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1. Experiments Detail
Unless otherwise specified, we used the following default
configuration for all experiments. We used the Adam opti-
miser (Kingma & Ba, 2014) with the learning rate 1× 10−4

and the parameters β1 = 0.9, β2 = 0.999. We trained all
the models for 4× 105 steps with the batch size of 64. 100
dimensional latent representations were used for generators.
We use 3 gradient-descent steps for latent optimisation, and
the initial step size of 0.01.

1.1. Reconstruction Experiments

Following Bora et al. (2017), we used a 2-layer multi-layer
perceptron (MLP), with 500 units in each hidden layer and
leaky ReLU non-linearity, as the generator for MNIST im-
ages; for CelebA, we used the DCGAN generator (Radford
et al., 2015). In addition to random linear projections, we
tested the following neural networks as the measurement
functions: a 2-layer MLP with 500 units in each layer and
leaky ReLU non-linearity for MNIST, and the DCGAN
discriminator for CelebA.

1.2. GAN experiments

We used the same MLP generator and discriminator (i.e.,
measurement function) as described in the previous section
for MNIST experiments. We also use the same architecture
for the semi-supervised GAN.

For CIFAR dataset, we used the DCGAN architecture with
its recommended Adam parameters β1 = 0.5, β2 = 0.9
(Radford et al., 2015). We tested a number of hyper-
parameters as the cross product of the following: generator
learning rates {1× 10−4, 2× 10−4, 3× 10−4}, discrimina-
tor learning rates {1 × 10−4, 2 × 10−4, 3 × 10−4}, latent
variable sizes {100, 200}, mini-batch sizes {32, 64}. Ad-
ditionally, 2 replicas for each combination were trained to
account for the effect of random seeds.

To reproduce the Spectral Normalised GANs. We used
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the same discriminator as in Miyato et al. (2018), which
is deeper than the DCGAN discriminator. A grid search
over optimisation parameters found the learning rate of
1× 10−4 and Adam’s β2 of 0.999 most stably achieved the
best results.

Inception Scores and Frchet Inception Distances were re-
ported as the averages of 10 evaluations each based on 5, 000
random samples (Salimans et al., 2016; Heusel et al., 2017).
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