Supplementary Material for AdaGrad Stepsizes: Sharp Convergence Over Nonconvex Landscapes

A. The Proof of Second Bound in Theorem 2.2

First, observe with probability $1-\delta^{\prime}$ that

$$
\sum_{i=0}^{N-1}\left\|\nabla F_{i}-G_{i}\right\|^{2} \leq \frac{N \sigma}{\delta^{\prime}}
$$

Let $Z=\sum_{k=0}^{N-1}\left\|\nabla F_{k}\right\|^{2}$, then

$$
\begin{aligned}
& b_{N-1}^{2}+\left\|\nabla F_{N-1}\right\|^{2}+\sigma^{2} \\
= & b_{0}^{2}+\sum_{i=0}^{N-2}\left\|G_{i}\right\|^{2}+\left\|\nabla F_{N-1}\right\|^{2}+\sigma^{2} \\
\leq & b_{0}^{2}+2 \sum_{i=0}^{N-1}\left\|\nabla F_{i}\right\|^{2}+2 \sum_{i=0}^{N-2}\left\|\nabla F_{i}-G_{i}\right\|^{2}+\sigma^{2} \\
\leq & b_{0}^{2}+2 Z+2 N \frac{\sigma^{2}}{\delta^{\prime}}
\end{aligned}
$$

In addition, from equality (10), i,e,

$$
\mathbb{E}\left[\frac{\sum_{k=0}^{N-1}\left\|\nabla F_{k}\right\|^{2}}{2 \sqrt{b_{N-1}^{2}+\left\|\nabla F_{N-1}\right\|^{2}+\sigma^{2}}}\right] \leq \frac{F_{0}-F^{*}}{\eta}+\frac{4 \sigma+\eta L}{2} \log \left(10+\frac{20 N\left(\sigma^{2}+\gamma^{2}\right)}{b_{0}^{2}}\right) \triangleq \mathcal{Q}
$$

we have with probability $1-\hat{\delta}-\delta^{\prime}$ that

$$
\begin{aligned}
\frac{\mathcal{Q}}{\hat{\delta}} & \geq \frac{\sum_{k=0}^{N-1}\left\|\nabla F_{k}\right\|^{2}}{2 \sqrt{b_{N-1}^{2}+\left\|\nabla F_{N-1}\right\|^{2}+\sigma^{2}}} \\
& \geq \frac{Z}{2 \sqrt{b_{0}^{2}+2 Z+2 N \sigma^{2} / \delta^{\prime}}}
\end{aligned}
$$

That is equivalent to solve the following quadratic equation

$$
Z^{2}-\frac{8 \mathcal{Q}^{2}}{\hat{\delta}^{2}} Z-\frac{4 \mathcal{Q}^{2}}{\hat{\delta}^{2}}\left(b_{0}^{2}+\frac{2 N \sigma^{2}}{\delta^{\prime}}\right) \leq 0
$$

which gives

$$
\begin{aligned}
Z & \leq \frac{4 \mathcal{Q}^{2}}{\hat{\delta}^{2}}+\sqrt{\frac{16 \mathcal{Q}^{4}}{\hat{\delta}^{4}}+\frac{4 \mathcal{Q}^{2}}{\hat{\delta}^{2}}\left(b_{0}^{2}+\frac{2 N \sigma^{2}}{\delta^{\prime}}\right)} \\
& \leq \frac{8 \mathcal{Q}^{2}}{\hat{\delta}^{2}}+\frac{2 \mathcal{Q}}{\hat{\delta}}\left(b_{0}+\frac{\sqrt{2 N} \sigma}{\sqrt{\delta^{\prime}}}\right)
\end{aligned}
$$

Let $\hat{\delta}=\delta^{\prime}=\frac{\delta}{2}$. Replacing Z with $\sum_{k=0}^{N-1}\left\|\nabla F_{k}\right\|^{2}$ and dividing both side with N we have with probability $1-\delta$

$$
\min _{k \in[N-1]}\left\|\nabla F_{k}\right\|^{2} \leq \frac{4 \mathcal{Q}}{N \delta}\left(\frac{8 \mathcal{Q}}{\delta}+2 b_{0}\right)+\frac{8 \mathcal{Q} \sigma}{\delta^{3 / 2} \sqrt{N}}
$$

A. Tables

Table 1: Statistics of data sets. DIM is the dimension of a sample

DATASET	Train	Test	Classes	Dim
MNIST	60,000	10,000	10	28×28
CIFAR-10	50,000	10,000	10	32×32
ImAGENET	$1,281,167$	50,000	1000	VARIOUS

Table 2: Architecture for five-layer neural network (LeNet)

LAYER TYPE	CHANNELS	OUT DIMENSION
5×5 CONV RELU	6	28
2×2 MAX POOL, STR. 2	6	14
5×5 CONV RELU	16	10
2×2 MAX POOL, STR. 2	6	5
FC RELU	N/A	120
FC RELU	N/A	84
FC RELU	N/A	10

B. Implementing the Algorithm in a Neural Network

In this section, we give the details for implementing our algorithm in a neural network. In the standard neural network architecture, the computation of each neuron consists of an elementwise nonlinearity of a linear transform of input features or output of previous layer:

$$
\begin{equation*}
y=\phi(\langle w, x\rangle+b) \tag{11}
\end{equation*}
$$

where w is the d-dimensional weight vector, b is a scalar bias term, x, y are respectively a d-dimensional vector of input features (or output of previous layer) and the output of current neuron, $\phi(\cdot)$ denotes an elementwise nonlinearity.

For fully connected layer, the stochastic gradient G in Algorithm 1 represents the gradient of the current neuron (see the green curve, Figure 5. Thus, when implementing our algorithm in PyTorch, AdaGrad-Norm is one learning rate associated to one neuron for fully connected layer, while SGD has one learning rate for all neurons.

For convolutional layer, the stochastic gradient G in Algorithms 1 represents the gradient of each channel in the neuron. For instance, there are 6 learning rates for the first layer in the LeNet architecture (Table 1). Thus, AdaGrad Norm is one learning rate associated to one channel for convolutional layer .

Figure 5: An example of backproporgation of two hidden layers. Green edges represent the stochastic gradient G in Algorithm 1

C. Proof of Theorem 2.2

We will use the following lemma to argue that after an initial number of steps $N=\left\lceil\frac{(\eta L)^{2}-b_{0}^{2}}{\varepsilon}\right\rceil+1$, either we have already reached a point x_{k} such that $\left\|\nabla F\left(x_{k}\right)\right\|^{2} \leq \varepsilon$, or else $b_{N} \geq \eta L$.
Lemma C.1. Fix $\varepsilon \in(0,1]$ and $L>0$. For any non-negative a_{0}, a_{1}, \ldots, the dynamical system

$$
b_{0}>0 ; \quad b_{j+1}^{2}=b_{j}^{2}+a_{j}
$$

has the property that after $N=\left\lceil\frac{(\eta L)^{2}-b_{0}^{2}}{\varepsilon}\right\rceil+1$ iterations, either $\min _{k=0: N-1} a_{k} \leq \varepsilon$, or $b_{N} \geq \eta L$.
Proof. If $b_{0} \geq \eta L$, we are done. Else, let N be the smallest integer such that $N \geq \frac{(\eta L)^{2}-b_{0}^{2}}{\varepsilon}$ and suppose $b_{N}<\eta L$. Then

$$
(\eta L)^{2}>b_{N}^{2}=b_{0}^{2}+\sum_{k=0}^{N-1} a_{k}
$$

which implies $\sum_{k=0}^{N-1} a_{k} \leq(\eta L)^{2}-b_{0}^{2}$ and hence, for $N \geq \frac{(\eta L)^{2}-b_{0}^{2}}{\varepsilon}$,

$$
\min _{k=0: N-1} a_{k} \leq \frac{1}{N} \sum_{k=0}^{N-1} a_{k} \leq \frac{(\eta L)^{2}-b_{0}^{2}}{N} \leq \varepsilon
$$

The following LemmaC. 2 guarantees that the sequence b_{0}, b_{1}, \ldots converges to a finite limit $b_{\max }>0$ and that $b_{\text {max }}$ cannot be much larger than $2 L+C$ where C depends on initialization.
Lemma C.2. Suppose $F \in C_{L}^{1}$ and $F^{*}=\inf _{x} F(x)>-\infty$. Denote by $k_{0} \geq 1$ the first index such that $b_{k_{0}} \geq \eta L$. Then for all $k \geq k_{0}$,

$$
\begin{equation*}
b_{k} \leq b_{k_{0}-1}+2\left(F\left(x_{k_{0}-1}\right)-F^{*}\right) / \eta \tag{12}
\end{equation*}
$$

and moreover,

$$
\begin{equation*}
F\left(x_{k_{0}-1}\right)-F^{*} \leq F\left(x_{0}\right)-F^{*}+\frac{\eta^{2} L}{2}\left(1+2 \log \frac{b_{k_{0}-1}}{b_{0}}\right) \tag{13}
\end{equation*}
$$

Proof. Suppose $k_{0} \geq 1$ is the first index such that $b_{k_{0}} \geq \eta L$. Then $b_{j} \geq \eta L$ for all $j \geq k_{0}$, and by Lemma 3.1, for $j \geq 0$,

$$
\begin{align*}
F\left(x_{k_{0}+j}\right) & \leq F\left(x_{k_{0}+j-1}\right)-\frac{\eta}{b_{k_{0}+j}}\left(1-\frac{\eta L}{2 b_{k_{0}+j}}\right)\left\|\nabla F\left(x_{k_{0}+j-1}\right)\right\|^{2} \\
& \leq F\left(x_{k_{0}+j-1}\right)-\frac{\eta}{2 b_{k_{0}+j}}\left\|\nabla F\left(x_{k_{0}+j-1}\right)\right\|^{2} \\
& \leq F\left(x_{k_{0}-1}\right)-\sum_{\ell=0}^{j} \frac{\eta}{2 b_{k_{0}+\ell}}\left\|\nabla F\left(x_{k_{0}+\ell-1}\right)\right\|^{2} \tag{14}
\end{align*}
$$

Taking $j \rightarrow \infty$,

$$
\sum_{\ell=0}^{\infty} \frac{\left\|\nabla F\left(x_{k_{0}+\ell-1}\right)\right\|^{2}}{b_{k_{0}+\ell}} \leq 2\left(F\left(x_{k_{0}-1}\right)-F^{*}\right) / \eta
$$

Since the AdaGrad update can be equivalently written as

$$
b_{j}=b_{j-1}+\frac{\left\|\nabla F\left(x_{j-1}\right)\right\|^{2}}{b_{j}+b_{j-1}}
$$

we find that

$$
\begin{equation*}
b_{k_{0}+j} \leq b_{k_{0}-1}+\sum_{\ell=0}^{j} \frac{\left\|\nabla F\left(x_{k_{0}+\ell-1}\right)\right\|^{2}}{b_{k_{0}+\ell}} \leq b_{k_{0}-1}+2\left(F\left(x_{k_{0}-1}\right)-F^{*}\right) / \eta \tag{15}
\end{equation*}
$$

As for the upper bound of $F\left(x_{k_{0}-1}\right)$, we invoke the Descent Lemma again, and have

$$
\begin{align*}
F\left(x_{k_{0}-1}\right)-F\left(x_{0}\right) & \leq \frac{\eta^{2} L}{2} \sum_{i=0}^{k_{0}-2} \frac{\left\|\nabla F\left(x_{i}\right)\right\|^{2}}{b_{i+1}^{2}} \tag{16}\\
& \leq \frac{\eta^{2} L}{2} \sum_{i=0}^{k_{0}-2} \frac{\left(\left\|\nabla F\left(x_{i}\right)\right\| / b_{0}\right)^{2}}{\sum_{\ell=0}^{i}\left(\left\|\nabla F\left(x_{\ell}\right)\right\| / b_{0}\right)^{2}+1} \\
& \leq \frac{\eta^{2} L}{2}\left(1+\log \left(1+\sum_{\ell=0}^{k_{0}-2} \frac{\left\|\nabla F\left(x_{\ell}\right)\right\|^{2}}{b_{0}^{2}}\right)\right) \\
& \leq \frac{\eta^{2} L}{2}\left(1+\log \left(\frac{b_{k_{0}-1}^{2}}{b_{0}^{2}}\right)\right)
\end{align*}
$$

where third step uses Lemma 3.2

C.1. Proof of Theorem 2.2

Proof. By LemmaC.1 if $\min _{k=0: N-1}\left\|\nabla F\left(x_{k}\right)\right\|^{2} \leq \varepsilon$ is not satisfied after $N=\left\lceil\frac{(\eta L)^{2}-b_{0}^{2}}{\varepsilon}\right\rceil+1$ steps, then there is a first index $k_{0} \leq N$ such that $b_{k_{0}}>\eta L$. By LemmaC.2, for all $k \geq k_{0}$,

$$
b_{k} \leq b_{k_{0}-1}+2\left(F\left(x_{k_{0}-1}\right)-F^{*}\right) / \eta
$$

If $k_{0}=1$, it follows from (14) that

$$
\begin{equation*}
F\left(x_{M}\right) \leq F\left(x_{0}\right)-\frac{\eta \sum_{k=0}^{M-1}\left\|\nabla F\left(x_{k}\right)\right\|^{2}}{2\left(b_{0}+2\left(F\left(x_{0}\right)-F^{*}\right) / \eta\right)} \tag{17}
\end{equation*}
$$

and thus the stated result holds straightforwardly.
Otherwise, if $k_{0}>1$, then set

$$
\begin{equation*}
b_{\max }=b_{k_{0}-1}+2\left(F\left(x_{k_{0}-1}\right)-F^{*}\right) / \eta \tag{18}
\end{equation*}
$$

By Lemma 3.1, for any $M \geq 1$,

$$
\begin{aligned}
F\left(x_{k_{0}+M}\right) & \leq F\left(x_{k_{0}+M-1}\right)-\frac{\eta}{2 b_{k_{0}+M}}\left\|\nabla F\left(x_{k_{0}+M-1}\right)\right\|^{2} \\
& \leq F\left(x_{k_{0}+M-1}\right)-\frac{\eta}{2 b_{\max }}\left\|\nabla F\left(x_{k_{0}+M-1}\right)\right\|^{2} \\
& \leq F\left(x_{k_{0}-1}\right)-\frac{\eta}{2 b_{\max }} \sum_{\ell=0}^{M-1}\left\|\nabla F\left(x_{k_{0}+\ell}\right)\right\|^{2} .
\end{aligned}
$$

Thus,

$$
\begin{align*}
\min _{\ell=0: M-1}\left\|\nabla F\left(x_{k_{0}+\ell}\right)\right\|^{2} & \leq \frac{1}{M} \sum_{\ell=0}^{M-1}\left\|\nabla F\left(x_{k_{0}+\ell}\right)\right\|^{2} \\
& \leq \frac{2 b_{\max }\left(F\left(x_{k_{0}-1}\right)-F^{*}\right)}{\eta M} \\
& =\frac{2\left(\eta b_{k_{0}-1}+2\left(F\left(x_{k_{0}-1}\right)-F^{*}\right)\right)\left(F\left(x_{k_{0}-1}\right)-F^{*}\right)}{\eta^{2} M} \\
& \leq \frac{4\left(F\left(x_{k_{0}-1}\right)-F^{*}+\frac{\eta b_{k_{0}-1}}{4}\right)^{2}}{\eta^{2} M} \tag{19}
\end{align*}
$$

By LemmaC.2, we have

$$
b_{k_{0}-1} \leq \eta L, \quad \text { and } \quad F\left(x_{k_{0}-1}\right)-F^{*} \leq F\left(x_{0}\right)-F^{*}+\frac{\eta^{2} L}{2}\left(1+2 \log \frac{\eta L}{b_{0}}\right)
$$

Thus, once

$$
M \geq \frac{4\left(\left(F\left(x_{0}\right)-F^{*}\right) / \eta+\left(\frac{3}{4}+\log \frac{\eta L}{b_{0}}\right) \eta L\right)^{2}}{\varepsilon}
$$

we are assured that

$$
\min _{k=0: N+M-1}\left\|\nabla F\left(x_{k}\right)\right\|^{2} \leq \varepsilon
$$

where $N \leq \frac{L^{2}-b_{0}^{2}}{\varepsilon}$.

