Supplementary Material to "Automatic Classifiers as Scientific

Instruments: One Step Further Away from Ground-Truth"
J. Whitehill and A. Ramakrishnan

1 Proofs

1.1 Proof of Proposition 2

We prove the proposition for the case that $r<0$; the case for $r>0$ is similar.
From Section III, we have that

$$
\rho(\widehat{\mathbf{u}}, \mathbf{v})=q r+\hat{\mathbf{u}}_{3} \sqrt{1-r^{2}}
$$

Since each $\hat{\mathbf{u}}_{i}(i=3,4, \ldots, n)$ is a coordinate on an $(n-3)$-sphere, it can be re-parameterized [Muller(1959)] by sampling $n-2$ standard normal random variables and normalizing, i.e.:

$$
\hat{\mathrm{u}}_{i}=\frac{\sqrt{1-q^{2}} \times \mathrm{z}_{i}}{\sqrt{\sum_{j=3}^{n} \mathrm{z}_{j}^{2}}}
$$

where each $\mathbf{z}_{i} \sim \mathbb{N}(0,1)$. A false positive correlation thus occurs when \hat{u}_{3} is at least $c=|q r| / \sqrt{1-r^{2}}$ more than its expected value $q r$:

$$
\operatorname{Pr}\left[\hat{u}_{3} \geq c\right]=\operatorname{Pr}\left[\frac{\sqrt{1-q^{2}} \times \mathrm{z}_{3}}{\sqrt{\sum_{j=3}^{n} \mathrm{z}_{j}^{2}}} \geq c\right]
$$

Due to the inequality, we must handle the cases that $z_{3} \geq 0$ and $z_{3}<0$ separately. Note that the latter case contributes 0 probability since $c \geq 0$ and $q>0$. Also, since z_{3} is a standard normal random variable, $\operatorname{Pr}\left[z_{3} \geq 0\right]=0.5$.

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{u}_{3} \geq c\right] \\
&= \operatorname{Pr}\left[\left.\frac{\sqrt{1-q^{2}} \times \mathbf{z}_{3}}{\sqrt{\sum_{j=3}^{n} \mathbf{z}_{j}^{2}}} \geq c \right\rvert\, \mathbf{z}_{3} \geq 0\right] \operatorname{Pr}\left[\mathbf{z}_{3} \geq 0\right]+ \\
& \operatorname{Pr}\left[\left.\frac{\sqrt{1-q^{2}} \times \mathbf{z}_{3}}{\sqrt{\sum_{j=3}^{n} \mathbf{z}_{j}^{2}}} \geq c \right\rvert\, \mathbf{z}_{3}<0\right] \operatorname{Pr}\left[\mathbf{z}_{3}<0\right]+ \\
&= \frac{1}{2} \operatorname{Pr}\left[\left.\frac{\sqrt{1-q^{2}} \times \mathbf{z}_{3}}{\sqrt{\sum_{j=3}^{n} \mathbf{z}_{j}^{2}}} \geq c \right\rvert\, \mathbf{z}_{3} \geq 0\right]+0 \\
&= \frac{1}{2} \operatorname{Pr}\left[\left(1-q^{2}\right) \mathbf{z}_{3}^{2} \geq c^{2} \sum_{j=3}^{n} \mathbf{z}_{j}^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \operatorname{Pr}\left[\left(1-q^{2}-c^{2}\right) \mathrm{z}_{3}^{2} \geq c^{2} \sum_{j=4}^{n} \mathrm{z}_{j}^{2}\right] \\
& =\frac{1}{2} \operatorname{Pr}\left[\mathrm{z}_{3}^{2} \geq \frac{c^{2}}{\left(1-q^{2}-c^{2}\right)} \sum_{j=4}^{n} \mathrm{z}_{j}^{2}\right]
\end{aligned}
$$

For $n>3$, each side of the inequality is a sum of squared normally distributed random variables, i.e., a χ^{2}-random variable (though with different degrees of freedom). We can thus rewrite this probability as

$$
\begin{aligned}
\operatorname{Pr}\left[\hat{u}_{3} \geq c\right] & =\frac{1}{2} \operatorname{Pr}\left[\chi_{1}^{2} \geq\left(\frac{c^{2}}{1-q^{2}-c^{2}}\right) \chi_{(n-3)}^{2}\right] \\
& =\frac{1}{2} \int_{0}^{\infty} f_{1}(t) F_{n-3}\left(\frac{1-q^{2}-c^{2}}{c^{2}} t\right) d t \\
& \doteq h(n, q, r)
\end{aligned}
$$

where χ_{1}^{2} and $\chi_{(n-3)}^{2}$ are χ^{2} random variables with 1 and $(n-3)$ degrees of freedom, respectively. The probability is equivalent to the integral because, for any value t of the χ_{1}^{2} variable, we require that the χ_{n-3}^{2} variable be less than t (after applying a scaling factor). To our knowledge, there is no closed formula for this integral, but we can compute it numerically. For $n=3$, we have

$$
\begin{aligned}
\operatorname{Pr}\left[\hat{u}_{3} \geq c\right] & =\frac{1}{2} \operatorname{Pr}\left[\left(1-q^{2}-c^{2}\right) z_{3}^{2} \geq 0\right] \\
& =\frac{1}{2} \operatorname{Pr}\left[c^{2} \leq 1-q^{2}\right]
\end{aligned}
$$

since a χ^{2}-random variable is non-negative, and where the probability of $c^{2} \leq$ $1-q^{2}$ is 1 if the inequality is true and 0 otherwise.

1.2 Proof of Proposition 3

For convenience, define $\alpha=\frac{1-q^{2}-c^{2}}{c^{2}}$.

$$
\begin{aligned}
& h(n+1, q, r)-h(n, q, r) \\
& \quad=\int_{0}^{\infty}\left[f_{1}(t) F_{(n+1)-3}(\alpha t)-f_{1}(t) F_{n-3}(\alpha t)\right] d t \\
& \quad=\int_{0}^{\infty} f_{1}(t)\left[F_{n-2}(\alpha t)-F_{n-3}(\alpha t)\right] d t
\end{aligned}
$$

Ghosh [Ghosh(1973)] proved that, for any fixed $t>0, \operatorname{Pr}\left[\chi_{k}^{2}>t\right]$ is monotonically increasing in the degrees of freedom k; hence, $F_{k}(t)$ is monotonically decreasing in k. Therefore, $F_{n-2}(\alpha t)-F_{n-3}(\alpha t)<0$ for all t. Since f_{k} is a non-negative function for all k, then the integral in Equation 1 must be negative; hence, h is monotonically decreasing in n for every $c>0$ and $q \in(0,1]$.

1.3 Proof of Proposition 4

First, we show that α is monotonically decreasing in q^{2} :

$$
\begin{aligned}
\alpha(q) & =\frac{1-q^{2}-c^{2}}{c^{2}} \\
& =\frac{1-q^{2}-q^{2} r^{2} /\left(1-r^{2}\right)}{q^{2} r^{2} /\left(1-r^{2}\right)} \\
& =\frac{\left(1-r^{2}\right)\left(1-q^{2}\right)-q^{2} r^{2}}{q^{2} r^{2}} \\
& =\frac{1-r^{2}-q^{2}}{q^{2} r^{2}} \\
& =\frac{1-r^{2}}{q^{2} r^{2}}-\frac{1}{r^{2}}
\end{aligned}
$$

The first term is monotonically decreasing in q^{2}, and the second term is constant in q^{2}.

Next, let ϵ be a positive real number such that $q+\epsilon \leq 1$:

$$
\begin{aligned}
& h(n, q+\epsilon, r)-h(n, q, r) \\
&= \int_{0}^{\infty} f_{1}(t) F_{n-3}(\alpha(q+\epsilon) t) d t- \\
& \int_{0}^{\infty} f_{1}(t) F_{n-3}(\alpha(q) t) d t \\
&= \int_{0}^{\infty} f_{1}(t)\left[F_{n-3}(\alpha(q+\epsilon) t)-F_{n-3}(\alpha(q) t)\right] d t
\end{aligned}
$$

Since F_{n-3} is monotonically increasing, then the expression in brackets is negative. Since f_{1} is non-negative, then the entire integral must be less than 0 .

2 Sampling distribution $\operatorname{Pr}(\hat{\mathrm{q}} \mid q, n)$

The sampling distribution can be computed exactly [Fisher(1915)], but this is computationally feasible only for small n. Hence, we use the approximation from Soper [Soper(1913)]: Let q denote the population Pearson correlation coefficient, and let \hat{q} denote the sample correlation from n data. Then

$$
\begin{aligned}
\operatorname{Pr}(\hat{\mathbf{q}} \mid q, n) & \propto(1-\hat{\mathbf{q}})^{m_{1}}(1+\hat{\mathbf{q}})^{m_{2}} \\
m_{1} & =\frac{1}{2}(\lambda-1)\left(1-\mu_{q}\right)-1 \\
m_{2} & =\frac{1}{2}(\lambda-1)\left(1+\mu_{q}\right)-1 \\
\lambda & =\left(1-\mu_{q}^{2}\right) / \sigma_{q}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{q} & =\frac{\left(1-q^{2}\right)}{\sqrt{n}}\left(1+\frac{\left(1+5.5 q^{2}\right)}{2 n}\right) \\
\mu_{q} & =\sqrt{q^{2}-\frac{c}{n}-\frac{c\left(1+5 q^{2}\right)}{2 n^{2}}} \\
c & =q^{2}\left(1-q^{2}\right)
\end{aligned}
$$

References

[Fisher(1915)] Fisher, R. A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4):507-521, 1915.
[Ghosh(1973)] Ghosh, B. Some monotonicity theorems for χ^{2}, F and t distributions with applications. Journal of the Royal Statistical Society. Series B (Methodological), pp. 480-492, 1973.
[Muller(1959)] Muller, M. E. A note on a method for generating points uniformly on n-dimensional spheres. Communications of the ACM, 2(4):19-20, 1959.
[Soper(1913)] Soper, H. On the probable error of the correlation coefficient to a second approximation. Biometrika, 9(1/2):91-115, 1913.

