Supplementary Material for AdaGrad Stepsizes: Sharp Convergence Over Nonconvex Landscapes

A. The Proof of Second Bound in Theorem 2.2

First, observe with probability $1 - \delta'$ that

$$\sum_{i=0}^{N-1} \|\nabla F_i - G_i\|^2 \le \frac{N\sigma}{\delta'}.$$

Let $Z = \sum_{k=0}^{N-1} \|\nabla F_k\|^2$, then

$$b_{N-1}^{2} + \|\nabla F_{N-1}\|^{2} + \sigma^{2}$$

= $b_{0}^{2} + \sum_{i=0}^{N-2} \|G_{i}\|^{2} + \|\nabla F_{N-1}\|^{2} + \sigma^{2}$
 $\leq b_{0}^{2} + 2\sum_{i=0}^{N-1} \|\nabla F_{i}\|^{2} + 2\sum_{i=0}^{N-2} \|\nabla F_{i} - G_{i}\|^{2} + \sigma^{2}$
 $\leq b_{0}^{2} + 2Z + 2N \frac{\sigma^{2}}{\delta'}$

In addition, from equality (10), i,e,

$$\mathbb{E}\left[\frac{\sum_{k=0}^{N-1} \|\nabla F_k\|^2}{2\sqrt{b_{N-1}^2 + \|\nabla F_{N-1}\|^2 + \sigma^2}}\right] \le \frac{F_0 - F^*}{\eta} + \frac{4\sigma + \eta L}{2} \log\left(10 + \frac{20N\left(\sigma^2 + \gamma^2\right)}{b_0^2}\right) \triangleq \mathcal{Q}$$

we have with probability $1-\hat{\delta}-\delta'$ that

$$\begin{aligned} \frac{\mathcal{Q}}{\hat{\delta}} &\geq \frac{\sum_{k=0}^{N-1} \|\nabla F_k\|^2}{2\sqrt{b_{N-1}^2 + \|\nabla F_{N-1}\|^2 + \sigma^2}} \\ &\geq \frac{Z}{2\sqrt{b_0^2 + 2Z + 2N\sigma^2/\delta'}} \end{aligned}$$

That is equivalent to solve the following quadratic equation

$$Z^{2} - \frac{8\mathcal{Q}^{2}}{\hat{\delta}^{2}}Z - \frac{4\mathcal{Q}^{2}}{\hat{\delta}^{2}}\left(b_{0}^{2} + \frac{2N\sigma^{2}}{\delta'}\right) \leq 0$$

which gives

$$Z \leq \frac{4\mathcal{Q}^2}{\hat{\delta}^2} + \sqrt{\frac{16\mathcal{Q}^4}{\hat{\delta}^4} + \frac{4\mathcal{Q}^2}{\hat{\delta}^2} \left(b_0^2 + \frac{2N\sigma^2}{\delta'}\right)}$$
$$\leq \frac{8\mathcal{Q}^2}{\hat{\delta}^2} + \frac{2\mathcal{Q}}{\hat{\delta}} \left(b_0 + \frac{\sqrt{2N}\sigma}{\sqrt{\delta'}}\right)$$

Let $\hat{\delta} = \delta' = \frac{\delta}{2}$. Replacing Z with $\sum_{k=0}^{N-1} \|\nabla F_k\|^2$ and dividing both side with N we have with probability $1 - \delta$

$$\min_{k \in [N-1]} \|\nabla F_k\|^2 \le \frac{4\mathcal{Q}}{N\delta} \left(\frac{8\mathcal{Q}}{\delta} + 2b_0\right) + \frac{8\mathcal{Q}\sigma}{\delta^{3/2}\sqrt{N}}.$$

A. Tables

DATASET	TRAIN	TEST	CLASSES	Dim
MNIST	60,000	$10,000 \\ 10,000 \\ 50,000$	10	28×28
CIFAR-10	50,000		10	32×32
ImageNet	1,281,167		1000	Various

Table 1: Statistics of data sets. DIM is the dimension of a sample

Table 2: Architecture for five-layer neural network (LeNet)

LAYER TYPE	CHANNELS	OUT DIMENSION
5 imes 5 conv relu	6	28
2×2 max pool, str.2	6	14
5 imes 5 conv relu	16	10
2×2 max pool, str.2	6	5
FC RELU	N/A	120
FC RELU	N/A	84
FC RELU	N/A	10

B. Implementing the Algorithm in a Neural Network

In this section, we give the details for implementing our algorithm in a neural network. In the standard neural network architecture, the computation of each neuron consists of an elementwise nonlinearity of a linear transform of input features or output of previous layer:

$$y = \phi(\langle w, x \rangle + b), \tag{11}$$

where w is the d-dimensional weight vector, b is a scalar bias term, x, y are respectively a d-dimensional vector of input features (or output of previous layer) and the output of current neuron, $\phi(\cdot)$ denotes an elementwise nonlinearity.

For fully connected layer, the stochastic gradient G in Algorithm 1 represents the gradient of the current neuron (see the green curve, Figure 5). Thus, when implementing our algorithm in PyTorch, AdaGrad-Norm is one learning rate associated to one neuron for fully connected layer, while SGD has one learning rate for all neurons.

For convolutional layer, the stochastic gradient G in Algorithms 1 represents the gradient of each channel in the neuron. For instance, there are 6 learning rates for the first layer in the LeNet architecture (Table 1). Thus, AdaGrad Norm is one learning rate associated to one channel for convolutional layer.

Figure 5: An example of backproporgation of two hidden layers. Green edges represent the stochastic gradient G in Algorithm 1

C. Proof of Theorem 2.2

We will use the following lemma to argue that after an initial number of steps $N = \lceil \frac{(\eta L)^2 - b_0^2}{\varepsilon} \rceil + 1$, either we have already reached a point x_k such that $\|\nabla F(x_k)\|^2 \le \varepsilon$, or else $b_N \ge \eta L$.

Lemma C.1. Fix $\varepsilon \in (0, 1]$ and L > 0. For any non-negative a_0, a_1, \ldots , the dynamical system

$$b_0 > 0;$$
 $b_{j+1}^2 = b_j^2 + a_j$

has the property that after $N = \lceil \frac{(\eta L)^2 - b_0^2}{\varepsilon} \rceil + 1$ iterations, either $\min_{k=0:N-1} a_k \leq \varepsilon$, or $b_N \geq \eta L$.

Proof. If $b_0 \ge \eta L$, we are done. Else, let N be the smallest integer such that $N \ge \frac{(\eta L)^2 - b_0^2}{\varepsilon}$ and suppose $b_N < \eta L$. Then

$$(\eta L)^2 > b_N^2 = b_0^2 + \sum_{k=0}^{N-1} a_k.$$

which implies $\sum_{k=0}^{N-1} a_k \leq (\eta L)^2 - b_0^2$ and hence, for $N \geq \frac{(\eta L)^2 - b_0^2}{\varepsilon}$,

$$\min_{k=0:N-1} a_k \le \frac{1}{N} \sum_{k=0}^{N-1} a_k \le \frac{(\eta L)^2 - b_0^2}{N} \le \varepsilon.$$

	_
L	_

The following Lemma C.2 guarantees that the sequence b_0, b_1, \ldots converges to a finite limit $b_{\max} > 0$ and that b_{\max} cannot be much larger than 2L + C where C depends on initialization.

Lemma C.2. Suppose $F \in C_L^1$ and $F^* = \inf_x F(x) > -\infty$. Denote by $k_0 \ge 1$ the first index such that $b_{k_0} \ge \eta L$. Then for all $k \ge k_0$,

$$b_k \le b_{k_0-1} + 2(F(x_{k_0-1}) - F^*)/\eta$$
(12)

and moreover,

$$F(x_{k_0-1}) - F^* \le F(x_0) - F^* + \frac{\eta^2 L}{2} \left(1 + 2\log\frac{b_{k_0-1}}{b_0} \right).$$
(13)

Proof. Suppose $k_0 \ge 1$ is the first index such that $b_{k_0} \ge \eta L$. Then $b_j \ge \eta L$ for all $j \ge k_0$, and by Lemma 3.1, for $j \ge 0$,

$$F(x_{k_0+j}) \leq F(x_{k_0+j-1}) - \frac{\eta}{b_{k_0+j}} (1 - \frac{\eta L}{2b_{k_0+j}}) \|\nabla F(x_{k_0+j-1})\|^2$$

$$\leq F(x_{k_0+j-1}) - \frac{\eta}{2b_{k_0+j}} \|\nabla F(x_{k_0+j-1})\|^2$$

$$\leq F(x_{k_0-1}) - \sum_{\ell=0}^j \frac{\eta}{2b_{k_0+\ell}} \|\nabla F(x_{k_0+\ell-1})\|^2.$$
(14)

Taking $j \to \infty$,

$$\sum_{\ell=0}^{\infty} \frac{\|\nabla F(x_{k_0+\ell-1})\|^2}{b_{k_0+\ell}} \le 2(F(x_{k_0-1}) - F^*)/\eta$$

Since the AdaGrad update can be equivalently written as

$$b_j = b_{j-1} + \frac{\|\nabla F(x_{j-1})\|^2}{b_j + b_{j-1}},$$

we find that

$$b_{k_0+j} \le b_{k_0-1} + \sum_{\ell=0}^{j} \frac{\|\nabla F(x_{k_0+\ell-1})\|^2}{b_{k_0+\ell}} \le b_{k_0-1} + 2(F(x_{k_0-1}) - F^*)/\eta$$
(15)

As for the upper bound of $F(x_{k_0-1})$, we invoke the Descent Lemma again, and have

$$F(x_{k_0-1}) - F(x_0) \leq \frac{\eta^2 L}{2} \sum_{i=0}^{k_0-2} \frac{\|\nabla F(x_i)\|^2}{b_{i+1}^2}$$

$$\leq \frac{\eta^2 L}{2} \sum_{i=0}^{k_0-2} \frac{(\|\nabla F(x_i)\|/b_0)^2}{\sum_{\ell=0}^i (\|\nabla F(x_\ell)\|/b_0)^2 + 1}$$

$$\leq \frac{\eta^2 L}{2} \left(1 + \log\left(1 + \sum_{\ell=0}^{k_0-2} \frac{\|\nabla F(x_\ell)\|^2}{b_0^2}\right) \right)$$

$$\leq \frac{\eta^2 L}{2} \left(1 + \log\left(\frac{b_{k_0-1}^2}{b_0^2}\right) \right)$$
(16)

where third step uses Lemma 3.2.

C.1. Proof of Theorem 2.2

Proof. By Lemma C.1, if $\min_{k=0:N-1} \|\nabla F(x_k)\|^2 \le \varepsilon$ is not satisfied after $N = \lceil \frac{(\eta L)^2 - b_0^2}{\varepsilon} \rceil + 1$ steps, then there is a first index $k_0 \le N$ such that $b_{k_0} > \eta L$. By Lemma C.2, for all $k \ge k_0$,

$$b_k \le b_{k_0-1} + 2(F(x_{k_0-1}) - F^*)/\eta.$$

If $k_0 = 1$, it follows from (14) that

$$F(x_M) \le F(x_0) - \frac{\eta \sum_{k=0}^{M-1} \|\nabla F(x_k)\|^2}{2(b_0 + 2(F(x_0) - F^*)/\eta)}$$
(17)

and thus the stated result holds straightforwardly.

Otherwise, if $k_0 > 1$, then set

$$b_{\max} = b_{k_0-1} + 2(F(x_{k_0-1}) - F^*)/\eta.$$
(18)

By Lemma 3.1, for any $M \ge 1$,

$$F(x_{k_0+M}) \leq F(x_{k_0+M-1}) - \frac{\eta}{2b_{k_0+M}} \|\nabla F(x_{k_0+M-1})\|^2$$

$$\leq F(x_{k_0+M-1}) - \frac{\eta}{2b_{\max}} \|\nabla F(x_{k_0+M-1})\|^2$$

$$\leq F(x_{k_0-1}) - \frac{\eta}{2b_{\max}} \sum_{\ell=0}^{M-1} \|\nabla F(x_{k_0+\ell})\|^2.$$

Thus,

$$\min_{\ell=0:M-1} \|\nabla F(x_{k_0+\ell})\|^2 \leq \frac{1}{M} \sum_{\ell=0}^{M-1} \|\nabla F(x_{k_0+\ell})\|^2
\leq \frac{2b_{\max}(F(x_{k_0-1}) - F^*)}{\eta M}
= \frac{2(\eta b_{k_0-1} + 2(F(x_{k_0-1}) - F^*))(F(x_{k_0-1}) - F^*)}{\eta^2 M}
\leq \frac{4\left(F(x_{k_0-1}) - F^* + \frac{\eta b_{k_0-1}}{4}\right)^2}{\eta^2 M}$$
(19)

By Lemma C.2, we have

$$b_{k_0-1} \le \eta L$$
, and $F(x_{k_0-1}) - F^* \le F(x_0) - F^* + \frac{\eta^2 L}{2} \left(1 + 2\log\frac{\eta L}{b_0}\right)$.

Thus, once

$$M \ge \frac{4\left((F(x_0) - F^*)/\eta + \left(\frac{3}{4} + \log \frac{\eta L}{b_0}\right)\eta L\right)^2}{\varepsilon},$$

we are assured that

$$\min_{k=0:N+M-1} \|\nabla F(x_k)\|^2 \le \varepsilon$$

where $N \leq \frac{L^2 - b_0^2}{\varepsilon}$.