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Abstract
We propose a novel framework PROVEN to
PRObabilistically VErify Neural network’s ro-
bustness with statistical guarantees. PROVEN
provides probability certificates of neural net-
work robustness when the input perturbation
follow distributional characterization. Notably,
PROVEN is derived from current state-of-the-
art worst-case neural network robustness verifi-
cation frameworks, and therefore it can provide
probability certificates with little computational
overhead on top of existing methods such as Fast-
Lin, CROWN and CNN-Cert. Experiments on
small and large MNIST and CIFAR neural net-
work models demonstrate our probabilistic ap-
proach can tighten up robustness certificate to
around 1.8× and 3.5× with at least a 99.99%
confidence compared with the worst-case robust-
ness certificate by CROWN and CNN-Cert.

1. Introduction
Although deep neural networks have achieved unprece-
dented performance in many machine learning tasks, their
lack of robustness against adversarial examples (Goodfel-
low et al., 2015; Biggio & Roli, 2017) has raised serious
concerns by the research communities, as many safety-
critical tasks cannot afford the potential risks incurred by
adversarial attempts. Adversarial examples for different ap-
plications have been shown to be easily crafted, including
image classification (Szegedy et al., 2013) speech recogni-
tion (Cisse et al., 2017), malware detection (Wang et al.,
2017) and sparse regression (Chen et al., 2018).

While there is a relentless arm race in crafting adversar-
ial examples with stronger attacking performance and in
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developing effective countermeasures, assessing and veri-
fying robustness properties of neural networks provides a
comprehensive and attack-independent certificate. Given
a well-trained neural network model, we are interested in
measuring its robustness on an arbitrary natural example
x0 by examining if the neighborhood of x0 has the same
prediction results; this serves as a robustness proxy for eval-
uating the ease with which one can turn x0 into adversar-
ial examples via adversarial manipulations. Convention-
ally, the concept of neighborhood is characterized by an
ℓp ball centered at x0 with radius ϵ for any p ≥ 1, where
larger ϵ indicates greater robustness. Ideally, we would like
to find the smallest adversarial distortion imposed on x0

that will change the model prediction, which is known as
the minimum adversarial distortion. Unfortunately, com-
puting minimum adversarial distortion on neural networks
with ReLU activations is shown to be an NP-complete prob-
lem (Katz et al., 2017; Sinha et al., 2018), and hence formal
verification methods such as Reluplex (Katz et al., 2017)
and Planet (Ehlers, 2017) are computationally demanding
and cannot scale to large realistic networks.

As detailed in Section 2, current robustness verification lit-
erature mainly focuses on efficient methods for finding a
tight lower bound on minimum distortion as a certified ro-
bustness metric. Here the term certified means that numer-
ical values generated by these approaches are indeed deter-
ministic lower bounds of minimum adversarial distortion.
However, their scope is still limited to the worst-case set-
ting (i.e., no exceptions are allowed), and hence there lacks
proper robustness indication once the perturbation exceeds
the certified range. In particular, in cases when success-
ful adversarial perturbations are rare events (but not totally
unlikely) or when some distributional characterization of
input perturbations are known a priori, a probabilistic cer-
tificate on the confidence of certified robustness is more
viable and comprehensive. In this paper, we are interested
in addressing the following questions:

(a) How to provide a confidence level on the robustness
certificate when the input data point is perturbed by
random noises?

(b) How does such probabilistic certificate compare with
the certificate from worst-case analysis?
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Perhaps surprisingly, in our experiments we find that sim-
ple random perturbations can already achieve up to 100%
misclassification rates on MNIST and CIFAR networks un-
der reasonable perturbation ranges (see Table 2), suggest-
ing that their threats to deep neural networks could be over-
looked. With prior knowledge on the input noise distribu-
tions, our probabilistic approach is able to provide a more
comprehensive robustness quantification in comparison to
the prevailing worst-case analysis. More importantly, the
probabilistic robustness quantification is readily applicable
to understanding the sensitivity and reliability of a target
model in many real-world scenarios. For example, such
random noises can be caused by data quantization, input
preprocessing, or environmental background noises.

In summary, we propose in this work a novel probabilistic
framework PROVEN to PRObabilistically VErify Neural
network robustness. We show that it is possible to extend
the conventional worst-case setting to a probabilistic setting
based on existing worst-case certification frameworks with
very little computational overhead, meaning that the prob-
abilistic certificate can be easily derived and incorporated
into worst-case robustness verification pipelines by meth-
ods such as Fast-Lin (Weng et al., 2018), CROWN (Zhang
et al., 2018), and CNN-Cert (Boopathy et al., 2019).

Our Contributions

• A probabilistic framework PROVEN is proposed for
verifying the robustness of neural networks with cer-
tificates under ℓp norm-ball bounded threat models,
when the input noise follows a given distributional
characterization (Gaussian and Sub-Gaussian distribu-
tions with bounded supports). The established theoret-
ical results are based on an ℓ∞ constraint on the pertur-
bation but can be easily extended to other norms such
as ℓ1 and ℓ2.

• Experimental results on large neural networks trained
on MNIST and CIFAR datasets show that PROVEN
greatly improved the robustness certificate (i.e., the
certified lower bound) compared with the correspond-
ing worst-case analysis results, even when the statisti-
cal risk is small. For example, with a confidence level
of 99.99%, which means the robustness metric is al-
most 100% guaranteed to be certified, the robustness
certificate improvement provided by PROVEN over
worst-case analysis can be as high as 250%.

• In addition to the noticeable improvement in the ver-
ified robustness, PROVEN is a general tool that can
be readily applied to neural networks with general ac-
tivation functions, including but not limited to tanh,
sigmoid and arctan, and general convolutional neu-
ral networks with various building blocks, as demon-
strated in our experiments. Moreover, PROVEN is

as computationally efficient as the worst-case analysis
because its closed-form probabilistic certificate are by-
products of worst-case certification frameworks such
as Fast-Lin (Weng et al., 2018), CROWN (Zhang et al.,
2018), and CNN-Cert (Boopathy et al., 2019).

2. Background and Related Works
Given an input data example under a specified threat model,
typically ℓp norm-ball bounded perturbation attacks, the
goal of robustness verification aims to certify a perturba-
tion level ϵ such that the top-1 prediction will not be al-
tered by any means. However, certifying the largest pos-
sible ϵ, which is equivalent to finding the minimum per-
turbation required for a successful adversarial attack, has
been shown to be NP-complete (Katz et al., 2017) and thus
it is computationally infeasible for large realistic networks.
Alternatively, recent studies have shown that solving for a
non-trivial lower bound of the minimum adversarial per-
turbation can be made more scalable and computationally
efficient (Weng et al., 2018; Gehr et al., 2018; Dvijotham
et al., 2018b). Some analytical lower bounds, based solely
on model weights, have been derived (Szegedy et al., 2013;
Peck et al., 2017; Hein & Andriushchenko, 2017; Raghu-
nathan et al., 2018) but they are either very close to triv-
ial lower bounds (zero) or only applied to 1 or 2 hidden
layers. It is worth noting that current robustness verifi-
cation approaches mainly focus on “worst-case” analysis,
whereas our approach takes a “probabilistic viewpoint“. As
demonstrated in extensive experiments, our probabilistic
framework PROVEN is able to certify a significantly larger
ϵ value than the corresponding worst-case analysis with
99.99% certification guarantees. This indicates that, while
the conventional worst-case robustness certificate may be
too conservative when there is some prior knowledge about
the input perturbations distribution, PROVEN is more appli-
cable in this situation.

In fact, deep neural networks are not only vulnerable
to crafted adversarial noises but also to random noises:
(Bibi et al., 2018) show that they can fool LeNet and
AlexNet with additive Gaussian noises and (Fawzi et al.,
2016) show random perturbations can indeed fool VGG
networks; (Hosseini et al., 2017) show they fool the Google
Cloud Vision API by random Gaussian noises, suggesting
random perturbation can result in successful attacks. Mean-
while, the robustness of classifiers to various kinds of ran-
dom noises, such as uniform noise in the ℓp unit ball and
Gaussian noise with an arbitrary covariance matrix, has
been studied in (Franceschi et al., 2018). Their analysis,
however, requires the assumption of locally approximately
flat decision boundaries on the neural networks, which is
difficult to verify in reality. Recently, the robustness of clas-
sifiers to perturbations under the assumption of Gaussian
distributed latent input vectors has been studied in (Fawzi
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et al., 2018); however, their results depend on the modu-
lus of continuity constant, which could be arbitrarily large.
Due to these limitations, the bounds in these papers cannot
be directly used to deliver certified robustness metrics.

We note that only a few works have considered verifying
neural network properties in the probabilistic setting. (Dvi-
jotham et al., 2018a) verifies some properties (e.g., mono-
tonicity and convexity) of deep generative models. The key
differences are that in their setting the uncertainty source
is the latent variable sampled from a distribution generated
by the encoder (they consider only Gaussian distribution),
whereas our uncertainty comes from input perturbations
(we consider both Gaussian and general Subgaussian dis-
tributions with bounded support) and our focus is to ver-
ify neural network classifiers. A very recent work (Webb
et al., 2019) uses a Monte Carlo approach to estimate the
probability of rare events, whereas the violation probability
from our framework is certifiable. We also highlight that
the problem setting of this work is different from (Lecuyer
et al., 2018; Li et al., 2018) as our goal is to study the effect
of random noises on standard neural networks input and
derive a closed-form probabilistic certificate; on the other
hand, they study smoothed (or stochastic) classifiers by
adding a noise layer into the network and thus modifying
the prediction rule. The predicted class in their setting be-
comes the class that has the largest expected score (Lecuyer
et al., 2018) or the largest probability (Li et al., 2018) over
input with noises, which is different from the rule of stan-
dard networks.

3. PROVEN: a probabilistic framework to
verify neural network robustness

In this section, we present a general probabilistic frame-
work PROVEN together with related theoretical results to
compute the certified bounds in probability that a classi-
fier can never be fooled when the inputs of the classifier
are perturbed with some given distributions. We first in-
troduce the worst-case setting, where an input example
can be perturbed by any perturbation bounded within an
ℓp ball, and present corresponding worst-case analysis re-
sults in Sec. 3.1. We then show that it is possible to extend
these worst-case analysis results to a probabilistic setting
where the input perturbations follow some given distribu-
tions, and present our probabilistic framework and main
theorem in Sec. 3.2. Lastly, we provide closed-form prob-
abilistic bounds for various probabilistic distributions that
the input perturbations can follow in Sec. 3.3.

3.1. Worst-case setting

Let f(x) : Rn0 → RK denote a K-class neural network
classifier of interest, which takes an input x (e.g., an image)
and outputs the corresponding logit scores over all classes.

The ultimate goal is to efficiently find the largest ϵ∗ such
that the original predicted class c always has a larger score
fc(x) than the score ft(x) for a targeted attack class t when
the input is perturbed within the ℓp ball having radius ϵ∗.
Let gt(x) = fc(x) − ft(x), we want to find the largest ϵ∗

such that gt(x) > 0 for all x satisfying ∥x − x0∥p ≤ ϵ∗

and c = argmaxifi(x0), t ̸= c. This ϵ∗ is a certified lower
bound of the minimum adversarial distortion introduced in
Sec. 1.

Although a neural network classifier f is a nonlinear, non-
convex and complicated function, it has been first shown in
Fast-Lin (Weng et al., 2018) and later in CROWN (Zhang
et al., 2018) and CNN-Cert (Boopathy et al., 2019) that the
output fi(x) and the margin function gt(x) of a general
(convolutional) neural network classifier with general acti-
vation functions1 can be bounded by two linear functions
gLt (x) and gUt (x):

gLt (x) ≤ gt(x) ≤ gUt (x), (1)

where gLt (x) : Rn0 → R and gUt (x) : Rn0 → R are two
linear functions in terms of the input x:

gLt (x) = AL
t,:x+ dL and gUt (x) = AU

t,:x+ dU (2)

with AL
t,:,A

U
t,: ∈ R1×n0 being two constant row vectors

and dL, dU ∈ R being two constants related to the network
weights W(k) and biases b(k) as well as the parameters
bounding the activation functions in each neuron. The su-
perscripts L and U denote the parameters corresponding to
the lower bound and the upper bound of gt(x).

Remark. We would like to highlight again that, same
as Fast-Lin, CROWN and CNN-Cert, we do not assume
the neural network f(x) and its variant gt(x) to be lin-
ear. Through out this paper, f(x) and gt(x) are a general
(convolutional) neural network with general non-linear ac-
tivation function and thus are always non-linear and non-
convex functions. The core idea of their proposed worst-
case frameworks is to use the linear upper and lower
bound gUt (x), g

L
t (x) to bound the non-linear neural net-

work gt(x), as in (1). Again, the linear bounds have super-
scripts L and U while the non-linear neural network func-
tions does not. Importantly, the result in (1) is the key to de-
velop our probabilistic framework PROVEN. We also high-
light that AL = AU in Fast-Lin due to the use of parallel
linear bounds on non-linear activation functions, whereas
AL and AU can be different in CROWN and CNN-Cert due
to non-parallel linear bounds.

As the network output is bounded, the positiveness of the
lower bound of gt(x) implies that gt(x) is positive, i.e.,

gLt (x) > 0 =⇒ gt(x) > 0. (3)

1including but not limited to ReLU, tanh, arctan, sigmoid
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Table 1: Table of Notation

Notation Definition Notation Definition
K number of output classes CDF cumulative distribution function
f : Rn0 → RK neural network classifier pdf probability density function
x0 ∈ Rn0 original input vector FX CDF of a random variable X
c = argmini fi(x0) predicted class of input x0 fX pdf of a random variable X
gt(x) = fc(x)− ft(x) margin function at x for class t P[gt(X) > a] probability that gt(X) is greater than a
gLt (x) : Rn0 → R linear lower bound of gt(x) γL theoretical lower bound of P[gt(X) > a]
gUt (x) : Rn0 → R linear upper bound of gt(x) γU theoretical upper bound of P[gt(X) > a]

Here, a worst-case analysis can be performed by minimiz-
ing the linear function gLt (x) over all possible inputs in the
set {x : ∥x − x0∥p ≤ ϵ}, which yields a closed-form
solution as presented in Fast-Lin, CROWN and CNN-Cert.
Therefore, the condition of whether gLt (x) > 0 can be con-
veniently checked given some ϵ using the closed-form solu-
tions; the largest ϵ such that gLt (x) > 0 is called the certi-
fied lower bound, which can be computed by bisection with
respect to ϵ.

3.2. Our proposed probabilistic framework: PROVEN

In addition to considering the worst-case condition for
gt(x) > 0 over the norm ball constrained on the input
{x : ∥x − x0∥p ≤ ϵ}, we now show that it is possible
to formulate a probabilistic setting and derive bounds with
guarantees by building upon the above results that the neu-
ral network output can be bounded by two linear functions.
We start by presenting the problem formulation of the prob-
abilistic setting and then present our main theoretical re-
sults in Theorem 3.1.

Problem formulation. Consider a general non-linear neu-
ral network classifier f(x) and an input example x0. Let
the predicted class of x0 be c, the targeted attack class t,
and the non-linear margin function gt(x) := fc(x)−ft(x).
Suppose the perturbed input random vector X follows
some given distribution D, i.e., X ∼ D. We are inter-
ested in the probability of the margin function gt(x) being
greater than some value a ∈ R, i.e., P [gt(X) > a].

Given that the general neural networks are highly non-
linear and non-convex in x, it is hard to directly compute
the distribution of the non-linear function gt(X) given the
input X ∼ D. Fortunately, we can still derive analytic
lower and upper bounds for P [gt(X) > 0] based on the lin-
ear function gLt (X) thanks to the relations of linear gLt (x)
and non-linear gt(x) in Eq. (1). In other words, we can ob-
tain probabilistic guarantees based on the worst-case anal-
ysis result where the non-linear margin function gt(x) can
be bounded by two linear functions. The following theo-
rem provides such theoretical guarantees on P [gt(X) > 0].

Theorem 3.1 (Probabilistic bounds of network output)

Let f(x) be a K-class neural network classifier function,
x0 an input example, and ϵ such that ∥x−x0∥p ≤ ϵ, p ≥ 1.
Let c = argmaxifi(x0), let t( ̸= c) be some targeted class,
and define the margin function gt(x) = fc(x) − ft(x).
Suppose the input random vector X ∈ Rn0 follows some
given distribution D with mean x0 and let a ∈ R be
some real number. There exists an explicit lower bound
γL and an explicit upper bound γU on the probability
P [gt(X) > a] such that

γL ≤ P [gt(X) > a] ≤ γU , (4)

where

γL = 1− FgL
t (X)(a), γU = 1− FgU

t (X)(a), (5)

FZ(z) is the cumulative distribution function (CDF) of the
random variable Z, and gLt (x), g

U
t (x) satisfy Equation (1).

Proof. Let h1 : Rd → R, h2 : Rd → R, and h1(x) ≥
h2(x), ∀x ∈ Rd. Let X ∈ Rd be a random vector. Since
the cumulative distribution function (CDF) is nondecreas-
ing (Shaked & Shanthikumar, 2007), we have

P[h1(X) > a] ≥ P[h2(X) > a]. (6)

From the results in (Weng et al., 2018), we know that the
relationships in Eq. (1), i.e.,

gLt (x) ≤ gt(x) ≤ gUt (x),

satisfy ∥x − x0∥p ≤ ϵ for all x. Hence, upon applying
Eq. (6) to Eq. (1) and using the fact that P [Z > a] = 1 −
FZ(a), we obtain

γL ≤ P [gt(X) > a] ≤ γU ,

with γL = 1− FgL
t (X)(a), γU = 1− FgU

t (X)(a). □
As discussed in Section 3.1, the neural network output and
the margin function can be bounded by two linear func-
tions as derived in Fast-Lin and its extensions CROWN and
CNN-Cert. Here, we take an additional step to investigate
the relationship between the margin function and its lin-
ear bounds in the probabilistic setting. Specifically, The-
orem 3.1 shows that the probability of the neural network
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margin function being greater than some value a can also
be bounded by the CDFs of its linear bounds. Note that
in the worst-case analysis of Section 3.1, we usually con-
cern ourselves with the margin function gt(x) > 0, i.e.,
a = 0. Analogously, in the probabilistic setting, we con-
cern ourselves with the probability of the margin function
gt(x) > 0. This is indeed the guarantee provided by Theo-
rem 3.1: when the input X ∼ D, the result guarantees that
the probability of gt(X) > a is at least γL and at most γU .

3.3. Evaluating the probabilistic bounds γL and γU

Theorem 3.1 provides a theoretical lower bound γL and up-
per bound γU for P [gt(X) > a]. In practice, we would like
to numerically compute such bounds. Below we show it is
possible to obtain explicit forms for γL and γU in terms of
AL

t,;,A
U
t,;, d

L, dU , as well as the parameters of the proba-
bility distributions of input perturbations. By Theorem 3.1,
γL and γU only depend on the CDFs FgL

t (X) and FgU
t (X),

and we observe that gLt (X) and gUt (X) are both linear func-
tions of random vector X as follows:

gLt (X) =

n0∑
i=1

AL
t,iXi + dL,

gUt (X) =

n0∑
i=1

AU
t,iXi + dU .

Hence, the problem of computing the CDFs FgL
t (X) and

FgU
t (X) becomes a problem of computing the CDFs of a

weighted sum of Xi given X ∼ D. We primarily consider
the following two cases:

(i) When Xi are independent random variables with prob-
ability density function (pdf) fXi ;

(ii) When X follows a multivariate normal distribution
with mean x0 and covariance Σ.

It also appears that these results may be extended to address
some forms of negative correlation (Panconesi & Srini-
vasan, 1997; Dubhashi & Ranjan, 1998).

3.3.1. CASE (I)

When Xi are independent random variables with probabil-
ity density function fXi

, there are two approaches for com-
puting the CDFs of the weighted sum.

Approach 1: Direct convolutions. The pdf of the
weighted sum is simply the convolution of the pdfs for each
of the weighted random variables AL

t,iXi. Specifically, we
have

fAL
t,:X

=
n0⊛
i=1

fAL
t,iXi

,

where ⊛N

i=1 hi denotes convolution over the N func-
tions h1 to hN . The CDF of AL

t,:X can therefore be ob-
tained from the pdf fAL

t,:X
and we obtain FgL

t (X)(z) =

FAL
t,:X

(z − dL); similarly, FgU
t (X)(z) = FAU

t,:X
(z − dU ).

Hence, we have

γL = 1− FAL
t,:X

(a− dL), γU = 1− FAU
t,:X

(a− dU ).

Approach 2: Probabilistic inequalities. Approach 1 is
useful in cases where n0 is not large. However, for large n0,
it might not be easy to directly compute the CDF through
convolutions. For such cases, an alternative approach can
be based on applying the probabilistic inequalities on the
CDFs. Since we want to provide guarantees on the desired
probability in (4), we need to find a lower bound on γL
and an upper bound on γU via the probabilistic inequalities.
These results are given in the following corollary.

Corollary 3.2 Let Xi be independent random variables
following Sub-Gaussian distributions with bounded sup-
port Xi ∈ [x0i − ϵ,x0i + ϵ],∀i ∈ [n0], and symmetric
around the mean x0i. Define

µL = AL
t,:x0 + dL, µU = AU

t,:x0 + dU .

Then, we have

γL ≥

{
1− exp

(
− (µL−a)2

2ϵ2∥AL
t,:∥2

2

)
, if µL − a ≥ 0

0, otherwise;

γU ≤

{
exp

(
− (µU−a)2

2ϵ2∥AU
t,:∥2

2

)
, if − µU + a ≥ 0

1, otherwise.

Proof. Let Wi = AL
t,i(Xi − x0i) and µL = AL

t,:x0 + dL.
We then have −|AL

t,i|ϵ ≤ Wi ≤ |AL
t,i|ϵ where Wi is sym-

metric with respect to zero since Xi is symmetric. By us-
ing the fact that the sum of independent symmetric random
variables is still a symmetric random variable (Chow & Te-
icher, 2003), we derive

γL = P
[
gLt (X) > a

]
= P

[
n0∑
i=1

Wi > a− µL

]

= P

[
n0∑
i=1

Wi < −a+ µL

]

= 1− P

[
n0∑
i=1

Wi ≥ −a+ µL

]
.

From the Hoeffding inequality (Resnick, 2014),
we obtain the following upper bound on the term
P [
∑n0

i=1 Wi ≥ −a+ µL] when −a+ µL > 0:

P

[
n0∑
i=1

Wi ≥ −a+ µL

]
≤ exp

(
− (µL − a)2

2ϵ2∥AL
t,:∥22

)
,
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and thus γL ≥ 1−exp
(
− (µL−a)2

2ϵ2∥AL
t,:∥2

2

)
. When −a+µL ≤ 0,

we use the trivial bound of γL = 0. Similarly, for γU ,
we can define µU correspondingly and directly apply the
Hoeffding inequality to obtain γU ≤ exp

(
− (µU−a)2

2ϵ2∥AU
t,:∥2

2

)
,

or use the trivial bound of γU = 1. □

Remark. The above result can be further extended to cor-
related random variables with Hoeffding inequality simi-
larly with the assumption that the sum of Wi is symmetric.

3.3.2. CASE (II)

When X follows a multivariate normal distribution with
mean x0 and covariance Σ, we are able to obtain an explicit
form for the CDFs FgL

t (X) and FgU
t (X) based on the fact

that the sum of normally distributed random variables still
follows the normal distribution (Chow & Teicher, 2003).
Note that we include here both cases where (a) Xi are inde-
pendent Gaussian random variables (Σ is a diagonal matrix)
and (b) Xi are correlated random variables (Σ is a general
covariance matrix and positive semidefinite). Our result is
stated in the following corollary.

Corollary 3.3 Let X follow a multivariate normal distri-
bution with mean x0 and covariance Σ. Define

µL = AL
t,:x0 + dL, σ2

L = AL
t,:Σ(A

L
t,:)

⊤,

µU = AU
t,:x0 + dU , σ2

U = AU
t,:Σ(A

U
t,:)

⊤,

where ⊤ denotes the transpose operator. We then have

γL ≈ 1

2
− 1

2
erf(

a− µL

σL

√
2
), γU ≈ 1

2
− 1

2
erf(

a− µU

σU

√
2
)

with erf(·) as the error function.

Proof. The result is obtained in a straightforward manner
from the fact (Chow & Teicher, 2003) that if X ∼ N (µ,Σ),
then its linear combination Z = wX + v also follows the
normal distribution: Z ∼ N (wµ+v, wΣw⊤). The CDF of
Z is then given by 1

2 (1 + erf( z−µZ

σZ

√
2
)), leading to the stated

approximations. □

Remark. Note that in our framework, all possible inputs
have to lie in the ℓp ball with given radius ϵ. Thus, in order
to apply the Gaussian perturbation in our setting, we need
to set an upper limit on the variance of the input such that
99.7% of the density is within the ℓp ball, i.e., the 3-σ rule.
See Sec. 4 Experiment (b) for more details.

Connection to ℓ1 and ℓ2 norms. Our foregoing prob-
abilistic analysis is established under the ℓ∞ norm con-
straint. We note that this presented analysis can be easily
extended to ℓ1 and ℓ2 norms by using the norm inequalities:
∥x∥1 ≤ √

n0∥x∥2 ≤ n0∥x∥∞.

Table 2: Attacks with Uniform & Bernoulli noises: suc-
cess rate over 100 randomly selected images.

Perturbed ℓ∞ magnitude ϵ = 0.25 ϵ = 0.20
MNIST model Uniform Bernoulli Uniform Bernoulli
2-layer CNN, ReLU 25% 72% 15% 65%
2-layer CNN, tanh 91% 99% 83% 98%
2-layer CNN, sigmoid 92% 100% 15% 44%
2-layer CNN, arctan 7% 44% 22% 22%
3-layer CNN, ReLU 69% 90% 53% 99%
3-layer CNN, tanh 11% 25% 0% 41%
3-layer CNN, sigmoid 14% 24% 30% 76%
3-layer CNN, arctan 24% 83% 55% 73%
Perturbed ℓ∞ magnitude ϵ = 0.025 ϵ = 0.020
CIFAR model Uniform Bernoulli Uniform Bernoulli
5×[2048], ReLU 15% 16% 13% 15%
6×[2048], ReLU 17% 20% 14% 20%
5-layer CNN, ReLU 22% 31% 17% 28%

4. Experiments
In this section, we conduct two major experiments:

(a) attack neural network models with random noises

(b) calculate the robustness bounds certified by PROVEN
with various confidence levels

The goal of the Experiment (a) is to validate the issues that
neural networks are also vulnerable to random noises in ad-
dition to the specifically crafted adversarial noises, and Ex-
periment (b) is to demonstrate the effectiveness and capabil-
ity of our proposed probabilistic framework PROVEN and
compare with the conservative worst-case certifications.

Model, Dataset, and Setup. We use the pre-trained
MNIST and CIFAR networks provided in (Weng et al.,
2018) and (Zhang et al., 2018) and denote a network with
m layers and n neurons per layer as m × [n] in the Ta-
bles. In addition to the pre-trained fully-connected mod-
els, we also train (1) 2 layer and 3 layer MNIST CNNs
with 5 filters and ReLU, tanh, sigmoid and arctan activa-
tions (2) MNIST ResNet with 3 residual blocks (3) CIFAR
5-layer CNN, (4) 7-layer CNN on TinyImageNet. In addi-
tion, we also train some robust models by adversarial train-
ing (Madry et al., 2018) with 2 and 3 layer CNN structures.
All the data are normalized to the range [−0.5, 0.5]. We
implement PROVEN in Python and perform experiments
on a laptop with 8 Intel Cores i7-4700 HQ CPU at 2.40
GHz and a AMD Zen sever CPU. Our code is available at
https://github.com/lilyweng/PROVEN.

Experiment (a). We generate random noises with range
[−ϵ, ϵ] following uniform distribution and Bernoulli dis-
tribution with coin probability 0.5, and apply the random
noises on each pixel. We generate at most 3 × 105 sam-
ples to perform random attacks on 100 randomly selected
test images with correct prediction. We report the success
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rate and the corresponding ϵ for various MNIST and CI-
FAR (convolution) neural networks in Table 2. The results
show that random noises can indeed achieve successful at-
tack with surprisingly rates, up to 100%, thus validating the
issues of random noises and the necessity to analyze its ef-
fects, as one of the main purpose of this work. We note
that for ϵ = 0.25, the attacks on CIFAR models almost all
succeed and thus we decrease the ϵ by ten-fold.

Experiment (b). We apply Corollaries 3.2 and 3.3 (i.e. Ap-
proach 2 in Sec. 3.3) to compute the largest ϵ (denoted as
ϵPROVEN) that PROVEN can certify with confidence of at
least γL when the input follows the two cases discussed
in Section 3.3. The certified lower bound computed by
the worst-case analysis in Fast-Lin (Weng et al., 2018),
CROWN (Zhang et al., 2018) and CNN-Cert (Boopathy
et al., 2019) is denoted as ϵworst-case. Below is the setting
of the input distributions in our simulations:

• Case (i). Xi are independent random variables follow-
ing Sub-Gaussian distribution with bounded support
[x0i − ϵworst-case,x0i + ϵworst-case] with mean x0i. The
results are presented in Table 3.

• Case (ii). X follows a multivariate normal distribu-
tion with mean x0 and covariance Σ. We consider
both situations where Σ is a positive diagonal matrix
or a positive semidefinite matrix with diagonals whose
square roots are less than or equal to ϵworst-case/3. The
results are presented in Figure 1 and Tables 8 and 9 in
the Appendix.

Note that in all the Tables, we express γL as a per-
centage. We report ϵPROVEN for the following values:
{99.99, 75, 50, 25, 5}% and calculate the improvement of
ϵPROVEN over ϵworst-case obtained by 99.99% in the last col-
umn in Table 3 for Case (i). The results in Table 3 are
averaged over 10 randomly selected images in the test sets
for MLP networks and 100 images for the CNN networks.
On the other hand, we also investigate how robust it is for
the results in Table 3(a) by computing the average ϵPROVEN
over randomly chosen {10, 50, 100} images in 100 random
trials. We report the mean and standard deviation in Ta-
ble 3(b) and show that the variation of using 10 sample av-
erage in Table 3(a) is less ∼ 10% and the average ϵPROVEN
and improvement has less deviations when we use 50 or
100 samples.

Result on small and large ReLU networks. We perform
simulations on both small 2-3 layer MNIST networks with
20 neurons per layer and large 2-7 layer MNIST and CI-
FAR networks with 1024 or 2048 neurons per layer; the
full results are summarized in the appendix and we extract
some results in Tables 3(a). These results show that on
the small networks, PROVEN can certify up to 1.8× with

respect to the certified lower bound at the expense of de-
creasing the confidence by only η = 10−2. In other words,
PROVEN guarantees that at least 99.99% of the ϵ com-
puted (e.g., 0.03828 in MNIST 3×[20] is a certified lower
bound as compared to 0.02236 for the ϵworst-case delivered
by CROWN (Zhang et al., 2018), where the improvement
we obtained for this model is 1.7×. For large MLP net-
works, PROVEN can certify up to 1.8×, which is signifi-
cant. Interestingly, when the bounding technique is better,
it also helps our probabilistic bounds – the improvement
is significant, and even for the large CIFAR network with
around 10,000 neurons, we can still obtain around 1.15×
tightness. For input Gaussian perturbations , the results are
presented in Fig. 1 in the Appendix.

Results on large networks with general activations and
CNNs. We also ran experiments on various MNIST and
CIFAR networks with non-ReLU activations, e.g., tanh, sig-
moid and arctan and CNN structures. The results are sum-
marized in Table 3. In comparison to the same architecture
but with ReLU activations, the improvement of these acti-
vations are better than the non-adaptive bounding technique
in general, and can achieve up to 300% on CNN networks.
Note that the computational overhead of our approach com-
pared to the worst-case certification frameworks Fast-Lin,
CROWN and CNN-Cert is very little, as we only need to
perform a few additional binary searches on the ϵ that will
satisfy Corollary 3.2.

Discussions. We observed that the improvement of cer-
tificate increase when we use better worst-case framework
(e.g. CROWN, CNN-Cert). For MNIST 3 × 20 network,
the PROVEN certificate can be improved from 1.3× to
1.7× at 99.99% confidence level. Similar result can be ob-
served by comparing Table 3a and 5a. We also observed the
gap generally becomes smaller when the network becomes
deeper and our hypothesis is that for deeper networks, lin-
ear bounds become looser and variance also increases.

5. Conclusions and future works
We proposed a novel probabilistic framework PROVEN to
verify the robustness of neural networks and derived theo-
retical bounds on the robustness certificate with statistical
guarantees. PROVEN is a general tool that can build on
top of existing state-of-the-art neural network robustness
certification algorithms including Fast-Lin, CROWN and
CNN-Cert and hence can be readily applied to certify fully-
connected and convolutional neural networks with differ-
ent activation functions. Experimental results on large neu-
ral networks demonstrated significant benefits of PROVEN
over the standard worst-case analysis results. Future works
include extending our analysis to non-symmetric noise and
tighter bounds for correlated bounded Sub-Gaussian noise.
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Table 3: The largest ϵ that PROVEN can certify with confidence of at least γL = {99.99, 75, 50, 25, 5}% when Xi are
independent random variables in Case (i). We compare the largest ϵ that PROVEN can certify with 99.99% with the largest
ϵ from state-of-the-art worst-case certification algorithms CROWN (Zhang et al., 2018) (for MLPs), CNN-Cert (Boopathy
et al., 2019) (for CNNs) and show in the last column that PROVEN can certify more than the worst-case analysis by giving
up 0.01% confidence.

(a) Compare PROVEN with worst-case bounds on various neural networks models

Certification Method Worst-case Our probabilistic approach: PROVEN Certification
Guarantees γL 100%† 99.99%† 75% 50% 25% 5% Bound increase†

MNIST 3×[20], ReLU, ada 0.02236 0.03828 0.03966 0.03981 0.03995 0.04009 1.7X
MNIST 2×[1024], ReLU, ada 0.03158 0.05560 0.05756 0.05779 0.05798 0.05818 1.8X
MNIST 3×[1024], ReLU, ada 0.02397 0.03524 0.03583 0.03589 0.03595 0.03601 1.5X
MNIST 4×[1024], ReLU, ada 0.00962 0.01288 0.01293 0.01294 0.01295 0.01295 1.3X
CIFAR 5×[2048], ReLU, ada 0.00228 0.00264 0.00265 0.00265 0.00265 0.00265 1.2X
CIFAR 7×[1024], ReLU, ada 0.00189 0.00209 0.00210 0.00210 0.00210 0.00210 1.1X
MNIST 2×[1024], tanh 0.02232 0.02915 0.03005 0.03013 0.03022 0.03033 1.3X
MNIST 3×[1024], tanh 0.01121 0.01360 0.01376 0.01378 0.01380 0.01381 1.2X
MNIST 4×[1024], sigmoid 0.01778 0.02170 0.02224 0.02229 0.02232 0.02237 1.2X
MNIST 2×[1024], arctan 0.02105 0.02796 0.02907 0.02915 0.02924 0.02936 1.3X
MNIST 2-layer CNN, ReLU 0.04565 0.06367 0.06884 0.06989 0.07082 0.07181 1.4X
MNIST 2-layer CNN, tanh 0.0331 0.09987 0.13538 0.1437 0.15135 0.15981 3.0X
MNIST 2-layer CNN, sigmoid 0.09242 0.18777 0.2218 0.22906 0.23553 0.24243 2.0X
MNIST 2-layer CNN, arctan 0.03747 0.13114 0.18872 0.20279 0.21577 0.23028 3.5X
MNIST 3-layer CNN, ReLU 0.04609 0.06301 0.0674 0.06828 0.06904 0.06986 1.4X
MNIST 3-layer CNN, tanh 0.03348 0.05917 0.06676 0.06828 0.06962 0.07108 1.8X
MNIST ResNet-3, ReLU 0.01751 0.01827 0.01864 0.01869 0.01876 0.01881 1.0X
CIFAR 5-layer CNN, ReLU 0.00402 0.00465 0.00471 0.00472 0.00473 0.00473 1.2X
TinyImagenet, 7-layer CNN, ReLU 0.07245 0.07367 0.07367 0.07368 0.07369 0.0737 1.0X
MNIST 2-layer (robust)-CNN, ReLU 0.09304 0.11424 0.12224 0.1238 0.12515 0.12658 1.2X
MNIST 2-layer (robust)-CNN, tanh 0.12795 0.37451 0.76167 0.90881 1.06778 1.2689 2.9X
MNIST 3-layer (robust)-CNN, tanh 0.20596 0.24122 0.27452 0.28091 0.28649 0.29239 1.2X

(b) With input perturbations being independent random variables in case (i), we perform 100 random trials to randomly choose
{10, 50, 100} input samples (images) in each trial and then compute the average of the largest ϵ that can be certified by worst-case
analysis (Boopathy et al., 2019) (denoted as ϵworst-case) and by PROVEN with 99.99% confidence (denoted as ϵPROVEN) together with
the improved certification of ϵPROVEN over ϵworst-case (denoted as Improv.). The mean and std of the average ϵ and the improvements
converges as the number of samples increases. Note that in order to show the numbers converge, here we calculate the index “Improv. =
Certification Bound increase-1“ and express in %.

10 samples 50 samples 100 samples
Models bound ϵworst-case ϵPROVEN Improv. ϵworst-case ϵPROVEN Improv. ϵworst-case ϵPROVEN Improv.

MNIST 3×[1024], ReLU,ada Mean 0.02559 0.03703 44.75% 0.02581 0.03734 44.70% 0.02579 0.03733 44.74%
std 0.00165 0.00222 1.12% 0.00076 0.00102 0.57% 0.00054 0.00071 0.43%

MNIST 3×[1024], tanh Mean 0.01195 0.01375 15.17% 0.01193 0.01374 15.22% 0.01192 0.01374 15.25%
std 0.00065 0.00068 2.66% 0.00030 0.00030 1.27% 0.00020 0.00021 0.77%

MNIST 4×[1024], ReLU,ada Mean 0.00998 0.01329 33.18% 0.00994 0.01325 33.24% 0.00997 0.01328 33.21%
std 0.00051 0.00066 0.57% 0.00021 0.00027 0.27% 0.00014 0.00018 0.15%

CIFAR 5×[2048], ReLU,ada Mean 0.00224 0.00264 18.07% 0.00222 0.00262 17.93% 0.00222 0.00263 18.06%
std 0.00020 0.00025 2.39% 0.00009 0.00011 1.12% 0.00005 0.00006 0.55%

CIFAR 5×[2048], arctan Mean 0.00091 0.00100 9.28% 0.00091 0.00100 9.32% 0.00092 0.00100 9.32%
std 0.00008 0.00009 3.17% 0.00003 0.00003 1.15% 0.00001 0.00002 0.56%

CIFAR 7×[1024], ReLU,ada Mean 0.00176 0.00195 10.68% 0.00174 0.00192 10.73% 0.00174 0.00193 10.70%
std 0.00018 0.00020 1.87% 0.00007 0.00008 0.75% 0.00003 0.00004 0.37%
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