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7. Some additional discussions
We would like to make a few more comments on the possible future directions based on the current work.

Remark 7.1 (Better computation methods). As is mentioned above, both (11) and (12) are highly nontrivial constrained
non-convex optimization problems. However, in view of the recent progress on the algorithmic convergence of non-convex
phase retrieval, which is closely related to PCA, under a generative model (i.e. (Hand et al., 2018)), it seems reasonable to
ask the question whether or not there also exists a relatively efficient algorithm (approximately) solving the non-convex PCA
under a generative prior and in particular the ReLU generative prior, which has not been answered to the best of authors’
knowledge. We leave this direction for future works.

Remark 7.2 (Weaker moments on score functions). We would like to comment that the subgaussian assumption of the
score function Sp(x). Previously, such an assumption has been adopted, for example, when analyzing non-asymptotic
convergence properties in inverse regression problems (e.g. (Babichev et al., 2018)) and parameter estimation of high
dimensional distributions (e.g. (Han et al., 2018)). In our current scenario, it seems unlikely to drop this assumption for
general G(·) function, because of the necessity of the chaining method. Though it is interesting whether or not one can
obtain a competitive convergence result for specific G(·) functions under weaker moment assumptions. For example, for the
multilayer ReLU function, the proving technique involves only a “one-step chaining” argument, which might be improvable
to work under weaker moments on Sp(x).

8. Proof of results
8.1. Proof of Theorem 3.2

Proof. We start from (13) in the proof of Theorem 3.1. Using Lemma 5.1 with t = G(
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Using the fact that �G(✓⇤) = G(�✓⇤) for ReLU generative function when � > 0, we have G(✓) = G(�✓⇤). Dividing
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To this point, our goal is to bound the supreme of the empirical process on the right hand side. First of all, by symmetrization
inequality (Lemma 11.2), it is enough to bound
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We will then use the piecewise linear structure of the ReLU function. Note that the ReLU network has n layers with each
layer having at most d nodes, where each layer of the network is a linear transformation followed by at most d pointwise
nonlinearities. Consider any node in the first layer, which can be written as max{hw,xi, 0} with a weight vector w and an
input vector x, splits the input space Rk into two disjoint pieces, namely P

1

and P
2

, where for any input in P
1

, the node is a
linear mapping hw,xi and for any input in P

2

is the other linear mapping h0,xi.
Thus, each node in the first layer corresponds to a splitting hyperplane in Rk. An induction argument on the number of
hyperplanes shows that d nodes in the first layer can split the input space into at most dk + 1 pieces (See, for example,
(Winder, 1966) for details). For the second layer, we can consider each piece after the first layer, which is a subset of Rk

and will then be further split into at most dk + 1 pieces. Thus, we will get at most (dk + 1)

2 pieces after the second layer.
Continuing this argument through all n layers and we have the input space Rk is split into at most (dk + 1)

n  (2d)kn

pieces, where within each piece the function G(·) is simply a linear transformation from Rk to Rd.
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Now, we consider any two pieces, namely P
1

, P
2

✓ Rk, from the aforementioned collection of pieces, and aim at bounding
the following quantity:
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By the previous argument, we know that within P
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and P
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, the function G(·) can simply be represented by some fixed linear
maps W
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sup

t12P1,t22P2

�

�

1

m

Pm
i=1

"ieyihSp(xi),W1

t
1

�W
2

t
2

i��
kW

1

t
1

�W
2

t
2

k
2

 sup

t1, t22Rk

�

�

1

m

Pm
i=1

"ieyihSp(xi),W1

t
1

�W
2

t
2

i��
kW

1

t
1

�W
2

t
2

k
2

 sup

t2R2k

�

�

1

m

Pm
i=1

"ieyihSp(xi),W0

ti��
kW

0

tk
2

,

where W
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], and the last inequality follows from concatenating t
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expanding the set to take supremum over t 2 R2k. Let E
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To bound the supremum, we consider a 1/2-covering net of the set E2k \ Sd�1, namely, N (E2k \ Sd�1, 1/2). A simple
volume argument shows that the cardinality |N (E2k\Sd�1, 1/2)|  3

2k. Using Lemma 9.1 with � = ⌘+4k+2kn log(2d),
and taking a union bound over the covering net, we get with probability at least
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the following holds,4
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Let PN (·) be the projection of any point in E2k \ Sd�1 onto N (E2k \ Sd�1, 1/2). we have
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where the second equality follows from the definition of 1

2

-covering net. Combining the above bound with (20) gives with
probability at least 1� e�⌘�2kn log(2d),
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4We consider only the case ⌘ + 4k + 2kn log(2d) � log(em), and the case ⌘ + 4k + 2kn log(2d) < log(em) is similar.
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where C > 0 is an absolute constant. This further implies with probability at least 1� e�⌘�2kn log(2d),
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Taking a further union bound over all combinations of different P
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pieces, which have at most (2d)2kn possibilities,
implies with probability at least 1� e�⌘
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with probability at least 1� e�� . Overall, we get with probability at least 1� e�� � e�⌘ ,
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which implies the claim.

8.2. Proof of Theorem 4.2

Proof. We start from (17) in the previous proof and use Lemma 5.4 with k log(Lr) replaced by kn log(2d),
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Dividing kG(
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where the second inequality follows from Lemma 11.7. In order to bound the supreme on the right hand side, we recall the
definition (15), (16) of S and S
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"iỹi
�|hG(t

1

), Sp(xi)i|2 � |hG(t
2

), Sp(xi)i|2
�

kG(t
1

)�G(t
2

)k
2

�

�

�

�

�

.

By the same argument as that of Section 8.1 proving Theorem 3.2, we have the ReLU function G split the input space Rk

into at most (dk + 1)

n  (2d)kn pieces, where within each piece the function G(·) is simply a linear transformation from
Rk to Rd.
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Since within P
1

and P
2

, the function G(·) can simply be represented by some fixed linear maps W
1

and W
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, respectively.
As a consequence, it is enough to bound
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the following holds,5

sup

b12N (E2k\Sd�1
(2), 1/2), b22N (E2k\Sd�1,1/4)

�

�

�

�

�

m
X

i=1
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where in the first inequality we use the fact that the second term is bounded by Hm/16, the third and the last terms are both
bounded by Hm/4, which implies Hm satisfies the same bound as (22) (with a different constant C) dividing by m.
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5We consider only the case ⌘ + 4k + 2kn log(2d) � log(em), and the case ⌘ + 4k + 2kn log(2d) < log(em) is similar.
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Recall that ⌧ =
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m
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⌘
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with probability at least 1 � e�� , where the last inequality follows from m � kn log(2d). Next, for the term
maxE2k Qm

�E2k \ Sd�1

(2)

�

1/2, we bound it in Lemma 10.4. Substituting (24) and the bound in Lemma 10.4 with
u =

p
� into (23) and rearranging terms give
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with probability at least 1� e�� � e�⌘ , finishing the proof.

9. Proof of technical lemmas in Section 5.1
9.1. Proof of Lemma 5.1

Proof. First of all, note that |y � ey|  |y| · 1{|y|>⌧}, where 1{|y|>⌧} is an indicator function. Thus, it follows,

|E[yhSp(x), ti � eyhSp(x), ti]|  E[|y � ey| · |hSp(x), ti|]  E
⇥|y| · 1{|y|>⌧} · |hSp(x), ti|

⇤

.

By Cauchy-Schwarz and then Holder’s inequality, we have
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m
,

where the first inequality follows from Markov inequality, the third inequality follows from the fact that �y � kykLq , and
the last inequality follows from q > 4(1 + ). This implies the claim.

9.2. Subgaussian concentration of a multiplier process

The proof of Lemma 5.2 relies on the following key result which provides a subgaussian type concentration for a truncated
heavy-tailed multiplier process.

Lemma 9.1. Under Assumption 3.1 and ỹi = sign(yi)|yi| ^ ⌧ , where ⌧ = m1/2(1+)�y with �y � kykLq ,  2 (0, q
4

� 1)

being any chosen constants, we have for any fixed t, t0 2 Rd and any fixed � � 1, with probability at least 1� exp(��),
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• When log(em)  � < m,
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where, for each of the three cases, C > 1 is an absolute constant.
Remark 9.1. Not that in Lemma 9.1 is not a uniform concentration result since it holds for any single pair (t, t0). However,
the power of this lemma is that it then allows us to take union bound over all (t, t0) before taking care of the heavy-tailed
random variables {ỹi}mi=1

, thereby obtaining a bound of optimal order.

Proof of Lemma 9.1. We separate the proof of three cases:

1. Proof of the first case: Since the quantity � is relatively small, we will just apply Bernstein’s inequality (Lemma 11.1).
First of all, for any integer p � 2, the following holds,

E
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where the second inequality follows from the truncation, the third inequality from Hölder’s inequality, and the last inequality
follows from the following bound: For any p � 4, and any v 2 Rd,
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1/2p  (2p)
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Next, by Stirling’s approximation, p! � p
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Thus, substituting ⌧ = cm1/2(1+)�y and by Bernstein’s inequality, we have with probability at least 1� e�u,
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Now, we take u = �, which gives
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where C is an absolute constant. Since � < log(em), it follows
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which implies the first case of the lemma.

2. Proof of the second case: This case is somewhat more involved. The main difficulty is that simply applying the
truncation bound |ỹ|  ⌧ results a bound looser than subgaussian on probability and suboptimal in terms of number of
samples m. The solution is to refrain from bounding ỹ altogether and consider working on the term hSp(x), t� t0i only,
which is subgaussian anyway. In particular, we will use the Montgomery-Smith inequality (Lemma 11.3) to effectively
separate ỹ from hSp(x), t� t0i.
Let !i = hSp(xi), t� t0i. For any sequence of scalars {Xi}mi=1

, let {X⇤
i }mi=1

is the non-increasing rearrangement of
{|Xi|}mi=1

. Then, in view of (48) in Lemma 11.3, we choose the index set I to be the union of the p largest entries of
{!i}mi=1

and p largest entries of {ỹi}mi=1

, where p is a number to be chosen later. Then, we obtain the following bound with
probability at least 1� exp(�u2/2)
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where r, r0 are conjugate exponents 1

r +
1

r0 = 1, the second inequality follows from Holder’s inequality and the last inequality
follows from the definition of the set I that
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Next, we take u =

p
�, so that the probability matches the statement in the lemma. Now we need to choose an appropriate

cut-off index p. The intuition is that this cut off index should be determined by how large � is, so that the magnitude of the
latter m� p entries in {!⇤

i }mi=1

does not depend on �, which is possible via the fact that they are in lower ordered positions
thus “naturally” small. On the other hand, by the second part of Lemma 11.3, p ⇡ u2

= � makes the decreased ordering
bound close to the infimum. Thus, we will choose p = b�/ log(em/�)c, and choose r = 1 + , r0 = (1 + )/.

In the following, we will bound
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• Bounding the term
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It then follows from Bernstein’s inequality (Lemma 11.1) that for any fixed set J ✓ {1, 2, · · · ,m} with |J | = p,
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where C > 0 is an absolute constant. We choose u = 4�. Since by assumption � � b�/ log(em/�)c = p � 1, the
factor �/p dominates the right hand side. Note that E

⇥
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i

⇤  kSp(xi)k2 2
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2

, we have following bound,
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where the last inequality follows from the setup that p = b�/ log(em/�)c and thus
⇣

em
p

⌘p

 exp(3�), which
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where the second from the last inequality follows from � � 2 log(em/�) due to p � 2.

• Bounding the term
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for any � � 0, where C > 0 is a positive constant. For the rest of the proof in this case, the index i will be dedicated
for non-increasing ordering index, i.e. {!⇤
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Thus, it follows
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Taking a union bound over all indices i gives
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where the second inequality follows from the fact that c =
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is monotonically decreasing with respect to the index i. To bound the probability on the right hand size, we first use the
same argument as (27) along with log(em)  � and get
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This implies with probability at least 1� exp(��),
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for positive constant C 0
= 1 + C.

Finally, substituting (26) and (30) into (39) finishes the second part of the Lemma 9.1.

3. Proof of the third case: By Cauchy-Schwarz inequality, we have
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where !i = hSp(x), t� t0i. Thus, !2

i is sub-exponential with
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we use Bernstein’s inequality again,
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We take u = �. Using the fact that � > m, we have the term �
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for some absolute constant C > 0, which implies the third part of the lemma.

9.3. Uniform concentration over a �-covering net

Using the previous subgaussian concentration result, we can proof the following lemma which gives a uniform bound over a
�-covering net of the set G(Bk

(r)). For the rest of the proof, we use B to denote Bk
(r) for simplicity.

Lemma 9.2. For any � 2 (0, r), let N (�, G(B)) be a �-covering net of the set G(B) with respect to the norm k · k
2

, such
that

log |N (�, G(B))|  2k log(4Lr/�),

where B is the ball in Rk with radius r and c > 0 is an absolute constant. Under Assumption 3.1 and ỹi = sign(yi)|yi| ^ ⌧ ,
where ⌧ = cm1/2(1+)�y , for any ⌘,� � 1, with probability at least 1� e�� � e�⌘ , for any t, t0 2 N (�, G(B)),
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Proof of Lemma 9.2. First of all, we need to show that there does exist a net satisfying the proposed cardinality bound. In
order to construct such a net, let N (�/L,B) be the �/L-covering of the set B ✓ Rk. It is known that there exists a net such
that

log |N (�/L,B)|  k · log(4Lr/�).
Then, due to the L-Lipschitz property of G, the set G(N (�/L,B)) forms a �-net of G(B) with the same cardinality bound.
Thus, we let N (�, G(B)) = G(N (�/L,B)) and it follows

log |N (�, G(B))| = log |G(N (�/L,B))|  k · log(4Lr/�). (31)

To this point, we let � = ⌘ + 4k · log(4Lr/�) and try to apply Lemma 9.1:

• When � + 4k · log(4Lr/�)  log(em), by taking a union bound over all t, t0 2 N (�, G(B)), we have with probability
1� e�⌘ , 8t, t0 2 N (�, G(B)),

�

�

�

�

�

1

m

m
X

i=1

"iỹihSp(xi), t� t0i
�

�

�

�

�

 CkSp(x)k 2�ykt� t0k
2

r

1 + 



r

⌘ + k · log(4Lr/�)
m

.

• When log(em)  ⌘ + 4k · log(4Lr/�)  m, again, taking a union bound over all t, t0 2 N (�, G(B)), we have with
probability 1� e�⌘ , 8t, t0 2 N (�, G(B)),
�

�

�

�

�

1

m

m
X

i=1

"iỹihSp(xi), t� t0i
�

�

�

�

�

 CkSp(x)k 2kt� t0k
2

r

1 + 



r

⌘ + k · log(4Lr/�)
m

·
0

@

 

1

m

m
X

i=1

|ỹi|2
!

1/2

+

 

1

m

m
X

i=1

|eyi|2(1+)
!

1
2(1+)

1

A . (32)

To this point, we apply Bernstein’s inequality again on the two terms
�

1

m

Pm
i=1

|ỹi|2
�

1/2 and
�

1

m

Pm
i=1

|eyi|2(1+)
�

1
2(1+) , respectively:

P
 

1

m

m
X

i=1

|ỹi|2 � E
⇥|ỹ|2⇤ � C

 

r

E[|ỹ|4]�
m

+

⌧2�

m

!!

 e�� , � � 0,

where C > 1 is an absolute constant. Substituting the bound E
⇥|ỹ|4⇤  E

⇥

y4
⇤  kyk4Lq

, E
⇥|ỹ|2⇤  kyk2Lq

, and
⌧ = m1/2(1+)�y gives

 

1

m

m
X

i=1

|ỹi|2
!

1/2

 C�y

✓

1 +

�1/4

m1/4
+

�1/2

m/(1+)

◆

 C
p

�kykLq , (33)

with probability at least 1� e�� for any � � 1. Similarly, we have,

P

0

@

1

m

m
X

i=1

|ỹi|2(1+) � E
h

|ỹ|2(1+)
i

� C

0

@

s

E
⇥|ỹ|4(1+)⇤�

m
+

⌧2(1+)�

m

1

A

1

A  e�� , � � 0.

Recall that ⌧ = m1/2(1+)�y . Thus,
 

1

m

m
X

i=1

|ỹi|2(1+)
!

1/2(1+)

 C�y

✓

1 +

�1/4(1+)

m1/4(1+)
+ �1/2(1+)

◆

, (34)

with probability at least 1� e�� . Overall, substitute (34) and (33) into (32) and use the fact that kykLq  �y , we have
with probability at least 1� e�⌘ � e�� , 8t, t0 2 N (�, G(B)),

�

�

�

�

�

1

m

m
X

i=1

"iỹihSp(xi), t� t0i
�

�

�

�

�

 C�ykSp(x)k 2kt� t0k
2

p

�

r

1 + 



r

⌘ + k · log(4Lr/�)
m

.
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• When ⌘ + 4k · log(4Lr/�) � m, this case is similar to the last case and omitted for brevity.

Overall, we finished the proof.

9.4. Proof of Lemma 5.2

Proof. To simplify the notations, for this proof, we define the following semi-norm: For any t, t0 2 G(B),

kt� t0kGm :=

�

�

�

�

�

1

m

m
X

i=1

ỹihSp(xi), t� t0i � E[ỹhSp(x), t� t0i]
�

�

�

�

�

.

Also, for any subset T ✓ G(B), let PT (·) be the projection on to this set.

The approach we will take is Dudley’s chaining technique together with the fact that G(B) is a Lipschitz map of an Rk ball.

Specifically, for any � > 0, we consider a sequence of covering nets
n

ˆTi

o`

i=0

of the set G(B) with respect to k · k
2

, where
ˆTi denotes the 2�i�-covering of the set ˆTi+1

, i = 0, 1, · · · , `� 1 and ˆT` = N (2

�`�, G(B)) is the minimum 2

�`�-covering
of the set G(B). We have bT

0

✓ bT
1

✓ · · · ✓ bT`. The way we construct these nets and bound the cardinalities are of similar
flavor to that of last lemma. We consider a sequence of covering nets {Ti}`i=0

on the ball B with respect to k · k
2

, where
Ti := N (2

�i�/L, Ti+1

) and T` := N (2

�`�/L,B). It is known that there exists a net such that

log |N (2

�`�/L,B)|  k · log �4Lr/(2�`�)
�  k · log(4Lr/�) + k`,

and there exists nets such that

log |N (2

�i�/L, Ti+1

)|  log |N (2

�i�/L,B)|  k · log(4Lr/�) + ki, 8i 2 {0, 1, · · · , `� 1}.

Furthermore, we have T
0

✓ T
1

✓ T
2

· · · ✓ T`. Then, due to the Lipschitz property of the map G(·), the set ˆTi := G(Ti)

will be a 2

�i� covering net of the set ˆTi+1

= G(Ti), i = 0, 1, · · · , `� 1 and ˆT` := G(T`) will be a 2

�`� covering net of
G(B), as a consequence,

log

�

�

�

ˆTi

�

�

�

 k · log(4Lr/�) + ki, 8i 2 {0, 1, · · · , `}. (35)

Now, for any t, t0 2 G(B), we have

kt� t0kGm �

�t� P
ˆT`
(t)

�

�

Gm
+

�

�P
ˆT`
(t)� P

ˆT`
(t0)

�

�

Gm
+

�

�P
ˆT`
(t0)� t0

�

�

Gm
(36)

Next, we will focus on bounding the term
�

�P
ˆT`
(t) � P

ˆT`
(t0)

�

�

Gm
and then take limit ` ! 1 so that the first and third

term vanish. Again, for simplicity of notations, starting from a point t 2 G(B) and ˆt` := P
ˆT`
(t), we sequentially define

ˆti = P
ˆTi
(

ˆti+1

), i = 0, 1, · · · , `� 1. Then, it follows for any t, t0 2 G(B),

kˆt` � ˆt0`kGm 
X̀

i=1

kˆti � ˆti�1

kGm + kˆt
0

� ˆt0
0

kGm +

X̀

i=1

kˆt0i � ˆt0i�1

kGm

2 sup

t,t02G(B)

X̀

i=1

kˆti � ˆti�1

kGm + kˆt
0

� ˆt0
0

kGm

2

X̀

i=1

sup

t2G(B)

kˆti � ˆti�1

kGm + kˆt
0

� ˆt0
0

kGm

2

X̀

i=1

sup

t2 ˆTi

�

�t� P
ˆTi�1

(t)
�

�

Gm
+ kˆt

0

� ˆt0
0

kGm (37)

Note that by definition of covering nets, kˆti � ˆti�1

k
2

 2

�i+1�. Next, we apply Lemma 9.1 to bound supt2G(B)

kˆti �
ˆti�1

kGm , 8i by choosing � = ⌘ + 3k · log(4Lr/�) + 3ki for ⌘ � 0, which gives
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• When ⌘ + 3k · log(4Lr/�) + 3ki  log(em), using the symmetrization inequality (Lemma 11.2) and taking a union
bound over all t 2 ˆTi with (35), we have for any i with probability at least 1� exp (�⌘ � k · log(4Lr/�)� ki),

sup

t2 ˆTi

�

�t� P
ˆTi�1

(t)
�

�

Gm
 CkSp(x)k 2�y

r

1 + 


· 2�i+1�

r

⌘ + 3k · log(4Lr/�) + 3ki

m

Taking a further union bound over all indices i = 0, 1, 2 · · · , ` gives with probability at least

1�
X̀

i=0

exp (�⌘ � k · log(4Lr/�)� ki) � 1� c · exp(�⌘),

for some absolute constant c > 0,

sup

t2 ˆTi

�

�t� P
ˆTi�1

(t)
�

�

Gm
 CkSp(x)k 2�y

r

1 + 


· 2�i+1�

r

⌘ + 3k · log(4Lr/�) + 3ki

m
,

8i 2 {0, 1, 2, · · · , `} , s.t. ⌘ + 3k · log(4Lr/�) + 3ki  log(em)

• When ⌘ + 3k · log(4Lr/�) + 3ki > log(em), using the symmetrization inequality (Lemma 11.2) and taking a union
bound over all t 2 ˆTi with (35), we have with probability at least 1� exp (�⌘ � k · log(4Lr/�)� ki), 8t 2 ˆTi

�

�t� P
ˆTi�1

(t)
�

�

Gm
 CkSp(x)k 2

r

1 + 


· 2�i+1�

r

⌘ + 3k · log(4Lr/�) + 3ki

m

·
0

@
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m
X
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|ỹi|2
!

1/2
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1

m

m
X

i=1

|eyi|2(1+)
!

1
2(1+)

1

A .

Taking a further union bound over all indices i = 0, 1, 2 · · · , ` gives with probability at least

1�
X̀

i=0

exp (�⌘ � k · log(4Lr/�)� ki) � 1� c · exp(�⌘),

for some absolute constant c > 0, 8t 2 ˆTi

�

�t� P
ˆTi�1

(t)
�

�

Gm
 CkSp(x)k 2

r

1 + 


· 2�i+1�

r

⌘ + 3k · log(4Lr/�) + 3ki

m

·
0

@

 

1

m

m
X

i=1

|ỹi|2
!

1/2

+

 

1

m

m
X

i=1

|eyi|2(1+)
!

1
2(1+)

1

A ,

8i 2 {0, 1, 2, · · · , `} , s.t. ⌘ + 3k · log(4Lr/�) + 3ki > log(em).

By the same argument as that of last lemma using Bernstein’s inequality, we reach at

sup

t2 ˆTi

�

�t� P
ˆTi�1

(t)
�

�

Gm


CkSp(x)k 2�y

r

1 + 


· 2�i+1�

p

�

r

⌘ + 3k · log(4Lr/�) + 3ki

m
,

8i 2 {0, 1, 2, · · · , `} , s.t. ⌘ + 3k · log(4Lr/�) + 3ki > log(em),

with probability at least 1� e�� � c · e�⌘ for some constant C > 0.

Overall, we have with probability at least 1� e�� � e�⌘ , �, ⌘ � 1,

sup

t2 ˆTi

�

�t�P
ˆTi�1

(t)
�

�

Gm
 CkSp(x)k 2�y

r

1 + 


· 2�i+1�

p

�

r

⌘ + 3k · log(4Lr/�) + 3ki

m
, 8i 2 {0, 1, 2, · · · , `}.
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Therefore, with the same probability,

X̀

i=1

sup

t2 ˆTi

�

�t� P
ˆTi�1

(t)
�

�

Gm
CkSp(x)k 2�y

r
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· �
p

� ·
X̀

i=0

2

�i+1

r

⌘ + 3k · log(4Lr/�) + 3ki

m

C 0kSp(x)k 2�y

r

1 + 


· �
p

�

r

⌘ + k · (log(4Lr/�) + 1)

m
,

for some absolute constant C 0 > 0. Substituting this bound into (49) gives

kˆt` � ˆt0`kGm  2C 0kSp(x)k 2�y

p
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r

1 + 



r

⌘ + k · (log(4Lr/�) + 1)

m
� + kˆt

0

� ˆt0
0

kGm .

To bound kˆt
0

� ˆt0
0

kGm , recall that ˆT
0

is a �-covering net of ˆT
1

✓ G(B) and by construction log | ˆT
0

|  k log(4Lr/�). Thus,
if we choose the union of ˆT

0

and the covering chosen in Lemma 9.2, i.e. ˆT
0

[ N (�, G(B)), the resulting net is still a
�-covering net of G(B) and satisfying the proposed cardinality bound. Thus, using the symmetrization inequality (Lemma
11.2) and then Lemma 9.2, we get with probability at least 1� e�� � e�u, 8t

0

, t0
0

2 ˆT
0

[N (�, G(B)),

sup

t0,t002 ˆT0[N (�,G(B))
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0
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0
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0

k
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 C 00kSp(x)k 2�y
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r

⌘ + k log(4Lr/�)

m
,

for some constant C 00 > 0, and in particular, 8t, t0 2 G(B), we have the corresponding ˆt
0

, ˆt0
0

2 ˆT
0

satisfies

kˆt
0

� ˆt0
0

kGm  C 00kSp(x)k 2kykLq
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�
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⌘ + k log(4Lr/�)

m
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� ˆt0
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k
2

,

Overall, we have with probability at least 1� e�� � e�u, 8t, t0 2 G(B),

kˆt` � ˆt0`kGm  2C 0kSp(x)k 2�y
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⌘ + k · (log(4Lr/�) + 1)
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⌘ + k log(4Lr/�)

m
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� ˆt0
0

k
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.

Since this bound simultaneously holds for any ` 2 N, substituting it into (36) and taking the limit ` ! 1 give with
probability at least 1� e�� � e�u, the same bound holds, i.e. 8t, t0 2 G(B),

kt� t0kGm  2C 0kSp(x)k 2�y
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1 + 
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m
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⌘ + k log(4Lr/�)
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.

Note that by construction kt� ˆt
0

k
2

 2� and kt0 � ˆt0
0

k
2

 2�. Thus,

kˆt
0

� ˆt0
0

k
2

 4� + kt� t0k
2

.

Substituting this bound into the last probabilistic bound finishes the proof.

10. Proof of technical lemmas in Section 5.2
10.1. Proof of Lemma 5.4

Proof. First of all, note that
�

�E
⇥

(ỹ � y)
�|ht, Sp(x)i|2 � |ht0, Sp(x)i|2

�⇤

�

�

= |E[(ỹ � y)ht+ t0, Sp(x)iht� t0, Sp(x)i]|
E

⇥|y| · 1{|y|�⌧} · |ht+ t0, Sp(x)iht� t0, Sp(x)i|
⇤
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Applying Holder’s inequality,
�

�E
⇥

(ỹ � y)
�|ht, Sp(x)i|2 � |ht0, Sp(x)i|2

�⇤

�

�

E
⇥|y|2 · |ht+ t0, Sp(x)iht� t0, Sp(x)i|2

⇤

1/2 · Pr(|y| � ⌧)1/2

E
⇥|y|4 · |ht+ t0, Sp(x)i|4

⇤

1/4E
⇥|ht� t0, Sp(x)i|4

⇤

1/4 · Pr(|y| � ⌧)1/2

E
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|y|4(1+)
i

1/4(1+)

E
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|ht+ t0, Sp(x)i|4(1+)/
i/4(1+)

· E⇥|ht� t0, Sp(x)i|4
⇤

1/4 · Pr(|y| � ⌧)1/2


r

4(1 + )


kykLqkSp(x)k 2kt� t0k

2

· Pr(|y| � ⌧)1/2.

Furthermore,

Pr(|y| > ⌧)  E
⇥|y|2(1+)⇤

⌧2(1+)


kykq/2Lq

�

m1/2(1+)�y

�q/2
 1

mq/4(1+)
 1

m
,

where the first inequality follows from Markov inequality, the third inequality follows from the fact that �y � kykLq , and
the last inequality follows from q > 4(1 + ). This implies the claim.

10.2. Subgaussian concentration of a quadratic processes

The proof of Lemma 5.5 relies on the following key results which finds a “subgaussian” type concentration for a heavy-tailed
quadratic proces.

Lemma 10.1. Consider any fixed � � 1. Under Assumption 3.1 and ỹi = sign(yi)|yi| ^ ⌧ , where ⌧ =

�

m
B

�

1/2(1+)
�y

with �y � kykLq ,  2 (0, q
4

� 1), B 2 [1,�] being any chosen constants, we have for any fixed t 2 T
1

, t0 2 T
2

, where
T
1

, T
2

✓ Rd are bounded measurable sets, then, with probability at least 1� exp(��),

• When � < log(em),
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1
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• When � � m,
�
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A .

where, for each of the three cases, C > 1 is an absolute constant, and

Qm(T
1

) := sup

t2T1

�

�

�

�

�

m
X

i=1

�

ỹi|hSp(xi), ti|2 � E
⇥

ỹ|hSp(x), ti|2
⇤�

�

�

�

�

�

. (38)

Remark 10.1. Note that this lemma bears some similarities with Lemma 9.1 except that we are now facing a potentially
more complicated quadratic process instead of a multiplier process. The proof technique is similar.
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Proof of Lemma 10.1. We will prove the three cases, respectively.

1. Proof of the first case: Since the quantity � is relatively small, we will just apply Bernstein’s inequality (Lemma 11.1).
First of all, for any integer p � 2, the following holds,

E
⇥|"ỹhSp(x), tihSp(x), t
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E
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|ỹhSp(x), ti| 32p
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,

where the last inequality follows from the following bound: For any p � 4, k > 0, and any v 2 Rd,
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1/kp  (kp)
1/2 kSp(x)k 2kvk2

Next, by Stirling’s approximation, p! � p
2⇡

p
p(p/e)p, thus there exist some absolute constants C 0, C 00 > 0 such that
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Thus, substituting ⌧ =
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where C is an absolute constant. Since B  � < log(em), it follows
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,

which implies the first case of the lemma.

2. Proof of the second case: We start from the ordering bound (39) in the proof of Lemma 9.1, but with a slightly different
decomposition. Let !i = hSp(xi), ti, !̃i = hSp(xi), t

0i. Set the index I to be the union of the p largest entries of {!i}mi=1

,
the p largest entries of {!̃i}mi=1

, and the p largest entries of {ỹi}mi=1

, where p is a number to be chosen later. Then, it follows
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with probability at least 1� e�u2/2,
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|ỹi|2r
!

1/2r
0

@

X

i 62I

|!i!̃i|2r0
1

A

1/2r0


 

X

i2I
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(39)

where the first inequality follows from Lemma 11.3, the second and third inequality both follow from Holder’s inequality,
and the last inequality follows from the definition of Qm(T
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⇥|(ỹi!i)|2

⇤�

1/2

 Qm(T
1

)

1/2
+

p
mE
⇥|ỹi!i|2

⇤

1/2
.

Note that
E
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, by assumption, we have Sp(xi) is subgaussian, thus, for any
index j 2 {1, 2, · · · ,m},

P (|!j |� E[|!j |] � C�kSp(x)k 2ktk2)  e��
2

,

for any � � 0, where C > 0 is a positive constant. For the rest of the proof in this case, the index i will be dedicated for
non-increasing ordering index, i.e. {!⇤
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,
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and following the same argument leading to (30) gives with probability 1� exp(��)
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� finishes the second the part of the lemma.

3. Proof of the third case: By Cauchy-Schwarz inequality, we have
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"iỹihSp(xi), tihSp(xi), t
0i
�

�

�

�

�


 

m
X

i=1
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we use Bernstein’s inequality again,
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for some absolute constant C > 0, which implies the third part of the lemma.

10.3. Uniform concentration over a �-covering net

We will now use Lemma 10.1 to establish a uniform concentration result of the following quadratic process
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over a �-covering net of the set G(Bk
(r)) \ Sd�1. Again, we will use B to denote Bk

(r) in this section for simplicity.
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Lemma 10.2. For any � 2 (0, 1), let N (�, G(B) \ Sd�1

) be a �-covering net of the set G(B) \ Sd�1 with respect to the
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Proof of Lemma 10.2. First of all, by (31), there exists a net such that the cardinality
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• When ⌘ + 4k · log(4Lr/�) > log(em), we have 8t, t0 2 N (�, G(B) \ Sd�1
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"iỹi
�|ht, Sp(xi)i|2 � |ht0, Sp(xi)i|2

�

�

�

�

�

�

=

�

�

�

�

�

m
X

i=1
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Take a union bound over all t, t0 2 N (�, G(B) \ Sd�1
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|ỹi|2(1+)
!

1/2(1+)

 C�y

 

1 +

✓

k log(Lr)

m

◆

1/4(1+)

�1/4(1+)
+ �1/2(1+)

!

 3C�y�
1/2(1+),

(43)
with probability at least 1 � e�� , where the last inequality follows from m � k log(Lr). Next, for the term
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Overall, we finish the proof.

10.4. Proof of Lemma 5.5
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using the same argument leading to (49), it follows for any t, t0 2 G(B) \ Sd�1,
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�|ht, Sp(xi)i|2 � |ht0, Sp(xi)i|2

�

�

�

�

�

�


p
2CkSp(x)k 2

1 + 



p

⌘ + 4k · log(4Lr/�)

·
0

@Qm(G(B) \ Sd�1

)

1/2
+

p
mkSp(x)k 2kykLq + kSp(x)k 2m


2(1+)

 

m
X

i=1

|eyi|2(1+)
!

1
2(1+)

1

A · 2�i+1�,

8i 2 {0, 1, 2, · · · , `} , s.t. ⌘ + 3k · log(4Lr/�) + 3ki > log(em).
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Combining with bounds (43), (44) and rearranging terms delivers

sup

t2 ˆTi

�

�

�

�

�

1

m

m
X

i=1

"ỹi
�|ht, Sp(xi)i|2 � |ht0, Sp(xi)i|2

�

�

�

�

�

�

 C
�kSp(x)k2 2

+ kSp(x)k 2

�

�y
1 + 



p

�

r

⌘ + 3k · log(4Lr/�) + 3ki

m
2

�i+1�,

8i 2 {0, 1, 2, · · · , `} , s.t. ⌘ + 3k · log(4Lr/�) + 3ki  log(em).

with probability at least 1� c · exp(�⌘)� exp(��).

Overall, with probability at least 1� exp(�⌘)� exp(��),

X̀

i=1

sup

t2 ˆTi

Hm

�

t, P
ˆTi�1

(t)
� C

�kSp(x)k2 2
+ kSp(x)k 2

�

�y
1 + 



p

� · � ·
X̀

i=0

2

�i+1

r

⌘ + 3k · log(4Lr/�) + 3ki

m

C 0 �kSp(x)k2 2
+ kSp(x)k 2

�

�y
1 + 



p

� · �
r

⌘ + k · (log(4Lr/�) + 1)

m
,

for some absolute constant C 0 > 0. Substituting this bound into (46),

Hm(

ˆt`, ˆt
0
`)  C 0 �kSp(x)k2 2

+ kSp(x)k 2

�

�y
1 + 



p

� · �
r

⌘ + k · (log(4Lr/�) + 1)

m
+Hm

�

ˆt
0

, ˆt0
0

�

, (47)

with probability at least 1� exp(�⌘)� exp(��), for some absolute constant C > 0.

To bound Hm

�

ˆt
0

, ˆt0
0

�

, recall that ˆT
0

is a �-covering net of ˆT
1

✓ G(B)\Sd�1 and by construction log | ˆT
0

|  k log(4Lr/�).
Thus, if we choose the union of ˆT

0

and the covering chosen in Lemma 10.2, i.e. ˆT
0

[N (�, G(B)\Sd�1

), the resulting net is
still a �-covering net of G(B)\Sd�1 and satisfying the proposed cardinality bound. Thus, using the symmetrization inequality
(Lemma 11.2), and then Lemma 10.2, we get with probability at least 1� e�� � e�u, 8t

0

, t0
0

2 ˆT
0

[N (�, G(B) \ Sd�1

),

sup

t0,t002 ˆT0[N (�,G(B)\Sd�1
)

Hm

�

ˆt
0

, ˆt0
0

�

kt
0

� t0
0

k
2

 C 00 �kSp(x)k2 2
+ kSp(x)k 2

�

�y

p

�
1 + 



r

⌘ + k log(4Lr/�)

m
,

for some constant C 00 > 0. Substitute this bound into (47), we have with probability at least 1 � e�� � e�u, 8t, t0 2
G(B) \ Sd�1,

Hm(

ˆt`, ˆt
0
`)  2C 0 �kSp(x)k2 2

+ kSp(x)k 2

�

�y
1 + 



p

� ·
r

⌘ + k · (log(4Lr/�) + 1)

m
�

+ C 00 �kSp(x)k2 2
+ kSp(x)k 2

�

�y

p

�
1 + 



r

⌘ + k log(4Lr/�)

m
kˆt

0

� ˆt0
0

k
2

.

Since this bound simultaneously holds for any ` 2 N, substituting it into (45) and taking the limit ` ! 1 give with
probability at least 1� e�� � e�u, the same bound holds, i.e. 8t, t0 2 G(B) \ Sd�1,

Hm(

ˆt, ˆt0)  2C 0 �kSp(x)k2 2
+ kSp(x)k 2

�

�y
1 + 



p

� ·
r

⌘ + k · (log(4Lr/�) + 1)

m
�

+ C 00 �kSp(x)k2 2
+ kSp(x)k 2

�

�y

p

�
1 + 



r

⌘ + k log(4Lr/�)

m
kˆt

0

� ˆt0
0

k
2

.

Note that by construction kt� ˆt
0

k
2

 2� and kt0 � ˆt0
0

k
2

 2�. Thus,

kˆt
0

� ˆt0
0

k
2

 4� + kt� t0k
2

.

Substituting this bound into the last probabilistic bound finishes the proof.
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10.5. Bounds on quadratic processes

In this section, we prove two supporting lemmas on the bound of quadratic processes used in previous sections.

Lemma 10.3. Suppose m � k log(Lr). Under Assumption 3.1 and ỹi = sign(yi)|yi|^⌧ , where ⌧ =

⇣

m
k log(Lr)

⌘

1/2(1+)

�y ,

for any u � 1, with probability at least 1� e�u2

,

sup

t2G(B)\Sd�1

�

�

�

�

�

m
X

i=1

�

ỹi|hSp(xi), ti|2 � E
⇥

ỹ|hSp(x), ti|2
⇤�

�

�

�

�

�

 C�2

y

 

kSp(x)k2 2

p

mk log(Lr) + kSp(x)k 2m+ kSp(x)k 2u
m

p

k log(Lr)
+ kSp(x)k2 2

u2

r

m

k log(Lr)

!

,

where C > 0 is an absolute constant.

Proof of Lemma 10.3. First of all, by symmetrization inequality (Lemma 11.2), it is enough to consider the following
supremum:

sup

t2G(B)\Sd�1

�

�

�

�

�

m
X

i=1

"iỹi|hSp(xi), ti|2
�

�

�

�

�

.

By contraction principle (Lemma 11.4), for any v > 0,

Pr

 

sup

t2G(B)\Sd�1

�

�

�

�

�

m
X

i=1

"iỹi|hSp(xi), ti|2
�

�

�

�

�

�
✓

m

k log(Lr)

◆

1/2(1+)

�yv

!

 2Pr

 

sup

t2G(B)\Sd�1

�

�

�

�

�

m
X

i=1

"i|hSp(xi), ti|2
�

�

�

�

�

� v

!

.

Thus, it is enough to bound the right hand side of the above inequality. We apply symmetrization inequality again and
Lemma 11.5, which gives with probability at least 1� e�u2

, for u � 1,

sup

t2G(B)\Sd�1

�

�

�

�

�

m
X

i=1

"i|hSp(xi), ti|2
�

�

�

�

�

 C
1

�kSp(x)k 2�2(G(B) \ Sd�1

)

p
m+ kSp(x)k2 2

�
2

(G(B) \ Sd�1

)

2

�

+ C
2

�kSp(x)k 2u
p
m+ kSp(x)k2 2

u2

�

,

where we use the fact that for any specific t, |hSp(xi), ti|2 is a subexponential random variable with �  kSp(x)k 2

and K  kSp(x)k2 2
, and the radius �(G(B) \ Sd�1

)  1. Next, apply the bound in Lemma 11.6, which gives
�
2

(G(B) \ Sd�1

)  C
p

k log(Lr), and we have with proability at least 1� e�u2

, for u � 1, ,

sup

t2G(B)\Sd�1

�

�

�

�

�

m
X

i=1

"iỹi|hSp(xi), ti|2
�

�

�

�

�

 C 0
✓

m

k log(Lr)

◆

1/2(1+)

�y

⇣⇣

kSp(x)k 2

p

mk log(Lr) + kSp(x)k2 2
k log(Lr)

⌘

+

�kSp(x)k 2u
p
m+ kSp(x)k2 2

u2

��

.

Rearranging the terms yields the claim of the lemma.

Lemma 10.4. Suppose m � kn log(2d). Under Assumption 3.1 and ỹi = sign(yi)|yi| ^ ⌧ , where ⌧ =

⇣

m
kn log(2d)

⌘

1/2(1+)

�y , for any u � 1, with probability at least 1� e�u2

,

max

E2k
Qm

�E2k \ Sd�1

(2)

�

 C�2

y

 

kSp(x)k2 2

p

mkn log(2d) + kSp(x)k 2m+ ukSp(x)k 2

p

mkn log(2d) +
u2kSp(x)k2 2

kn log(2d)p
m

!

,
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where C > 0 is an absolute constant and the maximum is taken over all possible (2d)2kn different 2k-subspaces E2k 2 Rd,
Sd�1

(2) is the sphere in Rd with radius 2, and Qm(·) is defined in (38).

Proof of Lemma 10.4. Consider first any specific 2k-subspaces E2k 2 Rd. Similar to the previous proof, by symmetrization
inequality (Lemma 11.2), to bound Qm

�E2k \ Sd�1

(2)

�

, it is enough to consider the following supremum:

sup

t2E2k\Sd�1
(2)

�

�

�

�

�

m
X

i=1

"iỹi|hSp(xi), ti|2
�

�

�

�

�

.

By contraction principle (Lemma 11.4), for any v > 0,

Pr

 

sup

t2E2k\Sd�1
(2)

�

�

�

�

�

m
X

i=1

"iỹi|hSp(xi), ti|2
�

�

�

�

�

�
✓

m

kn log(2d)

◆

1/2(1+)

�yv

!

 2Pr

 

sup

t2E2k\Sd�1
(2)

�

�

�

�

�

m
X

i=1

"i|hSp(xi), ti|2
�

�

�

�

�

� v

!

.

We apply symmetrization inequality again and Lemma 11.5, which gives with probability at least 1� e�ũ2

, for ũ � 1,

sup

t2E2k\Sd�1

�

�

�

�

�

m
X

i=1

"i|hSp(xi), ti|2
�

�

�

�

�

 C
1

�kSp(x)k 2�2(E2k \ Sd�1

(2))

p
m+ kSp(x)k2 2

�
2

(E2k \ Sd�1

(2))

2

�

+ C
2

�kSp(x)k 2 ũ
p
m+ kSp(x)k2 2

ũ2

�

,

with the bound �
2

(E2k \ Sd�1

(2))  2

p
2k. Next, take ũ = u+

p

2kn log(2d), and take a union bound over all (2d)2kn

different 2k-subspaces gives with probability at least 1� e�u2

,

max

E2k
Qm

�E2k \ Sd�1

(2)

�  C
1

⇣

kSp(x)k 2

p
mk + kSp(x)k2 2

k
⌘

+ C
2

⇣

kSp(x)k 2(u+

p

2kn log(2d))
p
m+ kSp(x)k2 2

(u2

+ 2kn log(2d))
⌘

,

which implies the claim.

11. Some probability and linear algebra tools
11.1. Some probability bounds

We recall the following well-known concentration inequality,

Lemma 11.1 (Bernstein’s inequality). Let X
1

, · · · , Xm be a sequence of independent centered random variables. Assume
that there exist positive constants f and D such that for all integers p � 2

1

m

m
X

i=1

E[|Xi|p]  p!

2

f2Dp�2,

then

P
 

�

�

�

�

�

1

m

m
X

i=1

Xi

�

�

�

�

�

� fp
m

p
2u+

D

m
u

!

 2 exp(�u).

In particular, if X
1

, · · · , Xm are all sub-exponential random variables, then f and D can be chosen as f =

1

m

Pm
i=1

kXik 1

and D = max

i=1...m
kXik 1 .

The following version of Symmetrization inequality can be found, for example, in (Van Der Vaart & Wellner, 1996).
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Lemma 11.2 (Symmetrization inequality). Let {Zt(i)}mi=1

be i.i.d. copies of a mean 0 stochastic process {Zt : t 2 T}.
For every 1  i  m, let gt(i) : T ! R be an arbitrary function. Let {"i}mi=1

be a sequence of independent Rademacher
random variables. Then, for every x > 0,

✓

1� 4m

x2

sup

t2T
var(Zt)

◆

· Pr

 

sup

t2T

�

�

�

�

�

m
X

i=1

Zt(i)

�

�

�

�

�

> x

!

 2Pr

 

sup

t2T

�

�

�

�

�

m
X

i=1

"i(Zt(i)� gt(i))

�

�

�

�

�

>
x

4

!

,

where var(Zt) = E
⇥

(Zt � E[Zt])
2

⇤

.

The following is a classical bound on the Rademacher process:

Lemma 11.3 ((Montgomery-Smith, 1990)). Let X = [X
1

, · · · , Xm] be a sequence of scalars. Define the following
quantity:

K
1,2(X, u) := inf

8

>

<

>

:

X

i2I

|Xi|+ u

0

@

X

i 62I

|Xi|2
1

A

1/2

, I ✓ {1, 2, · · · ,m}

9

>

=

>

;

.

Then, we have

P
 

�

�

�

�

�

m
X

i=1

"iXi

�

�

�

�

�

� K
1,2(X, u)

!

 2 exp(�u2/2). (48)

Furthermore, there exists a universal constant c > 0 such that

c�1K
1,2(X, u) 

bu2c
X

i=1

X⇤
i + u

0

@

m
X

i=bu2c+1

(X⇤
i )

2

1

A

1/2

 cK
1,2(X, u)

where {X⇤
i }mi=1

is the non-increasing rearrangement of {|Xi|}mi=1

and {"i}mi=1

is a sequence of i.i.d. Rademancher random
variables independent of {Xi}mi=1

.

The following version of contraction principle is a direct generalization of Theorem 4.4 of (Ledoux & Talagrand, 2013).
The proof is the same replacing norm in Banach space by a semi-norm in Rd.

Lemma 11.4 (Contraction principle). For any sequence {xi}mi=1

in Rd, any semi-norm k · k and any real numbers {↵i}mi=1

such that |↵i|  1,

Pr
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�

�

m
X

i=1

↵i"ixi

�

�

�

> u

!

 2Pr

 

�

�

�

m
X

i=1

"ixi

�

�

�

> u

!

,

where u > 0 is any constant and {"i}mi=1

is a sequence of independent Rademacher random variables.

The following lemma bounds the size of the quadratic process in terms of the Gaussian mean width of a set:

Lemma 11.5 ((Dirksen et al., 2015)). Let T be any measurable set in Rd and define the Gaussian mean width of T as

�
2

(T ) := E


sup

t2T
hg, ti

�

,

where g ⇠ N (0, Id⇥d). Let

At :=
1

m

m
X

i=1

|hXi, ti|2 � E
⇥|hXi, ti|2

⇤

,

where {Xi}mi=1

are i.i.d. subgaussian vectors. Let �,K be constants satisfying q � 2,

sup

t2T

1

m

m
X

i=1

E
h

�

�|hXi, ti|2 � E
⇥|hXi, ti|2

⇤

�

�

q
i

 q!

2

�2Kq�2,
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and let kXk 2 := maxi=1,2,··· ,m kXik 2 . Then, with probability at least 1� e�u2

, for u � 1,

sup

t2T
|At|  C

1

✓

�(T )kXk 2

�
2

(T )p
m

+ kXk2 2

�
2

(T )2

m

◆

+ C
2

✓

�up
m

+

Ku2

m

◆

,

where C
1

, C
2

� 1 are absolute constants and �(T ) := supt,s2T kt� sk
2

.

Finally, the following lemma bounds the Gaussian mean width of the set G(Bk
(r)):

Lemma 11.6. Let Bk
(r) be the ball of radius r in Rk, and let G : Rk ! Rd be an L-Lipschitz function, then,

�
2

(G(Bk
(r)) \ Sd�1

)  C
p

k log(4Lr),

where C > 0 is an absolute constant.

Proof of Lemma 11.6. We will use B to denote Bk
(r). The approach we will take is Dudley’s chaining technique. Let

" = 2

�` for some positive integer `. Let bT be an "-cover of G(B) \ Sd�1 with Euclidean distance k · k
2

. Then, we have for
any t 2 G(B) \ Sd�1,

hg, ti = hg, t� bti+ hg,bti  2 sup

kt�btk2"
hg, t� bti+ sup

bt2bT
hg,bti,

where in the first equality, we pick bt 2 bT such that kbt� tk
2

 ". Thus, it follows

E
"

sup

t2G(B)\Sd�1

hg, ti
#

 E
"

sup

kt�btk2"
hg, t� bti

#

+ E
"

sup

bt2bT
hg,bti

#

(49)

To bound the second term in (49), consider a sequence of progressively better approximations of bT as follows: Let
"
0

, "
1

, · · · , "` > 0 such that "i = 2

�i and bT` = bT . For any i � 1, let bTi�1

be the minimum "i�1

cover of bTi. We have
bT
0

✓ bT
1

✓ · · · ✓ bT`. Now for any bt,bt0 2 bT ,

hg,bti = hg,bt` � bt0`i =
X̀

i=1

hg,bti � bti�1

i+ hg,bt
0

i,

where bti 2 bTi. For any i � 1, we choose bti�1

= fi�1

(

bti), where fi�1

maps any point in bTi to its nearest point in bTi�1

.
Then, it follows,

E
"

sup

bt, bt02bT
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E
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#
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2
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r

2 log
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�

bTi

�

�

�
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r

2 log
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�

bT
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�

�

�


X̀

i=1

2

�(i�1)

p

2 logN (2

�i, G(B)) + 2

p

2 logN (1, G(B)), (50)

where for any " > 0, N (", G(B) \ Sd�1

) denotes the minimum "-covering number of the set G(B), and the second from
the last inequality follows from the standard Gaussian maximum estimate that for a set of pairs H from (T, k · k

2

) with
T ✓ Rd,

E


max

t2H
hg, ti

�

 max

t2H
ktk

2

p

log |H|.

It remains to bound N (", G(B)\Sd�1

) for some " 2 (0, 1). Let N ("/L,B) be the "/L-covering number of the set B ✓ Rk.
It is known that there exists such a net M" that

log |M"|  k · log(4Lr/").
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Then, due to the L-Lipschitz property of G, the set G(M") forms a "-net of G(B) with the same cardinality bound. As a
consequence, for any i, we have

N (2

�i, G(B) \ Sd�1

)  N (2

�i, G(B))  ik + k log(4Lr).

Substituting this bound into (50) gives

E
"
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2

�(i�1)

p

2ik + 2k log(4Lr) + 2

p

2k log(4Lr)  C
p

k log(4Lr),

for some positive constant C. This finishes bounding the second term in (49). Finally, since the bound (49) holds for any ",
taking ` ! 1 gives " ! 0 in (49) and the first term will go to 0. This implies

E
"

sup

t2G(B)\Sd�1

hg, ti
#

 C
p

k log(4Lr),

finishing the proof.

11.2. Some linear algebra inequalities

Lemma 11.7 (Lemma A.1.2 of (Vu & Lei, 2012)). Let x, y 2 Sd�1, then

kxxT � yy

T k2F  2kx� yk2
2

.

If, in addition, kx� yk
2

 p
2, then,

kxxT � yy

T k2F � kx� yk2
2


