visualization in
the paper are created with GraphViz 3.

36

0

271

1

110

0

241

1

150

0
1

Figure 2. The DFA extracted from the SR-GRU for Tomita gram-
mar 7. The numbers inside the circles correspond to the centroid
indices of the SR-GRU. Double circles indicate accept states.

F. Training Curves
Figure 3 plots the validation error during training of the
LSTM, SR-LSTM, and SR-LSTM-P on the BP (balanced

3https://www.graphviz.org/

https://www.graphviz.org/

State-Regularized Recurrent Neural Networks

Input: pre-trained SR-RNN, dataset D, alphabet Σ, start token s
Output: transition function δ of the DFA
for i, j ∈ {1, ..., k} and all x ∈ Σ do

T [(ci, xt, cj)] = 0 # initialize transition counts to zero
end
{pi}ki=1 ← SR-RNN(s) # compute the transition probabilities for the start token
j = arg maxi∈{1,...,k}(pi) # determine j the centroid with max transition probability
c0 = j # set the start centroid c0 to j
for x = (x1, x2, ..., xT) ∈ D do

for t ∈ [1, ..., T] do
{pj}kj=1 ← SR-RNN(xt) # compute the transition probabilities for the t-th token
j = arg maxi∈{1,...,k}(pi) # determine j the centroid with max transition probability
ct = j # set ct, the centroid in time step t, to j
T [(ct−1, xt, ct)]← T [(ct−1, xt, ct)] + 1 # increment transition count

end
end
for i ∈ {1, ..., k} and x ∈ Σ do

δ(i, x) = arg maxj∈{1,...,k} T [(i, x, j)] # compute the transition function of the DFA
end
return δ

Algorithm 1: Computes DFA transition function

0 2 4 6 8 10 12
Iterations×104

0.0

0.1

0.2

0.3

0.4

0.5

V
a
lid

 E
rr

o
r

LSTM

SR-LSTM

SR-LSTM-P

0 5 10 15 20
Iterations×104

0.0

0.1

0.2

0.3

0.4

0.5

V
a
lid

 E
rr

o
r

LSTM

SR-LSTM

SR-LSTM-P

Figure 3. The error curves on the validation data for the LSTM, SR-LSTM, and SR-LSTM-P (k = 5) on the large BP dataset (left) and
the small BP dataset (right).

0 2 4 6
Iterations ×104

0.1

0.2

0.3

T
e
st

 E
rr

o
r

LSTM

SR-LSTM

SR-LSTM-P

0 2 4 6
Iterations ×104

0.1

0.2

0.3

T
e
st

 E
rr

o
r

SR-LSTM-P(2 layers, h only)

SR-LSTM-P(2 layers, c only)

Figure 4. The error curves on the test data for the LSTM, SR-LSTM, SR-LSTM-P (k = 10) on the IMDB sentiment analysis dataset.
(Left) It shows state-regularized RNNs show better generalization ability. (Right) A 2-layer SR-LSTM-P achieves better error rates when
the classification function only looks at the last cell state compared to it only looking at the last hidden state.

parentheses) datasets. Here, the SR-LSTM and SR-LSTM
both have k = 5 centroids. The state-regularized LSTMs
tend to reach better error rates in a shorter amount of itera-

tion.

Figure 4 (left) plots the test error of the LSTM, SR-LSTM,

State-Regularized Recurrent Neural Networks

((((((a) b) c) d)))
1.0

0.5

0.5

1.0

0.0

(a) Vector ht of the LSTM
((((((a) b) c) d)))

5
4
3
2
1
0
1
2
3
4
5

(b) Vector ct of the LSTM

((((((a) b) c) d)))
1.0

0.5

0.5

1.0

0.0

(c) Vector ht of the SR-LSTM-P

((((((a) b) c) d)))
6
5
4
3
2
1
0
1
2
3
4
5
6

(d) Vector ct of the SR-LSTM-P

Figure 5. Visualization of hidden state ht and cell state ct of the LSTM and the SR-LSTM-P for a specific input sequence from BP. Each
color corresponds to one of 10 hidden units. The LSTM memorizes the number of open parentheses both in the hidden and to a lesser
extent in the cell state (bold orange lines). The memorization is not accomplished with saturated gate outputs and a drift is observable for
both vectors. The SR-LSTM-P maintains two distinct hidden states (accept and reject) and does not visibly memorize counts through its
hidden states. The cell state is used to cleanly memorize the number of open parentheses (bold red line) with saturated gate outputs (±1).
A state vector drift is not observable (the solutions with less drift to generalize better (Gers & Schmidhuber, 2001)).

and SR-LSTM-P on the IMDB dataset for sentiment analy-
sis. Here, the SR-LSTM and SR-LSTM both have k = 10
centroids. In contrast to the LSTM, both the SR-LSTM and
the SR-LSTM do not overfit.

Figure 4 (right) plots the test error of the SR-LSTM-P when
using either (a) the last hidden state and (b) the cell state
as input to the classification function. As expected, the cell
state contains also valuable information for the classification
decision. In fact, for the SR-LSTM-P it contains more
information about whether an input sequence should be
classified as positive or negative.

G. Visualization, Interpretation, and
Explanation

The stochastic component and its modeling of transition
probabilities and the availability of the centroids facilitates
novel ways of visualizing and understanding the working of
SR-RNNs.

G.1. Balanced Parentheses

Figure 5 presents the visualization of hidden state ht and
cell state ct of the LSTM and the SR-LSTM-P for a specific
input sequence from BP.

Figure 6 (left) shows the k = 5 learned centroids of a SR-
LSTM-P with hidden state dimension 100.

Figure 6 (center) depicts the average of the ranked transition
probabilities for a large number of input sequences. This
shows that, on average, the transition probabilities are spiky,
with the highest transition probability being on average 0.83,
the second highest 0.16 and so on.

Figure 6 (right) plots the transition probabilities for a SR-
LSTM-P with k = 5 states and hidden state dimension 100
for a specific input sequence of BP.

Figure 7 visualizes the hidden states h of a LSTM, SR-
LSTM, and SR-LSTM-P trained on the large BP dataset.
The SR-LSTM and SR-LSTM-P have k = 5 centroids
and a hidden state dimension of 100. One can see that the
LSTM memorizes with its hidden states. The evolution of
its hidden states is highly irregular. The SR-LSTM and
SR-LSTM-P, on the other hand, have a much more regular
behavior. The SR-LSTM-P utilizes mainly two states to
accept and reject an input sequence.

G.2. Sentiment Analysis

Since we can compute transition probabilities in each time
step of an input sequence, we can use these probabilities

State-Regularized Recurrent Neural Networks

0 20 40 60 80

0

1

2

3

4 0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
0.0

0.5

1.0
1st highest prob.

2nd highest prob.

3rd highest prob.

4th highest prob.

5th highest prob.

(f) ((v) (a)) (((n)) (k))
0.0

0.5

1.0

Figure 6. Visualization of a SR-LSTM-P with k = 5 centroids, a hidden state dimension of 100, trained on the large BP data. (Left)
visualization of the learned centroids. (Center) mean transition probabilities when ranked highest to lowest. This shows that the transition
probabilities are quite spiky. (Right) transition probabilities for a specific input sequence.

(f) ((v) (a)) (((n)) (k))
(a) ht in LSTM

1

1

0

(f) ((v) (a)) (((n)) (k))
(b) ht in SR-LSTM

1

1

0

(f) ((v) (a)) (((n)) (k))
(c) ht in SR-LSTM-P

1

1

0

Figure 7. Visualizations of the hidden states h of a vanilla LSTM, an SR-LSTM, and an SR-LSTM-P (k = 10) for a specific input
sequence. All models were trained on BP and have hidden state dimension of 100. The LSTM memorizes with its hidden state. The
SR-LSTM and SR-LSTM-P utilize few states and have a more stable behavior over time.

to generate and visualize prototypical input tokens and the
way that they are associated with certain centroids. We
show in the following that it is possible to associate input
tokens (here: words of reviews) to centroids by using their
transition probabilities.

For the sentiment analysis data (IMDB) we can associate
words to centroids for which they have high transition prob-
abilities. To test this, we fed all test samples to a trained
SR-LSTM-P. We determine the average transition proba-
bilities for each word and centroid and select those words
with the highest average transition probability to a centroid
as the prototypical words of said centroid. Table 5 lists the
top 5 words according to the transition probabilities to each
of the 5 centroids for the SR-LSTM-P with k = 10. It is

now possible to inspect the words of each of the centroids
to understand more about the working of the SR-RNN.

Figure 8 (top) and Figure 8 (bottom) demonstrate that it
is possible to visualize the transition probabilities for each
input sequence. Here, we can see the transition probabilities
for one positive and one negative sentence for a SR-LSTM-
P with k = 5 centroids. The heatmaps can be viewed as as
explanations for SR-RNNs predictions.

G.3. MNIST and Fashion-MNIST

For pixel-by-pixel sequences, we can use the SR-RNNs to
directly generate prototypes that might assist in understand-
ing the way SR-RNNs work. We can compute and visualize

State-Regularized Recurrent Neural Networks

Centroids Top-5 words with probabilities
centroid 0 piece (0.465) instead (0.453) slow (0.453) surface (0.443) artificial (0.37)
centroid 1 told (0.752) mr. (0.647) their (0.616) she (0.584) though (0.561)
centroid 2 just (0.943) absolutely (0.781) extremely (0.708) general (0.663) sitting (0.587)
centroid 3 worst (1.0) bad (1.0) pointless (1.0) boring (1.0) poorly (1.0)
centroid 4 jean (0.449) bug (0.406) mind (0.399) start (0.398) league (0.386)
centroid 5 not (0.997) never (0.995) might (0.982) at (0.965) had (0.962)
centroid 6 against (0.402) david (0.376) to (0.376) saying (0.357) wave (0.349)
centroid 7 simply (0.961) totally (0.805) c (0.703) once (0.656) simon (0.634)
centroid 8 10 (0.994) best (0.992) loved (0.99) 8 (0.987) highly (0.987)
centroid 9 you (0.799) strong (0.735) magnificent (0.726) 30 (0.714) honest (0.69)

Table 5. List of prototypical words for the k = 10 centroids of an SR-LSTM-P trained on the IMDB dataset. The top-5 highest transition
probability words are listed for each centroid. We colored the positive centroid words in green and the negative centroid words in red.

this is quite possibly the worst sequel ever made . the script is unfunny and the acting stinks .

0

1

2

3

4 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) Negative input sample

it probablyhelped that i watched it at midnight . if you want a real scare rent this one ! 10 / 10

0

1

2

3

4 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) Positive input sample

Figure 8. Visualization of the transition probabilities for an SR-LSTM-P with k = 5 centroids trained on the IMDB dataset for a negative
(top) and a positive (bottom) input sample.

the average transition probabilities for all examples of a
given class. Note that this is different to previous post-hoc
methods (e.g., activation maximization (Berkes & Wiskott,
2006; Nguyen et al., 2016)), in which a network is trained
first and in a second step a second neural network is trained
to generate the prototypes. Figure 9 visualizes the proto-
types (average transition probabilities for all examples from
a digit class) of SR-LSTM-P for k = 10 centroids. One can
see that each centroid is paying attention to a different part
of the image.

In addition, SR-RNN can be used to visualize the transition
probabilities for specific inputs. To explore this, we trained
an SR-LSTM-P (k = 10) on the MNIST (accuracy 98%)
and Fashion MNIST (86%) data (Xiao et al., 2017), having
the models process the images pixel-by-pixel as a large
sequence. Figure 10 visualizes the transition probabilities
with a heatmap for specific input images.

References
Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolution

recurrent neural networks. In ICML, pp. 1120–1128,
2016.

Berkes, P. and Wiskott, L. On the analysis and interpretation
of inhomogeneous quadratic forms as receptive fields.
Neural computation, 18(8):1868–1895, 2006.

Daniluk, M., Rocktäschel, T., Welbl, J., and Riedel, S. Frus-
tratingly short attention spans in neural language model-
ing. ICLR, 2017.

Gers, F. A. and Schmidhuber, E. Lstm recurrent networks
learn simple context-free and context-sensitive languages.
IEEE Transactions on Neural Networks, 12(6):1333–
1340, 2001.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

State-Regularized Recurrent Neural Networks

Figure 9. SR-RNNs for interpreting RNN models. Visualization
of average transition probabilities of the SR-LSTM-P with k = 10
centroids, over all test images. Each row represents a digit class (a
concept) and each column depicts the prototype (average transition
probability) for each of the centroids.

Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun,
Y., Tegmark, M., and Soljačić, M. Tunable efficient
unitary neural networks (EUNN) and their application
to RNNs. In Precup, D. and Teh, Y. W. (eds.), ICML,
volume 70 of Proceedings of Machine Learning Research,
pp. 1733–1741, International Convention Centre, Sydney,
Australia, 06–11 Aug 2017. PMLR.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and
Clune, J. Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks. In NIPS,
pp. 3387–3395, 2016.

Schellhammer, I., Diederich, J., Towsey, M., and Brugman,
C. Knowledge extraction and recurrent neural networks:
An analysis of an elman network trained on a natural
language learning task. In Proceedings of the Joint Con-
ferences on New Methods in Language Processing and
Computational Natural Language Learning, pp. 73–78,
1998.

Soltani, R. and Jiang, H. Higher order recurrent neural
networks. arXiv preprint arXiv:1605.00064, 2016.

Theano Development Team. Theano: A Python framework
for fast computation of mathematical expressions. arXiv
e-prints, abs/1605.02688, 2016.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

Tomita, M. Dynamic construction of finite automata from
examples using hill-climbing. In Proceedings of the

Figure 10. SR-RNNs for explaining RNN predictions. We can
visualize the working of an SR-LSTM-P on a specific input image
by visualizing the transition probabilities of each of the centroids
(here: k = 10). (Top) The visualization for some MNIST images.
(Bottom) The visualization for some Fashion-MNIST images. The
first column depicts the input image and the 2nd to 11th the state
transition probability heatmaps corresponding to the 10 centroids.

Fourth Annual Conference of the Cognitive Science Soci-
ety, pp. 105–108, 1982.

Tran, K., Bisazza, A., and Monz, C. Recurrent memory
networks for language modeling. NAACL-HLT, 2016.

Wang, Q., Zhang, K., Ororbia II, A. G., Xing, X., Liu, X.,
and Giles, C. L. An empirical evaluation of rule extraction
from recurrent neural networks. Neural Computation, 30
(9):2568–2591, 2018.

Weiss, G., Goldberg, Y., and Yahav, E. Extracting automata
from recurrent neural networks using queries and coun-
terexamples. In ICML, volume 80, pp. 5247–5256, 2018.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

State-Regularized Recurrent Neural Networks

Zeiler, M. D. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

