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Abstract
In recommender systems, usually the ratings of a
user to most items are missing and a critical prob-
lem is that the missing ratings are often missing
not at random (MNAR) in reality. It is widely ac-
knowledged that MNAR ratings make it difficult
to accurately predict the ratings and unbiasedly
estimate the performance of rating prediction. Re-
cent approaches use imputed errors to recover the
prediction errors for missing ratings, or weight
observed ratings with the propensities of being
observed. These approaches can still be severely
biased in performance estimation or suffer from
the variance of the propensities. To overcome
these limitations, we first propose an estimator
that integrates the imputed errors and propensi-
ties in a doubly robust way to obtain unbiased
performance estimation and alleviate the effect
of the propensity variance. To achieve good per-
formance guarantees, based on this estimator, we
propose joint learning of rating prediction and
error imputation, which outperforms the state-of-
the-art approaches on four real-world datasets.

1 Introduction
Users’ preferences to items in recommender systems are
often represented as binary or multi-scaled ratings (Zhang
et al., 2017). Ratings are often sparse, i.e., only the ratings
to a small portion of items are observed, whereas the ratings
to most of the items are missing (Wang et al., 2018b). Most
studies aim at recommending the items that users may like
based on such sparse ratings (Bell et al., 2007).

Existing studies often assume that the missing ratings are
missing at random (MAR), but usually this assumption does
not hold and the missing ratings are missing not at random
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(MNAR). For example, a recent study in song recommen-
dation shows that the probability of a rating being missing
depends on the rating’s value (Marlin et al., 2007). Recent
studies also show that correctly adopting the MNAR assump-
tion helps improve the quality of recommended items (Wang
et al., 2018a). Hence, we aim to address the recommenda-
tion problem based on the MNAR assumption. Ratings are
MNAR largely because users are free to choose what items
to rate. Users normally rate an item that they like, and thus
the ratings of a lower value are more likely to be missing.
In other words, the propensities, i.e., the probabilities of
different ratings being observed, are not the same.

MNAR ratings make it difficult to learn a prediction model
that aims at accurately predicting the (true) rating of a user
to an item (Lim et al., 2015). The common practice of using
only observed ratings yields suboptimal prediction models
because the observed ratings are not a representative sample
of all ratings – whether observed or missing. MNAR ratings
also make it difficult to correctly estimate the performance
of a prediction model (Steck, 2011). The performance is
typically defined as the prediction inaccuracy: the aver-
age of prediction errors (e.g. squared difference between a
predicted rating and the true rating) for all ratings (Salakhut-
dinov et al., 2007). Given MNAR ratings, averaging over
only observed ratings can be severely biased: it can over- or
under-estimate the prediction inaccuracy by a large amount,
a.k.a, the bias (Little & Rubin, 2014).

Two recent approaches address the MNAR problem: (1)
The error-imputation-based (EIB) approach computes an
imputed error, i.e., an estimated value of the prediction
error, for each missing rating (Steck, 2013). (2) The inverse-
propensity-scoring (IPS) approach inversely weights the
prediction error for each observed rating with the propensity
of observing that rating (Schnabel et al., 2016). The EIB
approach often has a large bias due to imputation inaccuracy,
i.e., deviations of the imputed errors from the prediction
errors (Dudı́k et al., 2011). Such inaccuracy will also be
propagated into training a prediction model and increase the
prediction inaccuracy. The IPS approach often suffers from
the high variance of the propensities (Thomas & Brunskill,
2016). The propensities, once inversed, can cause training
losses to oscillate and lead to a poor generalization ability.
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We propose a principled approach to overcome these limi-
tations. First, we propose a doubly robust estimator of the
prediction inaccuracy. The estimator corrects the deviations
of the imputed errors, inversely weighted with the propensi-
ties, for observed ratings. We prove that the estimator has a
desired property called double robustness: the capability to
remain unbiased if either the imputed errors or propensities
are accurate. Because of this property, our estimator reduces
the bias in estimating the prediction inaccuracy and allevi-
ates the effect of the large propensity variance. A challenge
of using this estimator for learning a prediction model is
to prevent the imputation inaccuracy from increasing the
prediction inaccuracy. We analyze this issue by deriving
a generalization bound and then propose jointly learning
of a prediction model and an imputation model to address
this challenge. The imputation model learns to accurately
estimate the prediction errors made by the prediction model,
while the prediction model learns from the imputation model
to reduce the prediction errors in itself. In this way, the pre-
diction and imputation models mutually regularize each
other to reduce both prediction and imputation inaccuracies.

The contributions of this paper are summarized as follows.

• We propose a doubly robust estimator for unbiased per-
formance estimation in recommendation and theoretically
analyze the bias and tail bound of the estimator.
• Based on the doubly robust estimator, we propose a novel
approach to jointly learn rating prediction and error imputa-
tion, which enjoys a rigorous performance guarantee.
• We conduct extensive experiments and the results show
that the proposed approach achieves up to a 12% drop in the
prediction inaccuracy compared with the state-of-the-art.

2 Preliminaries
Let U = {u1, ..., uN} be a set of users, I = {i1, ..., iM} a
set of items, and D = U × I the set of all user-item pairs.
Let R ∈ RN×M be a true rating matrix where each entry
ru,i is the true rating of user u to item i. A recommendation
method learns a prediction model that aims to predict the
true ratings and recommends items with the highest pre-
dicted ratings (Ricci et al., 2010). Let R̂ ∈ RN×M be a
prediction matrix where each entry r̂u,i is a predicted rating
computed by the prediction model. If we have a fully ob-
served true rating matrix Rf , the prediction inaccuracy P
of the prediction model can be measured by metrics such as
mean absolute error (MAE) or mean square error (MSE)

P = P(R̂,Rf ) =
1

|D|
∑
u,i∈D

eu,i , (1)

where eu,i = |r̂u,i − ru,i| or eu,i = (r̂u,i − ru,i)2 is the
prediction error for MAE or MSE, respectively. Let O ∈
{0, 1}N×M be an indicator matrix where each entry ou,i is
an observation indicator: ou,i = 1 if the true rating ru,i is

observed, and ou,i = 0 if the true rating ru,i is missing. Let
Ro and Rm be the set of the observed and missing entries
in the true rating matrix. Given the observed ratings Ro,
the rating prediction problem aims to learn the prediction
model that minimizes the prediction inaccuracy P .

Since most entries in the true rating matrix are often missing,
a naive (N) estimator estimates the prediction inaccuracy by
averaging the prediction errors for observed ratings

EN = EN(R̂,Ro) =
1

|O|
∑
u,i∈O

eu,i ,

where O = {(u, i)|u, i ∈ D, ou,i = 1} is the set of user-
item pairs for the observed ratings. If the missing ratings
Rm are missing at random (MAR), the naive estimator is un-
biased: the expectation of its estimation over all the possible
instances of O is exactly the same as the prediction inaccu-
racy, i.e., EO[EN] = P . MAR means that the probability of
observing an instance of the indicator matrix only depends
on the observed ratings p(O|R,X) = p(O|Ro), where X
are all the other factors that affect the indicator matrix be-
sides the true rating matrix R (Liang et al., 2016). In some
cases, MAR does not hold and the missing ratings are miss-
ing not at random (MNAR), e.g., the probability of a rating
being missing depends on its value (Marlin et al., 2007). In
such cases, the naive estimator can have a large bias: a large
difference between the prediction inaccuracy and the expec-
tation of its estimation over O, i.e., |P − EO[EN]| � 0.

To reduce the bias, an error-imputation-based (EIB) estima-
tor uses an imputation model to compute imputed errors, i.e.,
estimated values of the prediction errors (Steck, 2010). An
imputation model, called heuristic imputation, computes the
imputed error êu,i = ω|r̂u,i− γ| or êu,i = ω(r̂u,i− γ)2 for
MAE or MSE, where ω and γ are hyper-parameters (Steck,
2010). Using the imputed errors for missing ratings to-
gether with the prediction errors for observed ratings, the
EIB estimator estimates the prediction inaccuracy with

EEIB = EEIB(R̂,Ro) =
1

|D|
∑
u,i∈D

(ou,ieu,i+(1−ou,i)êu,i) ,

where we call δu,i = eu,i − êu,i the error deviation. Al-
ternatively, Schnabel et al. (2016) learn the propensity
pu,i = P (ou,i = 1), i.e., the probability of observing the
true rating ru,i by, e.g., naive bayes. They use the learned
propensity p̂u,i to inversely weight each prediction error for
observed ratings and define an inverse-propensity-scoring
(IPS) estimator that estimates the prediction inaccuracy with

EIPS = EIPS(R̂,Ro) =
1

|D|
∑
u,i∈D

ou,ieu,i
p̂u,i

.

When the imputed errors are accurate, i.e., δu,i = 0 for
u, i ∈ D, the EIB estimator is unbiased no matter whether
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the missing ratings are MAR or MNAR (Vermeulen &
Vansteelandt, 2015). Similarly, the IPS estimator is also
unbiased when the propensities are accurate, i.e., ∆u,i =
p̂u,i−pu,i

p̂u,i
= 0 for u, i ∈ D. However, the EIB estimator

usually has a large bias in practice due to the imputation
inaccuracy which can be measured by metrics such as MSE

I = I(R̂,Rf ) =
1

|D|
∑
u,i∈D

δ2u,i .

On the other hand, the IPS estimator often suffers from a
high variance (Gilotte et al., 2018). Such variance can be
reduced by a self-normalized inverse propensity scoring
(SNIPS) estimator (Swaminathan & Joachims, 2015b)

ESNIPS = ESNIPS(R̂,Ro) =

( ∑
u,i∈D

ou,i
p̂u,i

)−1∑
u,i∈D

ou,ieu,i
p̂u,i

.

We propose to use both imputed errors and propensities to
overcome the limitations of the EIB and IPS approaches.

3 Doubly Robust Estimator
A straightforward idea of using both imputed errors and
propensities is to combine the EIB and IPS estimators as
ESC = λEEIB + (1− λ)EIPS. A weakness of such a linear
combination is that even when the propensities are accurate,
the bias increases if the imputed errors become less accurate.
We observe that this weakness can be addressed by design-
ing an estimator in a doubly robust way such that the bias
remains zero even with deteriorated imputed errors. The
key idea is to correct the error deviation δu,i for observed
ratings and inversely weight the corrections with the propen-
sity p̂u,i to consider the MNAR effect. Following this idea,
we propose such an estimator, called a doubly robust (DR)
estimator, to estimate the prediction inaccuracy.

Given the imputed errors Ê = {êu,i|u, i ∈ D} and learned
propensities P̂ = {p̂u,i|u, i ∈ D}, the DR estimator esti-
mates the prediction inaccuracy P with

EDR = EDR(R̂,Ro) =
1

|D|
∑
u,i∈D

(
êu,i +

ou,iδu,i
p̂u,i

)
.

The DR estimator augments the IPS estimator with the fol-
lowing low-variance term (Seaman et al., 2018)

EDR − EIPS =
1

|D|
∑
u,i∈D

(p̂u,i − ou,i)êu,i
p̂u,i

.

Note that the expectation of this term over O is equal to
zero given accurate propensities (see appendix for proofs).

Figure 1 illustrates the advantage of the DR estimator. At
the top of Figure 1, we have the true rating matrix R and

user-item matrices

1 1 5

1 1 5

[ ]
True Ratings R

3 3 4

3 3 4

[ ]
Predicted Ratings R̂

2 2 1

2 2 1

[ ]
Prediction Errors E

1 0 0

0 0 1

[ ]
Observation Indicators O

0.25 0.25 0.5

0.25 0.25 0.5

[ ]
True Propensities P

1.5 1.5 0.5

1.5 1.5 0.5

[ ]
Imputed Errors Ê

0.3 0.3 0.4

0.3 0.3 0.4

[ ]
Learned Propensities P̂

2 1.5 0.5

1.5 1.5 1

[ ]
Bias(EEIB) = 0.33

3.17 1.5 0.5

1.5 1.5 1.75

[ ]
Bias(EDR) = 0.01

6.7 0 0

0 0 2.5

[ ]
Bias(EIPS) = 0.13

Figure 1: Our DR estimator (EDR) of the prediction inaccuracy
has a smaller bias than the EIB (EEIB) and IPS (EIPS) estimators.

prediction matrix R̂. If the true rating matrix is fully ob-
served, we have the prediction error matrix E = |R− R̂|
from MAE at the top right. We compute the prediction
inaccuracy P = 1.67 by averaging over all entries of the
prediction error matrix. For illustration purpose, we make
a MNAR assumption: only one of the four ratings of value
1 (the top-left entry) and one of the two ratings of value
5 (the bottom-right entry) are observed (indicated by the
indicator matrix O at the middle left). Hence, the true
propensities of observing the ratings of value 1 and 5 are
0.25 and 0.5 (shown in the true propensities P at the middle
right). We use the heuristic imputation with ω = 1 and
γ = 4.5, which produces the imputed errors of 1.5 and 0.5
for the ratings of value 1 and 5 (shown in the imputed errors
Ê). Hence, the bias of the EIB estimator in this example
is Bias(EEIB) = |P − EEIB| = 0.33. We perturb the true
propensities by 20%, which gives us the learned propensi-
ties of 0.3 and 0.4 for the ratings of value 1 and 5 (shown in
the learned propensities P̂). The bias of the IPS estimator is
Bias(EIPS) = |P − EIPS| = 0.13. By using both imputed
errors and propensities, the bias of the simple combination
is Bias(ESC) ∈ [0.13, 0.33], whereas the bias of the DR
estimator is the smallest Bias(EDR) = |P − EDR| = 0.01.

We formally derive the bias of the DR estimator as follows.
Lemma 3.1 (Bias of DR Estimator). Given imputed errors
Ê and learned propensities P̂ with p̂u,i > 0 for all user-item
pairs, the bias of the DR estimator is

Bias(EDR) =
1

|D|

∣∣∣∣∣ ∑
u,i∈D

∆u,iδu,i

∣∣∣∣∣. (2)

Proof. By definition, the bias of the DR estimator is

Bias(EDR) = |P − EO[EDR]| .
The second term on the right hand side can be expanded as

EO[EDR] =
1

|D|
∑
u,i∈D

(
êu,i +

pu,iδu,i
p̂u,i

)
. (3)
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Table 1: Bias of the EIB, IPS, and DR estimators.

EEIB EIPS EDR∣∣∣∣∣ ∑
u,i∈D

(1− pu,i)δu,i
|D|

∣∣∣∣∣
∣∣∣∣∣ ∑
u,i∈D

∆u,ieu,i
|D|

∣∣∣∣∣
∣∣∣∣∣ ∑
u,i∈D

∆u,iδu,i
|D|

∣∣∣∣∣
We treat the prediction and imputed errors as constants
when taking the expectation since O does not result from
any prediction or imputation models (Schnabel et al., 2016).
Subtracting Eq. 3 from Eq. 1 yields the stated results.

We summarize the bias of the EIB, IPS, and DR estimators
in Table 1. If either δu,i ≈ 0 or ∆u,i ≈ 0, the DR estima-
tor is close to the prediction inaccuracy, whereas the EIB
estimator requires δu,i ≈ 0 and the IPS estimator requires
∆u,i ≈ 0. Moreover, if δu,i ≈ 0 and ∆u,i � 1− pu,i, the
DR estimator is less biased than the EIB estimator. Similarly,
if ∆u,i ≈ 0 and δu,i � eu,i, the DR estimator is less biased
than the IPS estimator. Thus, the DR estimator effectively
takes advantage of both imputed errors and propensities for
less biased estimation of the prediction inaccuracy.

We formally describe double robustness as follows. The
proof substitutes either δu,i = 0 or ∆u,i = 0 into the bias
of the DR estimator in Eq. 2 (see appendix for details).

Corollary 3.1 (Double Robustness). The DR estimator is
unbiased when either imputed errors Ê or learned propen-
sities P̂ are accurate for all user-item pairs.

We next analyze the tail bound of the DR estimator (see
appendix for proofs). Following existing work (Schnabel
et al., 2016), we assume that the indicator matrix O contains
independent random variables and each one ou,i follows a
Bernoulli distribution with probability pu,i.

Lemma 3.2 (Tail Bound of DR Estimator). Given imputed
errors Ê and learned propensities P̂, for any prediction
matrix R̂, with probability 1 − η, the deviation of the DR
estimator from its expectation has the following tail bound

∣∣∣EDR − EO[EDR]
∣∣∣ ≤

√√√√√ log
(

2
η

)
2|D|2

∑
u,i∈D

(
δu,i
p̂u,i

)2
.

We further present the following corollary to compare the
tail bound of the DR and IPS estimators (see appendix for
proofs). The corollary indicates that the DR estimator will
almost surely have a lower tail bound than the IPS estimator
when the imputed errors do not deviate from the prediction
errors by a large amount, e.g., |δu,i| ≤ eu,i. We will also
empirically show such results in the experiments.

Corollary 3.2 (Tail Bound Comparison). Suppose imputed
errors Ê are such that 0 ≤ êu,i ≤ 2eu,i for u, i ∈ D, then
for any learned propensities P̂, the tail bound of the DR
estimator will be lower than that of the IPS estimator.

4 Joint Learning Approach
A challenge of using the DR estimator for recommendation
learning is to prevent the error deviations caused by the
imputation model from worsening the training of the pre-
diction model. We derive a generalization bound to analyze
this issue and observe how the error deviations affect the
prediction inaccuracy of a prediction model trained with the
DR estimator. Based on the observation, we propose a joint
learning approach to address this challenge.

Given observed ratings Ro, we obtain the optimal prediction
matrix R̂‡ by minimizing the estimated prediction inaccu-
racy by the DR estimator over a hypothesis space H of
prediction matrices (Sugiyama & Kawanabe, 2012)

R̂‡ = argmin
R̂∈H

{
EDR(R̂,Ro)

}
.

We prove that the prediction inaccuracy of the optimal pre-
diction matrix has the following generalization bound (see
appendix for proofs). For ease of presentation, we use the
same superscript to denote the correspondence between an
error deviation and a prediction matrix (e.g., δ‡u,i and R̂‡).
Theorem 4.1 (Generalization Bound). For any finite hy-
pothesis space H of prediction matrices, with probability
1 − η, the prediction inaccuracy P(R̂‡,Rf ) of the opti-
mal prediction matrix using the DR estimator with imputed
errors Ê and learned propensities P̂ has the upper bound

EDR(R̂‡,Ro)+
∑
u,i∈D

|∆u,iδ
‡
u,i|

|D|︸ ︷︷ ︸
Bias Term

+

√√√√√ log
(

2|H|
η

)
2|D|2

∑
u,i∈D

(
δ§u,i
p̂u,i

)2
︸ ︷︷ ︸

Variance Term

,

where δ§u,i is the error deviation corresponding to the pre-

diction matrix R̂§ = argmaxR̂h∈H

{∑
u,i∈D

(
δhu,i

p̂u,i

)2}
.

We can see that the generalization bound contains a bias
term and a variance term, both of which are positively corre-
lated with the magnitude of the error deviation |δu,i|. Hence,
the generalization bound indicates that we can guarantee
a low prediction inaccuracy if the error deviations are of a
small magnitude, i.e., the imputation inaccuracy is also low.
To minimize both prediction and imputation inaccuracies,
we propose joint learning of a prediction model fθ(xu,i)
and an imputation model gφ(xu,i). The prediction model
r̂u,i = fθ(xu,i), parameterized by θ, aims to accurately
predict the true rating ru,i given a vector xu,i encoding all
the features of user u and item i. We train the prediction
model by minimizing the estimated prediction inaccuracy
by the DR estimator and use the training loss

Lr(θ, φ) =
∑
u,i∈D

(
êu,i +

ou,i(eu,i − êu,i)
p̂u,i

)
+ υ‖θ‖2F ,
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Algorithm 1 Alternating Training for Joint Learning

input: observed ratings Ro and learned propensities P̂
while stopping criteria is not satisfied do

for number of steps for training the imputation model do
Sample a batch of user-item pairs {(uj , ij)}Jj=1 from O
Update φ by descending along the gradient∇φLe(θ, φ)

end for
for number of steps for training the prediction model do

Sample a batch of user-item pairs {(uk, ik)}Kk=1 from D 2

Update θ by descending along the gradient∇θLr(θ, φ)
end for

end while

where eu,i = (fθ(xu,i) − ru,i)
2, êu,i = (fθ(xu,i) −

gφ(xu,i)−⊥(fθ(xu,i)))
2 with ⊥ the operator that sets the

gradient of the operand to zero so ∇θ⊥(fθ(xu,i)) = 0 and
⊥(fθ(xu,i)) = fθ(xu,i)

1, υ ≥ 0, and ‖ · ‖2F is the Frobe-
nius norm. Meanwhile, we also learn the parameters of
the imputation model, which we call imputation learning.
The imputation model êu,i = gφ(xu,i), parameterized by φ,
aims to accurately estimate the prediction error eu,i given
the feature vector xu,i. We train the imputation model by
minimizing the squared deviations of the imputed errors
from the prediction errors and use the training loss

Le(θ, φ) =
∑
u,i∈O

(êu,i − eu,i)2
p̂u,i

+ ν‖φ‖2F ,

where eu,i = ru,i − fθ(xu,i), êu,i = gφ(xu,i), and ν ≥ 0.
We inversely weight the squared deviation for each observed
rating with the propensity p̂u,i to consider the MNAR ef-
fect. We compute the prediction error eu,i by the difference
(instead of the absolute or squared difference), so the impu-
tation model can learn to distinguish whether a predicted
rating is larger or smaller than the true rating. We alternate
between training the prediction and imputation models via
minbatch stochastic gradient descent (Wang et al., 2018d).
We summarize the alternating training process in Alg. 1.
Note that Theorem 4.1 assumes fixed imputed errors and
provides performance guarantees on the inner loop of Alg. 1.

5 Experiments
First, we compare our joint learning approach with existing
rating prediction approaches to show its effectiveness and
flexibility. Next, we create a synthetic dataset to study the
bias and standard deviation of our doubly robust estimator.

5.1 Inaccuracy in Rating Prediction Problem

Dataset. Unbiased estimation of the prediction inaccuracy
needs MAR ratings (Marlin & Zemel, 2009). To our knowl-
edge, two real-world datasets have MAR ratings as follows.

1This operator ⊥ has been implemented in scientific libraries, e.g.,
TensorFlow as stop gradient and PyTorch as detach.

2Due to the sparsity of observed ratings, we decrease the probabil-
ity of unobserved ratings being sampled in the experiments.

Table 2: Inaccuracy of rating prediction on MAR test ratings.

COAT YAHOO

MAE MSE MAE MSE

MF 0.920 1.257 1.154 1.891
PMF 0.903 1.239 1.103 1.709
AutoRec 0.900 1.238 0.984 1.438
Gaussian-VAE 0.893 1.220 0.963 1.381

CPT-v 0.969 1.441 0.770 1.115
MF-HI 0.922 1.261 1.158 1.905
MF-MNAR 0.884 1.214 1.177 2.175
MF-IPS 0.860 1.093 0.810 0.989

MF-JL 0.866 1.136 0.899 1.256
MF-DR-JL 0.778 0.990 0.747 0.966

* MF-JL and MF-DR-JL are the proposed approaches.

1. COAT has 4,640 MAR and 6,960 MNAR ratings of 290
users to 300 coats (Schnabel et al., 2016).
2. YAHOO has 54,000 MAR and 311,704 MNAR ratings
of 15,400 users to 1,000 songs (Marlin & Zemel, 2009).

We also conduct experiments on the following two real-
world datasets that have only MNAR ratings.

1. AMAZON has 1,000,086 MNAR ratings of 33,326 users
to 21,901 television shows (He & McAuley, 2016).
2. MOVIE has 10,000,054 MNAR ratings of 71,567 users
to 10,681 movies (Harper & Konstan, 2016).

Experiment Setup. Following prior work (Schnabel et al.,
2016), we use MNAR ratings for training and MAR ratings
for testing on COAT and YAHOO. This allows us to unbias-
edly evaluate the capability of an approach to debias learning
on biased data. Since AMAZON and MOVIE do not have
MAR ratings, we randomly split the MNAR ratings into a
training set (90%) and a test set (10%) (Zheng et al., 2016).
We use 5-fold cross-validation to set the hyper-parameters
of all approaches. We use the methods proposed by Schn-
abel et al. (2016) to learn propensities as follows. On COAT,
we use logistic regression based on all pairs of user features
(e.g., gender) and item features (e.g., color). We cross-
validate logistic regression to maximize the log-likelihood
of observing the MNAR ratings. YAHOO, AMAZON, and
MOVIE do not have user and item features, which makes
logistic regression not applicable. Hence, we set aside 5%
of the test ratings and use naive bayes to learn propensities.

Prediction Inaccuracy. We call approaches that explicitly
deal with MNAR ratings and those that do not debiasing
and biased approaches, respectively. We compare with the
following debiasing approaches: CPT-v (Marlin & Zemel,
2009), MF-HI (Steck, 2010), MF-MNAR (Hernández-
Lobato et al., 2014), and MF-IPS (Schnabel et al., 2016).
We also compare with the following biased approaches:
MF (Koren et al., 2009), PMF (Mnih & Salakhutdinov,
2008), AutoRec (Sedhain et al., 2015), and Gaussian-
VAE (Liang et al., 2018). We call our joint learning ap-
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Table 3: Inaccuracy of rating prediction on MNAR test ratings.

AMAZON MOVIE

MSE MSE-SNIPS MSE MSE-SNIPS

MF 0.949 0.931 0.803 0.793
PMF 0.969 0.911 0.824 0.773
AutoRec 0.900 0.887 0.782 0.776
Gaussian-VAE 0.874 0.861 0.770 0.765

CPT-v 1.277 1.236 1.235 1.180
MF-HI 0.964 0.935 0.812 0.803
MF-MNAR 0.943 0.913 0.803 0.764
MF-IPS 0.956 0.924 0.819 0.780

MF-JL 0.868 0.851 0.767 0.756
MF-DR-JL 0.871 0.844 0.782 0.745

* MF-JL and MF-DR-JL are the proposed approaches.

proach using MF (Koren et al., 2009) to implement the
prediction and imputation models MF-DR-JL. We call MF-
DR-JL trained with uniform propensities p̂u,i = 1 MF-JL.

The prediction inaccuracy under MAE and MSE on COAT
and YAHOO (datasets with MAR ratings) is shown in Table 2.
Our MF-DR-JL performs the best under both metrics on
both datasets, e.g., MF-DR-JL (0.778) outperforms MF-IPS
(0.860) by 10% under MAE on COAT. Both imputed errors
and propensities are critical to MF-DR-JL since removing ei-
ther (MF-IPS or MF-JL) causes a significant increase in the
prediction inaccuracy. In general, the debiasing approaches
outperform the biased ones except that: (1) MF-MNAR
performs worst on YAHOO. A possible explanation is that
MF-MNAR makes several generative assumptions (e.g., hi-
erarchical Gaussian priors) which may not hold on YAHOO.
Unlike MF-MNAR, our MF-DR-JL does not make any gen-
erative assumptions and performs consistently well across
datasets. (2) CPT-v performs worst on COAT. This is partly
because CPT-v learns propensities by conditioning on the
true ratings. The learned propensities are inaccurate because
they can depend on user and item features. In contrast to
CPT-v, MF-DR-JL is more robust to inaccurate propensities
and learns more accurate propensities by regressing on all
available user and item features. (3) MF-HI performs even
worse than MF, which suggests that the heuristic imputation
can be harmful for learning a prediction model.

The prediction inaccuracy under MSE and MSE-SNIPS on
AMAZON and MOVIE is reported in Table 3. The results
under MAE and MAE-SNIPS are similar to those in Table 3
and are put in the appendix. To simulate testing on MAR
ratings, we compute MAE-SNIPS and MSE-SNIPS with
the learned propensities (Swaminathan & Joachims, 2015a).
We can see that our MF-JL and MF-DR-JL are competitive
with or better than the other approaches. MF-JL outper-
forms MF-DR-JL under MSE, while opposite results are ob-
tained under MSE-SNIPS. This is expected because uniform
propensities are used by MF-JL and MSE, whereas learned
propensities are used by MF-DR-JL and MSE-SNIPS. Over-
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Figure 2: Advantage of imputation learning (best view in color).
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Figure 3: Advantage of imputation learning (MF-DR-JL).

all, the debiasing approaches do not have clear advantages
over the biased ones when tested on MNAR ratings.

Error Imputation. We study the advantage of the imputa-
tion learning over the heuristic imputation.We call MF-DR-
JL using the heuristic imputation MF-DR-HI. The left of
Figure 2 shows the prediction (P) and imputation (I) inac-
curacies under MSE against training epochs on COAT. We
can see that MF-DR-JL has a lower prediction inaccuracy
than MF-DR-HI because the imputation learning effectively
reduces the imputation inaccuracy. We further use MAR
ratings to estimate the tail bound (η = 10−4) of estimators
used at training. The right of Figure 2 shows the tail bound
against training epochs on COAT. We can see that the tail
bound at training MF-DR-JL is lower than that at training
MF-IPS, while that at training MF-DR-HI remains high.

Recall that when 0 ≤ êu,i ≤ 2eu,i, the tail bound of the
DR estimator is lower than that of the IPS estimator. We
use MAR ratings to compute the percentage of user-item
pairs that satisfy the condition 0 ≤ êu,i ≤ 2eu,i under MSE.
Figure 3a shows the percentage against training epochs on
COAT. We can see that most user-item pairs (> 99%) sat-
isfy the condition. The percentage increases until reaching
around 99.9% when the imputation learning is used. Fig-
ure 3b shows the values of the prediction and imputed errors
for 100 user-item pairs, randomly selected and sorted by the
prediction errors, at epoch 80 on COAT. We can see that the
imputed errors that violate the condition have a very small
magnitude. The tail bounds are dominated by the imputed
errors that satisfy the condition and have a large value. Be-
sides, the heuristic imputation results in quite small imputed
errors that do not well correlate with the prediction errors.

Propensity Variance. We study how the propensity vari-
ance affects the learning process. Let p̂l = maxD{p̂u,i}
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Figure 4: Learning with varying levels of propensity variance.

and p̂s = minD{p̂u,i}, we use propensities rescaled by
p̃u,i = p̂l − (p̂l−ρ)(p̂l−p̂u,i)

p̂l−p̂s for learning. The variance of
the rescaled propensities increases as ρ = minD{p̃u,i} goes
to 0. We call MF-DR-JL using uniform propensities to train
the imputation model MF-DR-UI. Figure 4 shows MSE
(left) and number of training epochs took to reach an MSE
of 1.5 (right) against varying levels of propensity variance
on COAT. We can see that MF-DR-JL has a lower MSE
and takes less training epochs than MF-IPS at all levels of
propensity variance. MF-DR-JL also has a slower increase
in MSE and number of training epochs than MF-IPS as the
propensity variance grows. These results suggest that the
proposed approach is less affected by the high variance of
the propensities. By comparing MF-DR-JL with MF-DR-
UI, we can also see the benefit of using the propensities to
train the imputation model on MNAR ratings.

Model Implementation. We study how different model
implementations affect the prediction inaccuracy. We com-
pare with two other biased approaches: FM (Rendle, 2010)
and NFM (He & Chua, 2017). FM generalizes MF to work
with any user and item features and NFM extends FM to
model high-order user-item interactions. We also compare
with two other debiasing approaches: FM-IPS and NFM-
IPS (Schnabel et al., 2016). We call our joint learning ap-
proach using FM (or NFM) to implement the prediction and
imputation models FM-DR-JL (or NFM-DR-JL). We call
FM-DR-JL (or NFM-DR-JL) trained with p̂u,i = 1 FM-JL
(or NFM-JL). The prediction inaccuracy under MAE and
MSE on COAT and YAHOO is reported in Table 4. We can
see that our approaches benefit from improved model imple-
mentations. For example, NFM-DR-JL (0.756) outperforms
MF-DR-JL (0.778) by 3% under MAE on COAT.

5.2 Bias of Prediction Inaccuracy Estimation

Dataset. Computing the prediction inaccuracy requires a
fully observed true rating matrix, which does not exist in
any real-world datasets. Hence, we create such a true rat-
ing matrix on YAHOO as follows (Schnabel et al., 2016).
First, we use MF (Koren et al., 2009) to complete the par-
tial true rating matrix but MF gives unrealistically high
ratings to all items. We therefore adjust the completed true
rating matrix to match a more realistic rating distribution
[v1, v2, v3, v4, v5], estimated from the MAR ratings (Marlin
& Zemel, 2009), for values of 1 to 5. We achieve this by

Table 4: Inaccuracy of rating prediction on MAR test ratings.

COAT YAHOO

MAE MSE MAE MSE

FM 0.911 1.252 1.154 1.891
NFM 0.888 1.218 1.001 1.488

FM-IPS 0.853 1.086 0.810 0.989
NFM-IPS 0.832 1.065 0.798 0.979

FM-JL 0.859 1.129 1.032 1.528
NFM-JL 0.838 1.114 1.016 1.509
FM-DR-JL 0.775 0.986 0.747 0.966
NFM-DR-JL 0.756 0.967 0.736 0.957

* The bottom four rows show the proposed approaches.

sorting the matrix entries in ascending order, assigning a
value of 1 to the lowest v1 fraction of the matrix entries,
assigning a value of 2 to the next v2 fraction, and so on.

Experiment Setup. For fair comparison, we use the follow-
ing five prediction matrices used by Schnabel et al. (2016).

1. ONE: We randomly select 137,800 entries (i.e., the same
number of the true ratings with a value of 5) with a value of
1 and set their values to 5 in the true rating matrix.
2. FOUR: We randomly select 137,800 entries with a value
of 4 and set their values to 5 in the true rating matrix.
3. ROT: The predicted rating r̂u,i = ru,i − 1 if the true
rating ru,i ≥ 2. Otherwise, the predicted rating r̂u,i = 5.
4. SKEW: The predicted rating r̂u,i is sampled fromN (µ =

ru,i, σ =
6−ru,i

2 ) and is clipped to [0, 6].
5. CRS: The predicted rating r̂u,i = 4 if the true rating
ru,i ≥ 4. Otherwise, the predicted rating r̂u,i = 3.

We model the MNAR effect where higher ratings are more
likely to be observed on YAHOO (Schnabel et al., 2016).
We define the true propensity pu,i = p when the true rating
ru,i = 5, and pu,i = pαmin(4,6−ru,i) otherwise. We obtain
an instance of O by sampling for each entry an observation
indicator ou,i from a Bernoulli distribution with probability
pu,i. We control the MNAR effect by varying α and p and
set their values so that the expected rating sparsity is 5%.
To produce a rating distribution of observed ratings that
reasonably matches the observed MNAR rating distribution
on YAHOO, we set α = 0.5 in all experiments.

We simulate error imputation of varying inaccuracies using
the heuristic imputation. By varying ω ∈ [0, 1], we vary
the inaccuracy of imputed errors: as ω goes to 0, the im-
puted errors usually become less accurate. We compute
the values of ω and γ by

∑
D êu,i =

∑
D
ou,ieu,i

p̂u,i
and

γ = 1
|D|
∑
D
ou,iru,i

p̂u,i
, unless otherwise stated.

We also simulate propensity estimation of varying inaccura-
cies. We obtain the propensities by 1

p̂u,i
= 1−β

pu,i
+ β

pe
and

pe = 1
|D|
∑
D ou,i. We vary the inaccuracy of the propensi-

ties by varying β ∈ [0, 1]. We obtain similar results when
varying β and set β = 0.5, unless otherwise specified.
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Table 5: Bias and standard deviation in terms of percentage over the
prediction inaccuracy under MSE. DR is the proposed estimator.

EIB IPS SNIPS NCIS DR

ONE 22.8±1.8 20.7±1.8 20.7±1.8 26.0±1.7 9.9±0.9
FOUR 64.5±1.7 66.8±1.8 66.8±1.8 84.0±1.8 24.1±0.6
ROT 18.4±0.3 18.5±0.3 18.5±0.2 23.1±0.2 10.3±0.2
SKEW 15.7±0.5 14.8±0.7 14.9±0.5 17.8±0.4 10.1±0.3
CRS 18.6±0.3 16.1±0.5 16.2±0.3 20.7±0.2 9.0±0.1

Bias and Standard Deviation. We compare our DR esti-
mator with the EIB, IPS, SNIPS, and NCIS (the propensi-
ties are clipped to (0, 1

40 ]) estimators (Gilotte et al., 2018).
We first use the estimators to estimate the prediction inac-
curacy of the five prediction matrices for the given level of
error imputation and propensity estimation inaccuracies. We
compute the bias and standard deviation of the estimators
using 50 instances of the indicator matrix. The results in
terms of the percentage over the prediction inaccuracy un-
der MSE are shown in Table 5 (see appendix for the results
under MAE). We can see that the DR estimator achieves the
smallest bias with the lowest standard deviation.

In the last set of experiments, we study how the inaccuracies
of imputed errors and propensities affect the bias of the esti-
mators. We compute the bias with root mean squared error
(RMSE) over the five prediction matrices and 50 instances
of the indicator matrix (Schnabel et al., 2016).

Inaccurate Imputation. We study the bias of the EIB and
DR estimators when varying the inaccuracy of imputed er-
rors ω ∈ [0, 1]. The DR estimator only uses a small number
(50) of MAR ratings to learn propensities via naive bayes.
As shown in Figure 5a, the DR estimator is consistently less
biased than the EIB estimator, especially when the imputed
errors are severely inaccurate, e.g., ω = 0.

Inaccurate Propensities. We study the bias of the EIB and
SNIPS (the best baseline) estimators when varying the inac-
curacy of propensities β ∈ [0, 1]. Figure 5b shows that the
bias of the SNIPS estimator increases rapidly as β goes to 1.
The bias of the DR estimator increases gradually because
the DR estimator uses relatively accurate imputed errors to
reduce the bias caused by the deteriorated propensities.

6 Related Work

Doubly robust approaches are first proposed in statistical
inference (Benkeser et al., 2017; Morgan & Winship, 2015)
and are used in online advertising (Chan et al., 2010; Raeder
et al., 2012) and reinforcement learning (Dudı́k et al., 2011;
Farajtabar et al., 2018). These studies differ from ours in
that: (1) They do not employ doubly robust estimators as
training losses while we do, which is challenging since using
an imputation model may hurt the prediction inaccuracy; (2)
They only have rewards that reveal part of target variables
while we have target variables to learn, which gives our
approach a rigorous performance guarantee. Doubly robust
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Figure 5: Bias of varying imputation and propensity inaccuracies.

approaches are also applied to recommender systems for
bias-variance tradeoff in offline evaluation (Gilotte et al.,
2018). This recent work bases its theoretical analyses on
the assumption that the propensities are accurate. We do not
require such a strong assumption and theoretically analyze
how inaccurate propensities impact the bias and tail bound.

Most debiasing approaches for recommendation rely on
a single missing data model (Marlin et al., 2007; Steck,
2013). We integrate two missing data models in a doubly
robust way such that our approach is less affected by the
mis-specification of the missing data models.

Prior studies show the benefit of joint learning of classifi-
cation and imputation models (Van Esbroeck et al., 2014).
Unlike these studies, we weight the joint learning with the
propensities to make our approach robust to inaccuracy im-
putation models. Compared with the expectation maximiza-
tion (EM) approach (Dempster et al., 1977), our approach
also alternates between imputing missing data and updating
model parameters but does not require to take expectation.

Also related to the studied rating prediction problem is the
item ranking problem, which aims to optimize ranking met-
rics (He et al., 2017; Wang et al., 2018c). Both rating pre-
diction and item ranking problems are widely studied (He
et al., 2016; Zhao et al., 2019). Recent studies show that
the accuracy of item ranking can also suffer from various
biases (Ai et al., 2018). These studies are orthogonal to our
work and our approach can be adapted to item ranking by
building on pointwise learning-to-rank (Liu et al., 2009).

7 Conclusions

We proposed a principled approach to handle missing not at
random data for recommendation. First, we proposed a dou-
bly robust estimator, which achieves double robustness by
using both imputed errors and propensities to estimate the
prediction inaccuracy. Next, we proposed a joint learning
approach, which learns rating prediction and error impu-
tation jointly to guarantee a low prediction inaccuracy at
inference time. We conducted extensive experiments on four
real-world datasets. The results showed that our approach
outperforms the state-of-the-art in rating prediction. The
results also showed that the proposed estimator significantly
reduces the bias of estimating the prediction inaccuracy.
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