
Differentiable Linearized ADMM

Xingyu Xie * 1 Jianlong Wu * 1 Zhisheng Zhong 1 Guangcan Liu 2 Zhouchen Lin 1

Abstract
Recently, a number of learning-based optimiza-
tion methods that combine data-driven architec-
tures with the classical optimization algorithms
have been proposed and explored, showing supe-
rior empirical performance in solving various ill-
posed inverse problems, but there is still a scarcity
of rigorous analysis about the convergence behav-
iors of learning-based optimization. In particu-
lar, most existing analyses are specific to uncon-
strained problems but cannot apply to the more
general cases where some variables of interest
are subject to certain constraints. In this paper,
we propose Differentiable Linearized ADMM (D-
LADMM) for solving the problems with linear
constraints. Specifically, D-LADMM is aK-layer
LADMM inspired deep neural network, which is
obtained by firstly introducing some learnable
weights in the classical Linearized ADMM algo-
rithm and then generalizing the proximal operator
to some learnable activation function. Notably,
we rigorously prove that there exist a set of learn-
able parameters for D-LADMM to generate glob-
ally converged solutions, and we show that those
desired parameters can be attained by training
D-LADMM in a proper way. To the best of our
knowledge, we are the first to provide the conver-
gence analysis for the learning-based optimization
method on constrained problems.

1. Introduction
Numerous problems solving at the core of statistics, learning
and vision areas rely on well-designed optimization algo-
rithms, and especially so for the recently prevalent deep

*Equal contribution.
1Key Lab. of Machine Perception, School of EECS, Peking

University.
2B-DAT and CICAEET, School of Automation, Nanjing Univer-

sity of Information Science and Technology.
Correspondence to: Guangcan Liu <gcliu@nuist.edu.cn>,

Zhouchen Lin <zlin@pku.edu.cn>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

learning. Provided with some well-deigned optimization
strategies such as (Kingma & Ba, 2014; Zeiler, 2012; Li
et al., 2019), the researchers can focus on the design of task-
oriented loss functions without being encumbered by the
solving methods. In addition, optimization can also help the
deep neural network (DNN) design. For example, Li et al.
(2018) show that optimization algorithms can in fact inspire
the architectures of DNN, and they connect the classical
optimization algorithms with some prevalent DNN architec-
tures, e.g., ResNet (He et al., 2016) and DenseNet (Huang
et al., 2017). While it is apparent that optimization does
benefit learning, the converse of the statement is not so affir-
mative. That is, can the well-developed learning methods
also benefit the optimization? If so, in what sense?

To answer the highlighted question, some techniques have
been proposed to combine data-driven learning frameworks
with the traditional optimization algorithms, so called as
learning-based optimization (Gregor & LeCun, 2010; Liu
et al., 2016; Chen & Pock, 2017; Liu et al., 2018a; Peng
et al., 2018). Usually, the combination is achieved by in-
troducing learnable parameters into the classical numerical
solvers at first, then performing discriminative learning on
collected training data so as to obtain some task-specific
(but possibly inconsistent) optimization schemes. Due to
the success of deep learning in a wide variety of application
fields, many researchers choose to consider DNN as the
learnable units for being combined with the optimization
procedure. For example, Sprechmann et al. (2015); Liu et al.
(2019); Chen et al. (2018) resemble a recurrent neural net-
work (RNN) to solve the LASSO problem, and Zhou et al.
(2018) show the connection between sparse coding and long
short term memory (LSTM). The empirical results in these
studies illustrate that the computational efficiency of opti-
mization is dramatically improved by the incorporation of
DNN. However, there is only few work that analyzes the
convergence properties of these algorithms in theory. Chen
et al. (2018) prove that there exist a sequence of parameters
for their learning-based optimization procedure to converge
linearly to the optimal solution of the LASSO problem. But
this result is specific to LASSO and may not apply to the
other problems.

While most existing methods and theories in learning-based
optimization are made specific to unconstrained problems,
many optimization problems arising from modern appli-

Differentiable Linearized ADMM

cations may contain some constraints. In this paper, we
would like to take a step towards learning-based constrained
optimization. To be more precise, we shall consider the
following linearly constrained problem:

min
Z,E

f(Z) + g(E), s.t. X = AZ + BE, (1)

where A ∈ Rm×d1 ,B ∈ Rm×d2 , X ∈ Rm×n, and f(·) and
g(·) are convex functions. Many problems in the learning
field can be formulated as (1), e.g., matrix recovery (Zhang
et al., 2018; 2015; Liu & Li, 2016; Liu et al., 2017), sub-
space clustering (You et al., 2016; Liu et al., 2013), image
deblurring (Liu et al., 2014) and so on. To solve the prob-
lem in (1), the Linearized ADMM (LADMM) algorithm
established by (Lin et al., 2011) is a desirable choice. But
LADMM generally needs hundreds or more iterations to
converge and is therefore time consuming; this motivates
us to seek a learning-based version of LADMM. However,
due to the presence of the equality constraint, existing theo-
ries are no longer applicable. As a consequence, we need
to invent new algorithm design and theoretical analysis to
address properly the following questions:

1. How to combine the deep learning strategy with
LADMM so as to solve the constrained problem in
(1)?

2. What is the relation between the learning-based
LADMM and original LADMM? Specifically, does
the output of learning-based LADMM still obey the
linear constraint? And, most importantly, can the learn-
ing based LADMM still ensure convergence rate?

To make LADMM learnable, first of all, we convert the
proximal operator in LADMM to a special neural network
structure. Then we replace the given matrix A and B
with some learnable weights and, meanwhile, expand the
dimension of the penalty parameter such that the penal-
ties on different directions are learnable as well, result-
ing in a novel method termed Differentiable LADMM (D-
LADMM). What is more, we prove that, under some mild
conditions, there do exist a set of learnable parameters that
ensure D-LADMM to achieve a linear rate of convergence,
and we show that those desired parameters can be attained
by training D-LADMM properly. Interestingly, our results
illustrate that it is possible for D-LADMM to possess a de-
cay rate of linear convergence smaller than that of LADMM,
which means that D-LADMM could converge faster than
LADMM (note that LADMM is not linearly convergent un-
less the objective function is strongly convex). In summary,
the main contributions of this paper include:

• We propose a learning-based method called D-
LADMM for solving the constrained optimization

problem in (1). It is worth noting that our techniques,
mainly including the proximal operator inspired net-
work structure and the proposed policies for dealing
with the linear constraint, would be useful for solving
the other constrained problems.

• As for convergence, due to the high flexility of the
learnable modules, it is difficult to assert the conver-
gence of learning-based optimization. Remarkably,
we establish a rigorous analysis on the convergence
properties of D-LADMM. Our analysis shows that D-
LADMM still satisfies the linear constraint and may
converge faster than LADMM in some cases.

To the best of our knowledge, we are the first to provide con-
vergence analysis for learning-based optimization method
under the context of constrained problems.

The remainder of the paper is organized as follows. We
review some related work in Section 2. In Section 3, we
start with a warm-up case to introduce how to convert the
proximal operator in LADMM as a shallow neural network,
and, accordingly, we establish the so-called D-LADMM.
We analyze the convergence properties of D-LADMM in
Section 4. Finally, empirical results that verify the proposed
theories are given in Sections 5.

2. Related Work
When ignoring the equality constraint of the problem in (1),
there already exist some learning-based algorithms equal to
the task, but most of them provide no convergence analysis.
We have spotted only one theoretical article; namely, Chen
et al. (2018) unroll the optimization procedure of LASSO as
a RNN and prove that the resulted learning-based algorithm
can achieve a linear rate of convergence. This result is sig-
nificant but, to our knowledge, there is no similar conclusion
available for constrained problems. The majority of the liter-
ature is consisting of empirical studies, e.g., (Ulyanov et al.,
2018; Zhang et al., 2017; Diamond et al., 2017) consider
DNN as implicit priors for image restoration. The prob-
lems addressed by these methods are in fact special cases of
problem (1); namely, their formulations can be obtained by
removing the constraint as well as some regularization term
from (1). Due to the lack of theoretical analysis, it is unclear
when or where their DNN dominant solution sequences
should be terminated.

Yang et al. (2016) recast the ADMM procedure as some
learnable network, called ADMM-Net, and they apply it
to a compressive sensing based Magnetic Resonance Imag-
ing (MRI) problem that is indeed a special case of problem
(1). The authors show that ADMM-Net performs well in
MRI, but there is no guarantee for ensuring the convergence
of their algorithm. Notice that our proposed D-LADMM
is built upon LADMM rather than ADMM. Comparing to

Differentiable Linearized ADMM

Table 1. Summary of notations in this paper.
a A scalar. A A matrix.
a A vector. A(·) An operator.
A � 0 A positive-definite matrix. A � 0 A positive-definite operator, 〈A(Z),Z〉 > 0, ∀Z 6= 0.
Im Im ∈ Rm×m identity matrix. ◦ Hadamard product (entrywise product).

‖a‖2 ‖a‖2 =
√∑

i a
2
i . ‖A‖F ‖A‖F =

√∑
ij A

2
ij .

‖A‖1 ‖A‖1 =
∑
ij |Aij |. ‖A‖ Maximum singular value.

‖ω‖2H 〈ω,H(ω)〉. dist2
H(ω,Ω∗) minω∗∈Ω∗ ‖ω − ω∗‖2H .

D Linear operator defined in (12). β Positive matrix with βij > 0.
ω (Z,E,−λ)

>. u (Z,E)
>.

β−1, 1/β The ij-th entry being 1/βij . H(ω) H(ω) =
(
D(Z),β ◦E,−(β)−1 ◦ λ

)>
.

h(u) f(Z) + g(E). Fk(ω) (W>
k λ,λ,AZ + BE−X)>.

Gk(·) (Wk, I,0)>βk ◦ (·). φ(ω) (A>λ+ ∂f(Z),λ+ ∂g(E),AZ + BE−X)>.
d∗(·) Lagrange dual function of (1). Ω∗ The solution set of (1).

ADMM, LADMM needs fewer auxiliary variables to solve
the constrained problems like (1). This detail is important,
because fewer auxiliary variables means fewer learnable pa-
rameters while recasting the algorithm to DNN and, conse-
quently, the reduction in the number of learnable parameters
can accelerate the training process.

3. Differentiable Linearized ADMM
In this section, we shall begin with a warm-up case to show
the conversion from a proximal iteration to some DNN
block. Then we introduce the proposed D-LADMM in
detail. The main notations used throughout this paper are
summarized in Table 1.

3.1. Warm-Up: Differentiable Proximal Operator

We first show how to differentialize the proximal operator
as a network block. Consider the following unconstrained
problem with two objective components:

min
z
f(z) +

1

2
‖Az− b‖22, (2)

where A ∈ Rm×d, z ∈ Rd, b ∈ Rm, and f(·) is a real-
valued convex function. The proximal gradient algorithm
solves problem (2) as follows:

zk = proxtf
(
zk−1 − tA>(Azk−1 − b)

)
, (3)

where t > 0 is the step size and prox is the proximal opera-
tor given by

proxf (x) = argmin
z

f(z) +
1

2
‖z − x‖22.

As pointed out by (Lin et al., 2011; Zhang et al., 2010;
Blumensath & Davies, 2008; Bot & Nguyen, 2018), the
strict convergence of the proximal gradient procedure (3)
relies on the condition t‖A‖2 < 1; that is,

1

t
I−A>A � 0. (4)

The iteration (3) is quite similar to a local block of DNN,
i.e., zk = Φ(Wkzk−1 + bk), where Φ(·) is an NN block.
Actually, the proximal operator connects tightly to the non-
linear activation function in DNN. In some cases, they share
the same form. For example, given a ∈ Rd, we may set the
function f(·) as f(x) =

∑d
i=1 fi(xi), where

fi(xi) =

{
1
2 (xi − ai)2 + c, xi < 0,
0, xi ≥ 0.

Then the proximal operator coincides with ReLU, a com-
monly used non-linear activation function for DNN; namely,
proxf (a) = ReLU(a), where ReLU(ai) = max{ai, 0}.
We can see that the proximal operator shares almost the
same role as the activation function. Inspired by this, we can
transform the iteration (3) into a network structure, namely
Differentiable Proximal Operator:

zk = ζ
(
zk−1 −W>

k−1(Azk−1 − b)
)
, (5)

where ζ(·) is some non-linear activation function and Wk−1

is the learnable parameter. As shown above, with proper
ζ(·) and function f(·), (3) and (5) can be the same.

3.2. Differentiable Linearized ADMM
First of all, we shall revisit the Linearized
ADMM (LADMM) algorithm (Lin et al., 2011). Given
A ∈ Rm×d1 ,B ∈ Rm×d2 , X ∈ Rm×n as well as two
real-valued convex functions, f(·) and g(·), the iterative
scheme of LADMM for solving (1) reads as:

Tk+1 = AZk + BEk −X,

Zk+1 = prox f
L1

{
Zk −

1

L1
A>(λk + βTk+1)

}
,

T̂k+1 = AZk+1 + BEk −X,

Ek+1 = prox g
L2

{
Ek −

1

L2
B>(λk + βT̂k+1)

}
,

λk+1 = λk + β(AZk+1 + BEk+1 −X),
(6)

Differentiable Linearized ADMM

+A + β

λk

Ek

Zk

X

-1

+ η Zk+1

A

-1

Ek+1

+

X

λk+1

B

-W1
T

+

-1

+ +β +-W2
T ζ

β

+

B

Figure 1. One block structure of the proposed D-LADMM. As we can see, such a LADMM inspired differentiable block reflects some
prevalent structures, such as residual connection (He et al., 2016) and dense connection (Huang et al., 2017).

where λ is Lagrange multiplier, L1 > 0 and L2 > 0 are
Lipsitz constants, and β > 0 is penalty parameter.

Following the spirits of learning-based optimization, we pro-
pose a DNN named Differentiable LADMM (D-LADMM).
One iteration of the original LADMM is generalized as a
block of neural network. Specifically, we retain the updat-
ing rule for Tk+1, T̂k+1 and the Lagrange multiplier λ,
replace the two proximal steps in (6) by differentiable prox-
imal operators and, meanwhile, expand the dimension of
the penalty parameter β such that the penalties on different
directions are learnable as well. In summary, one block of
our D-LADMM is given by

Tk+1 = AZk + BEk −X,

Zk+1 = η(θ1)k

(
Zk − (W1)>k (λk + βk ◦Tk+1)

)
,

T̂k+1 = AZk+1 + BEk −X,

Ek+1 = ζ(θ2)k

(
Ek − (W2)>k (λk + βk ◦ T̂k+1)

)
,

λk+1 = λk + βk ◦ (AZk+1 + BEk+1 −X),
(7)

where Θ = {(W1)k, (W2)k, (θ1)k, (θ2)k,βk}Kk=0 are
learnable matrices, and ◦ is the element-wise product. In
addition, η(·) and ζ(·) are some non-linear functions param-
eterized by θ1 and θ2, respectively.

It is worth mentioning that we intentionally keep the matri-
ces A and B in the updating step for Tk+1, T̂k+1 and λ.
The reason is that, instead of leaving everything for NN to
learn, our scheme can in fact benefit the compliance of the
equality constraint in (1) so as to help reveal the connection
between D-LADMM and LADMM.

D-LADMM, a block of which is illustrated in Figure 1, actu-
ally corresponds to a K-layer feed-forward neural network
with side connections. Many empirical results, e.g., (Gregor
& LeCun, 2010; Wang et al., 2016; Yang et al., 2016; Peng
et al., 2018), show that a well-trained K-layer differentiable
optimization inspired model—compared with the original
optimization algorithm—can obtain almost the same good
solution within one or even two order-of-magnitude fewer
iterations. Moreover, the quality of the output from each
layer will being gradually improved.

Among the other things, it is also feasible to expand the para-
metric space of D-LADMM by introducing more learnable
units. For example, we can generalize the linear transfor-
mation A to some non-linear mapping Aϑ1(·) : Rd → Rm
parameterized by ϑ1, so as to learn adaptively some proper
representation from data. But a theoretical analysis for such
models has to be much more involved.

Training Strategy: Different from LADMM which has no
parameter to learn, D-LADMM is treated as a special struc-
tured neural network and trained using stochastic gradient
descent (SGD) over the observation X, and all the param-
eters Θ are subject to learning. Depending on whether the
ground truth (i.e., true optimal solution to (1)) is given, we
present two different training strategies. Without the ground
truth, the training process is actualized by

min
Θ

f(ZK) + g(EK)− d∗(λK), (8)

where d∗(λK) is the dual function of (1) defined as
d∗(λK) = infZ,E f(Z) + g(E) + 〈λK ,AZ + BE−X〉.
When the functions f(·) and g(·) are given, we can obtain
explicitly the dual function d∗(·), which is a concave func-
tion bounded from above by f(·) + g(·); this means the
objective in (8) is always non-negative. Moreover, due to
the convexity of f(·) + g(·), the minimum attainable value
of (8) is exactly zero. In other words, the global optimum is
attained whenever the objective reaches zero.

In the cases where the ground-truth Z∗ and E∗ are provided
along with the training samples, D-LADMM can be trained
by simply minimizing the following square loss:

min
Θ
‖ZK − Z∗‖2F + ‖EK −E∗‖2F . (9)

4. Convergence Analysis
In this section, we formally establish the convergence of the
proposed D-LADMM, based on some specific settings. Al-
though learning-based optimization methods have achieved
a great success in practice, their merits have not been val-
idated sufficiently from the theoretical perspective. Chen
et al. (2018) and Liu et al. (2019) provide the convergence
analysis for Unfolded Iterative Shrinkage and Thresholding

Differentiable Linearized ADMM

Algorithm (ISTA). However, their techniques are applicable
only to unconstrained problems and thus not very helpful
for analyzing D-LADMM, which contains an equality con-
straint and some complex updating rules. In general, due
to the presence of non-linear learnable functions, it is hard,
if not impossible, to analyze theoretically the model in (7).
Fortunately, with some proper settings, we can still accom-
plish a rigorous analysis for D-LADMM.

4.1. Settings

Please notice that the analytical approach remains the same
while one of A and B is suppressed as the identity matrix.
Thus, for the sake of simplicity, we omit the given matrix
B from problem (1). We shall also focus on the cases
where η and ζ are respectively the proximal operators of
the functions f(·) and g(·). In other words, we consider the
following simplified D-LADMM for analysis:

Tk+1 = AZk + Ek −X,

Zk+1 = proxfθk

(
Zk−

1

θk
◦[W>

k (λk + βk ◦Tk+1)]

)
,

Ek+1 = proxgβk

(
X−AZk+1 −

1

βk
◦ λk

)
,

λk+1 = λk + βk ◦ (AZk+1 + Ek+1 −X),
(10)

where proxgβ(R) = argminE{g(E) + β
2 ◦ ‖E − R‖2F }

and βk,θk > 0.

By the definition of the proximal operator, we rewrite the
above (10) as follows:

Zk+1 = argmin
Z

{
f(Z) +

θk
2
◦ ‖Z− Zk + (θk)−1◦

W>
k

(
λk + βk ◦ (AZk + Ek −X)

)
‖2F
}
,

Ek+1 = argmin
E

{
g(E) +

βk
2
◦ ‖E−X + AZk+1

+(βk)−1 ◦ λk‖2F
}
,

λk+1 = λk + βk ◦ (AZk+1 + Ek+1 −X).
(11)

The above is indeed a special case of D-LADMM (7),
with learnable parameters Θ = {(Wk ∈ Rm×d,θk ∈
Rd×n,βk ∈ Rm×n)}Kk=0.

As aforementioned, the success of proximal operator based
methods may rely on the condition in (4). Given (W,θ,β),
the positive-definite matrix in (4) becomes a linear operator
D : Rd×n → Rd×n given by

D(Z) = θ ◦ (Z)−W>β ◦ (AZ), ∀Z ∈ Rd×n. (12)

It is known that, to ensure the convergence of LADMM, the
positive-definiteness condition in (4) has to be obeyed. For
the same reason, the convergence of D-LADMM necessi-
tates the positive-definiteness of the operator D. Based on

this, we define the following set:

S(σ,A) ,
{

(W,θ,β)
∣∣ ‖W −A‖ ≤ σ,D � 0,

β,θ > 0} ,
(13)

whereD � 0 means that the operatorD is a positive-definite
operator. The above set, S(σ,A), could be non-empty if
a proper A is given. For example, when W = A and
both β and θ degenerate to scalars, the non-emptiness of
S(σ,A) is actually equivalent to the classical condition (4).
In general, ‖W−A‖ < σ ensures that the learnable weight
is close to A, which guarantees that the first minimization
problem in (11) has an analogous optimization landscape
with the original one, and D � 0 ensures that the local
approximation in the proximal operator is a strict upper
bound of the original objective. Thus, we can treat the
non-emptiness of the set S(σ,A) as a generalization of the
condition (4), and we would make an assumption as follows.

Assumption 1. There exists a constant c such that S(σ,A)
is non-empty for any σ that satisfies 0 ≤ σ ≤ c, namely the
given A is proper.

4.2. Convergence Property
Before proving the main theorem, we shall establish some
basic lemmas by which the candidate parameters set for
Θ = {Wk,θk,βk}Kk=0 can be derived. Note that, for all
the lemmas and theorems in this section, we assume that the
Assumption 1 is satisfied.

Define an operatorHk as

Hk(·) =

 Dk 0 0
0 βk◦ 0
0 0 (βk)−1◦

 (·), (14)

where Dk is the operator (12) given (Wk,θk,βk).

Firstly, we prove an inequality for the objective h(uk).

Lemma 4.1. Let the sequence {ωk} be generated by (11).
Then we have:

h(u)− h(uk+1) + 〈ω − ωk+1,Fk(ωk+1)+

Gk(Ek −Ek+1) +Hk(ωk+1 − ωk)〉 ≥ 0, ∀ω,
(15)

where Fk(·) and Gk(·) are simply two linear operators as
defined in Table 1.

Lemma 4.1 suggests that the quantity ‖ωk+1 − ωk‖2Hk

could be used to measure the distance between the iter-
ate ωk+1 to the solution set Ω∗. In other words, when
‖ωk+1 − ωk‖2Hk

= 0, the positive-definiteness of Hk(·)
gives ωk+1 − ωk = 0. If Wk = A, we have

h(u)− h(uk+1) + 〈ω − ωk+1,Fk(ωk+1)〉 ≥ 0, ∀ω,

which implies that ωk+1 is a solution of problem (1).

Differentiable Linearized ADMM

Lemma 4.2. Let the sequence {ωk} be generated by (11).
Suppose that, for any point ω∗ ∈ Ω∗, there exists proper
(Wk,θk,βk) ∈ S(σ,A) such that:

〈ωk+1 − ω∗,Hk(ωk − ωk+1)〉 ≥ 0, ∀k ≥ 0, (16)

whereHk(·) is given in (14). Then ‖ωk‖F <∞ holds for
all k, and we have:

‖ωk−ω∗‖2Hk
≥ ‖ωk+1−ω∗‖2Hk

+‖ωk−ωk+1‖2Hk
. (17)

Lemma 4.2 shows that there exist proper learnable parame-
ters that make {ωk} strictly contractive with respect to the
solution set Ω∗. It is worth mentioning that the proof of
Lemma 4.2 may partly explain why D-LADMM converges
faster than LADMM. Denote ‖Wk −A‖ = σk. From the
proof process, we find that, when ‖Ek+1 − Ek‖F is large
and ‖Zk+1 − Z∗‖F is small, σk can be set as a large value,
which means the feasible space of the learnable weight is
large as well. Conversely, the better weight retrieved from
the larger feasible space can also promote the convergence
speed. In one word, the sequence {σk}Kk=0 is somehow
learnt adaptably so as to benefit global convergence.

We now show that, whenever there is no solution that sat-
isfies (Wk,θk,βk) ∈ S(σ,A) and ωk+1 6= ωk, the opti-
mum is attained.

Lemma 4.3. Let the sequence {ωk} be generated by (11).
Given ωk, if the updating rule in (11) achieves ωk+1 = ωk
for all (Wk,θk,βk) ∈ S(σ,A), then ωk = ωk+1 ∈ Ω∗.

4.3. Main Results
Equipped with the above lemmas, we establish a couple of
theorems to guarantee the convergence of D-LADMM (11).

Theorem 1 (Convergence of D-LADMM). Let the se-
quence {ωk} be generated by (11). There exists proper
(Wk,θk,βk) ∈ S(σ,A) such that {ωk} converges to a
solution ω∗ ∈ Ω∗.

So, in general, there exist proper parameters such that the
outputs of our D-LADMM converge to the optimal solution
of problem (1). In the rest of this subsection, we will further
investigate its convergence rate, which is measured by a
point-to-set distance dist2

H(ω,Ω∗). The following theorem
shows that we can find a set of parameters to make the
distance decrease monotonically.

Theorem 2 (Monotonicity of D-LADMM). Let the se-
quence {ωk} be generated by (11). There exists proper
(Wk,θk,βk) ∈ S(σ,A) such that dist2

Hk
(ωk,Ω

∗) de-
creases monotonically when k is large enough.

The above theorem proves the monotonic decreasing prop-
erty of the deviation between the produced solution ωk and
the true solution set Ω∗. This is different from Lemma 4.2
in which the distance is measured by a point-to-point metric.

For convenience, we combine all the updating rules in (11)
into a single operator T :

T (Wk,θk,βk)(ωk) = ωk+1.

Next, we will show that, under some condition imposed on
T , D-LADMM can attain a linear rate of convergence.

Theorem 3 (Convergence Rate of D-LADMM). Let the
sequence {ωk} be generated by (11). Suppose that there
exist (A,θ∗,β∗) and K0 > 0 such that for any k ≥ K0

(i.e., k is large enough) the following holds:

(EBC): dist2
H∗(ω̃,Ω∗) ≤ κ

16
‖ω̃ − ωk‖2H∗ , (18)

where H∗(·) is given in (14) by setting (Wk,θk,βk) as
(A,θ∗,β∗) and ω̃ = T (A,θ∗,β∗)(ωk). Then there exists
proper (Wk,θk,βk) ∈ S(σ,A) such that dist2

Hk
(ω,Ω∗)

converges to zero linearly; namely,

dist2
Hk+1

(ωk+1,Ω
∗) < γ dist2

Hk
(ωk,Ω

∗), (19)

where γ is some positive constant smaller than 1.

From Theorem 3, we know that if the Error Bound Condi-
tion (EBC) in (18) is satisfied, then there exists a sequence
{(Wk,θk,βk)}Kk=0 → (A,θ∗,β∗) that entables the linear
decay rate of dist2

Hk
(ωk,Ω

∗). Actually, our learning based
D-LADMM does obtain a faster convergence speed than
fixing all parameters as (A,θ∗,β∗). To confirm this, we
give a specific example in the following lemma.

Lemma 4.4. Consider the case where the prox opera-
tor of the function f(·) is bijective. For any ω 6∈ Ω∗

and ω∗ ∈ Ω∗, there exists a residue (∆w,∆θ,∆β) such
that ‖T (A + ∆w,θ

∗ + ∆θ,β
∗ + ∆β)(ω) − ω∗‖F <

‖T (A,θ∗,β∗)(ω)− ω∗‖F .

Lemma 4.4 implies that, at each iteration, we can find appro-
priate parameter to construct a solution that is closer to Ω∗

than the solution produced by fixed parameters. Hence, it
is entirely possible for the proposed D-LADMM to achieve
a convergence rate higher than the traditional LADMM.
The first experiment in Section 5 verifies the superiority of
D-LADMM over LADMM, in terms of convergence speed.

It is worth noting that, although the convergence speed of
LADMM can be improved by setting suitable penalty pa-
rameter β for each dimension, it is really difficult to do this
in practice. In contrast, the proposed D-LADMM provides a
convenient way to learn all parameters adaptively from data
so as to gain high convergence speed, as will be confirmed
in the experiments.

4.4. Discussions on D-LADMM
First, our analysis for the convergence of D-LADMM is very
general and can actually include the traditional LADMM
as a special case. In effect, some already known properties

Differentiable Linearized ADMM

0 20 40 60 80 100 120 140 160 180 200

Iterations/Layers

-14

-12

-10

-8

-6

-4

-2

0

2

N
M

S
E

(d
B

)

LADMM (=5)

LADMM (=1)

LADMM (=0.5)

D-LADMM

Figure 2. NMSE comparison among D-LADMM and LADMM
with different λ on the simulation dataset.

of LADMM can be deduced from our results, but not vice
versa. The analysis techniques designed for traditional op-
timization cannot be directly applied to our case, and it is
considerably more challenging to establish the convergence
properties of D-LADMM.

Second, our EBC is indeed weaker than the conditions as-
sumed by the previous studies (e.g., (Han & Yuan, 2013;
Han et al., 2015; Yang & Han, 2016)), which prove linear
convergence rate for ADMM or LADMM. More precisely,
as pointed out by Liu et al. (2018b), all the EBCs in (Han
& Yuan, 2013; Han et al., 2015; Yang & Han, 2016) can be
equivalently expressed as

dist(ω,Ω∗) ≤ κ·‖φ(ω)‖F , ∀ω, dist(ω,Ω∗) ≤ ε, (20)

where φ(·) is a mapping given in Table 1. Notably, the
following lemma confirms the generality of our EBC.
Lemma 4.5. The EBC in (20) suffices to ensure the validity
of our EBC given in (18).
One may have noticed that our EBC is somewhat similar to
the condition by Liu et al. (2018b). Yet the work of (Liu
et al., 2018b) did not reveal the merit of learning-based
optimization; that is, as shown in Lemma 4.2, all the param-
eters are learnt automatically from data with the purpose of
accelerating the convergence speed.

5. Experiments
Different from LADMM which contains no learnable pa-
rameter, the proposed D-LADMM is treated as a structured
neural network and trained using stochastic gradient descent
(SGD) over the observation X. All the parameters, denoted
as Θ, are subject to learning. For convenience, we mainly
consider the following `1-norm constrained problem for
empirical validations:

min
Z,E

λ‖Z‖1 + ‖E‖1, s.t. X = AZ + E, (21)

where λ is a parameter to balance the contribution of each
term. We use both LADMM and the proposed D-LADMM
to solve the above problem, and compare their results
on both synthetic datasets and natural images1. Our D-
LADMM is implemented on the PyTorch platform.

1Code: https://github.com/zzs1994/D-LADMM

5.1. Simulation Experiments

We first experiment with synthetic data, using similar ex-
perimental settings as (Chen et al., 2018). Specifically, we
set m = 500 and d = 250. The numbers of training and
testing samples are set to 10, 000 and 1, 000, respectively.
Elements of the dictionary matrix A are sampled from i.i.d.
Gaussian, namely Ai,j ∼ N(0, 1/d). The columns of A
are normalized have a unit `2 norm. To make a fair com-
parison, A is fixed and shared by all considered methods.
The sparse coefficient matrix Z is generated by using a
Bernoulli sampling operator (with probability 0.1) to ran-
domly select values from the standard Gaussian distribution,
i.e., Z = Ber(0.1) ◦N(0, 1). The sparse matrix E is gener-
ated in the same way as Z, and the data samples for training
and testing are constructed as X = AZ + E.

For the proposed D-LADMM, the number of layers is set
to K = 15. SGD is adopted to update the parameters with
learning rate lr = 0.01. Regarding the activation function,
we use the softshrink operator by Beck & Teboulle (2009).
In these experiments, the ground-truth Z∗ and E∗ of training
samples are known, thereby the second strategy in (9) is
adopted to train our D-LADMM network. The results are
evaluated by a measure of NMSE (normalized mean square
error in dB), defined in terms of both Z and E:

NMSE=10 log10

(
‖ZK−Z∗‖2F
‖Z∗‖2F

+
‖EK−E∗‖2F
‖E∗‖2F

)
. (22)

In Figure 2, we compare the proposed D-LADMM with
LADMM. As one can see, the NMSE achieved by D-
LADMM decreases linearly as the layer number k grows
and is much smaller than that by LADMM. These results
confirm our main results stated in Theorems 1, 2 and 3. Note
here that, unlike D-LADMM, LADMM needs a proper λ
to produce correct solutions, thereby we test several differ-
ent λ’s for LADMM. One can see that the choice of λ has
dramatic influences on the performance of LADMM, and
smaller λ may lead to better results.

5.2. Natural Image Denoising

We also evaluate the considered methods on the task of nat-
ural image denoising, which is to remove the noise term E
from the noisy observation X, or recover the noise-free
image AZ from X as equal. The experimental data is
a classic dataset consisting of 12 natural images, called
Waterloo BragZone Greyscale set2, in which a fraction of
r% Salt-and-pepper noise is added to each image. Fur-
thermore, the rectangle of each image is divided into non-
overlapping patches of size 16 × 16. We use the patch-
dictionary method (Xu & Yin, 2014) to learn a 256× 512
dictionary A and use it to initialize our D-LADMM. The
network and parameter settings are the same as in the simu-
lation experiments. Since the ground truth is unknown, we

Differentiable Linearized ADMM

Table 2. PSNR comparison on 12 images with noise rate 10%. For LADMM, we examine its performance at a couple of different
iterations. LADMM is comparable to D-LADMM only when it undergoes a large number of iterations.

PSNR Images
Barb Boat France Frog Goldhill Lena Library Mandrill Mountain Peppers Washsat Zelda

Baseline 15.4 15.3 14.5 15.6 15.4 15.4 14.2 15.6 14.4 15.1 15.1 15.2
LADMM (iter=15) 22.1 24.2 18.0 23.1 25.2 25.6 15.0 21.7 17.7 25.1 30.6 29.7

LADMM (iter=150) 27.9 29.8 21.6 26.5 30.4 31.3 17.8 24.3 20.5 30.0 34.5 35.7
LADMM (iter=1500) 29.9 31.1 22.2 26.9 31.8 33.2 18.0 25.1 20.7 32.8 36.2 37.8
D-LADMM (K=15) 29.5 31.3 21.9 25.9 32.5 35.1 18.8 24.5 19.3 34.3 35.6 38.9

(a) GND (b) Noisy image (PSNR=15.4) (c) D-LADMM (PSNR=35.1) (d) LADMM (PSNR=31.3)

Figure 3. Denoising results the Lena image. (a) The ground-truth images. (b) The noisy images with salt-and-pepper noise of rate 10%.
(c) Denoised images by our D-LADMM. (d) Denoised images by LADMM with 150 iterations. Best view on screen!

use the objective (8) as the loss function for training. The
parameter in problem (21) is set as λ = 0.5, and Peak signal-
to-noise ratio (PSNR) is used to evaluate the performance
of various methods.

Table 2 shows the comparison results at noise rate 10%.
For LADMM, which usually needs a large of iterations to
converge, we examine its performance at 15-th, 150-th and
1, 500-th iterations—note that one iteration of LADMM
corresponds to one block/layer of our D-LADMM. As can
be seen, our 15-layers D-LADMM achieves much higher
PSNR than the LADMM at 15-th iteration, and LADMM
requires 1,500 iterations to obtain results comparable to our
D-LADMM. In other words, compared with LADMM, D-
LADMM achieves almost the same good solution within
two order-of-magnitude fewer iterations. In Figure 3, we
compare the visual quality of the denoised images by D-
LADMM and LADMM, using the Lena image as the ex-
perimental data. It can be seen that the quality of the im-
ages recovered by D-LADMM is visibly higher than that of
LADMM, especially for the areas full of rich details. All the
above results demonstrate the superiorities of our proposed
D-LADMM over LADMM.

5.3. Complexity Comparison
Suppose that A ∈ Rm×d1 , B ∈ Rm×d2 and X ∈ Rm×n,
then the complexity of training D-LADMM is O((d1 +
d2)mnKp), where K is the number of layers. Whereas

the complexity of LADMM is O((d1 + d2)mnt), where t
is the number of iterations. Usually, t is one or two order-
of-magnitude greater than K. Notice, that D-LADMM
achieves comparable performance with LADMM only when
Kp << t, e.g., t = 1, 500 and Kp = 225 as shown in Ta-
ble 2. In experiments, to both achieve an NMSE of −13dB
with n = 10, 000 and 20, 000, D-LADMM needs 5 and 9
minutes (including training time), while LADMM needs 12
and 22 minutes, respectively. Therefore, even considering
the training computational load, D-LADMM is still much
faster than LADMM which needs a large iteration number.
In addition, it is worth noting that, when a new data point
comes, D-LADMM only needs a very low computational
load for forward propagation.

6. Conclusion
In this paper, inspired by LADMM, we propose D-LADMM,
a deep-learning-based optimization method for solving the
constrained problem (1). Specificly, we first convert the
proximal operator in LADMM to a special NN structure and
replace the given matrix A in the proximal operator by learn-
able weights. Furthermore, we generalize the scalar to some
elements-wise operations. From the theoretical perspective,
we prove that, under some mild technical conditions, D-
LADMM can obtain the linear convergence and converge
faster than original LADMM. Experiments on simulative
and real applications verify the superiority of D-LADMM.

Differentiable Linearized ADMM

Acknowledgments
The work of Guangcan Liu is supported in part by NSF of
China under Grant 61622305 and Grant 61502238, in part
by Natural Science Foundation of Jiangsu Province of China
under Grant BK20160040, in part by SenseTime Research
Fund. The work of Zhouchen Lin is supported in part by 973
Program of China under Grant 2015CB352502, in part by
NSF of China under Grant 61625301 and Grant 61731018,
in part by Qualcomm and Microsoft Research Asia.

References
Beck, A. and Teboulle, M. A fast iterative shrinkage-

thresholding algorithm for linear inverse problems. SIAM
Journal on Imaging Sciences, 2(1):183–202, 2009.

Blumensath, T. and Davies, M. E. Iterative thresholding for
sparse approximations. Journal of Fourier analysis and
Applications, 14(5-6):629–654, 2008.

Bot, R. I. and Nguyen, D.-K. The proximal alternating
direction method of multipliers in the nonconvex set-
ting: convergence analysis and rates. arXiv preprint
arXiv:1801.01994, 2018.

Chen, X., Liu, J., Wang, Z., and Yin, W. Theoretical linear
convergence of unfolded ISTA and its practical weights
and thresholds. arXiv preprint arXiv:1808.10038, 2018.

Chen, Y. and Pock, T. Trainable nonlinear reaction diffu-
sion: A flexible framework for fast and effective image
restoration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(6):1256–1272, 2017.

Diamond, S., Sitzmann, V., Heide, F., and Wetzstein, G.
Unrolled optimization with deep priors. arXiv preprint
arXiv:1705.08041, 2017.

Gregor, K. and LeCun, Y. Learning fast approximations
of sparse coding. In Proceedings of the International
Conference on Machine Learning, pp. 399–406, 2010.

Han, D. and Yuan, X. Local linear convergence of the
alternating direction method of multipliers for quadratic
programs. SIAM Journal on Numerical Analysis, 51(6):
3446–3457, 2013.

Han, D., Sun, D., and Zhang, L. Linear rate convergence
of the alternating direction method of multipliers for con-
vex composite quadratic and semi-definite programming.
arXiv preprint arXiv:1508.02134, 2015.

He, B. and Yuan, X. On non-ergodic convergence rate of
Douglas–Rachford alternating direction method of multi-
pliers. Numerische Mathematik, 130(3):567–577, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2261–2269, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, H., Yang, Y., Chen, D., and Lin, Z. Optimization al-
gorithm inspired deep neural network structure design.
arXiv preprint arXiv:1810.01638, 2018.

Li, J., Fang, C., and Lin, Z. Lifted proximal operator ma-
chines. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 2019.

Lin, Z., Liu, R., and Su, Z. Linearized alternating direction
method with adaptive penalty for low-rank representation.
In Proceedings of the Advances in Neural Information
Processing Systems, pp. 612–620, 2011.

Liu, G. and Li, P. Low-rank matrix completion in the pres-
ence of high coherence. IEEE Transactions on Signal
Processing, 64(21):5623–5633, 2016.

Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., and Ma, Y. Robust
recovery of subspace structures by low-rank representa-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(1):171–184, 2013.

Liu, G., Chang, S., and Ma, Y. Blind image deblurring
using spectral properties of convolution operators. IEEE
Transactions on Image Processing, 23(12):5047–5056,
2014.

Liu, G., Liu, Q., and Li, P. Blessing of dimensionality:
Recovering mixture data via dictionary pursuit. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 39(1):47–60, 2017.

Liu, J., Chen, X., Wang, Z., and Yin, W. ALISTA: Analytic
weights are as good as learned weights in LISTA. In
International Conference on Learning Representations,
2019.

Liu, Q., Liu, G., Li, L., Yuan, X.-T., Wang, M., and Liu, W.
Reversed spectral hashing. IEEE Transactions on Neu-
ral Networks and Learning Systems, 29(6):2441–2449,
2018a.

Liu, R., Zhong, G., Cao, J., Lin, Z., Shan, S., and Luo, Z.
Learning to diffuse: A new perspective to design pdes for
visual analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38(12):2457–2471, 2016.

Differentiable Linearized ADMM

Liu, Y., Yuan, X., Zeng, S., and Zhang, J. Partial error
bound conditions and the linear convergence rate of the
alternating direction method of multipliers. SIAM Journal
on Numerical Analysis, 56(4):2095–2123, 2018b.

Peng, X., Zhou, J. T., and Zhu, H. K-meansNet: When k-
means meets differentiable programming. arXiv preprint
arXiv:1808.07292, 2018.

Sprechmann, P., Bronstein, A. M., and Sapiro, G. Learning
efficient sparse and low rank models. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 37
(9):1821–1833, 2015.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. Deep image
prior. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 9446–9454,
2018.

Wang, Z., Liu, D., Chang, S., Ling, Q., Yang, Y., and Huang,
T. S. D3: Deep dual-domain based fast restoration of
jpeg-compressed images. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 2764–2772, 2016.

Xu, Y. and Yin, W. A fast patch-dictionary method for
whole image recovery. arXiv preprint arXiv:1408.3740,
2014.

Yang, W. H. and Han, D. Linear convergence of the al-
ternating direction method of multipliers for a class of
convex optimization problems. SIAM Journal on Numeri-
cal Analysis, 54(2):625–640, 2016.

Yang, Y., Sun, J., Li, H., and Xu, Z. Deep ADMM-Net
for compressive sensing MRI. In Proceedings of the
Advances in Neural Information Processing Systems, pp.
10–18, 2016.

You, C., Robinson, D., and Vidal, R. Scalable sparse sub-
space clustering by orthogonal matching pursuit. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3918–3927, 2016.

Zeiler, M. D. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

Zhang, H., Lin, Z., Zhang, C., and Chang, E. Y. Exact
recoverability of robust PCA via outlier pursuit with tight
recovery bounds. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 3143–3149, 2015.

Zhang, K., Zuo, W., Gu, S., and Zhang, L. Learning deep
cnn denoiser prior for image restoration. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, 2017.

Zhang, X., Burger, M., Bresson, X., and Osher, S. Bregman-
ized nonlocal regularization for deconvolution and sparse
reconstruction. SIAM Journal on Imaging Sciences, 3(3):
253–276, 2010.

Zhang, X., Wang, L., Yu, Y., and Gu, Q. A primal-dual anal-
ysis of global optimality in nonconvex low-rank matrix
recovery. In Proceedings of the International Conference
on Machine Learning, pp. 5857–5866, 2018.

Zhou, J. T., Di, K., Du, J., Peng, X., Yang, H., Pan, S. J.,
Tsang, I. W., Liu, Y., Qin, Z., and Goh, R. S. M. SC2Net:
Sparse LSTMs for sparse coding. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2018.

Differentiable Linearized ADMM
(Supplementary Material)

Xingyu Xie * 1 Jianlong Wu * 1 Zhisheng Zhong 1 Guangcan Liu 2 Zhouchen Lin 1

This Supplementary Material section contains the comparison with ADMM-Net, the technical proofs of convergence results,
and some auxiliary lemmas of the manuscript entitled Differentiable Linearized ADMM. It is structured as follows. Section A
presents the comparison between ADMM-Net and our proposed D-LADMM. Section B provides the proof of the lemmas
and theorems in Section 3.

A. Comparison with ADMM-Net

Table 3. PSNR comparison with ADMM-Net (Yang et al., 2016) on image recovery task under different sampling ratios.
Sampling rate\methods Zero padding ADMM-Net D-LADMM(ours)

20% 22.4 29.7 31.2
30% 24.7 31.8 33.5

We also conduct a brain MR images recovery experiment to fairly compare with ADMM-Net (Yang et al., 2016). Similar to
Yang et al. (2016), we randomly select 100 images for training and 50 images for testing. We re-run these two methods on
the same training and testing images. Table 3 shows the PSNR comparison. We can see that our D-LADMM achieves better
results than ADMM-Net under both two different sampling ratios. Specifically, under 20% sampling ratio, D-LADMM
achieves a PSNR of 31.2, which is better than the 29.7 produced by ADMM-Net. As for the training time, D-LADMM costs
7.5 hours on a CPU with 2.3GHz, while ADMM-Net needs 17 hours. So, D-LADMM is more efficient than ADMM-Net.
The reason is as follows. For the compressed sensing problem, learnable parameters of D-LADMM are mostly the filters of
Z-related iteration. In contrast, ADMM-Net has much more parameters to learn. With less learnable parameters, D-LADMM
is more efficient on computation and memory. Most importantly, we provide the convergence analysis for learning-based
method with constraints which is missing for ADMM-Net. In additional, we also provide a way to train the optimization
inspired network in an unsupervised way in sharp contrast to the ADMM-Net’s supervised training way.

B. Proofs for Section 3
B.1. Proof of Lemma 4.1

Proof. Note that Lemma 3.1 in (He & Yuan, 2015) inspired our proof.

From optimality conditions of minimization in the proxf (·), we have:

f(Z)− f(Zk+1) +
〈
Z− Zk+1,θk ◦ (Zk+1 − Zk) + W>

k (λk + βk ◦Tk)
〉
≥ 0, ∀Z,

where Tk = AZk + Ek −X. By using the last line of (11), we can get:

f(Z)− f(Zk+1) +
〈
Z− Zk+1,W

>
k λk+1 + W>

k βk ◦ (Ek −Ek+1) +Dk(Zk+1 − Zk)
〉
≥ 0. (23)

*Equal contribution.
1Key Lab. of Machine Perception, School of EECS, Peking University.
2B-DAT and CICAEET, School of Automation, Nanjing University of Information Science and Technology.
Correspondence to: Guangcan Liu <gcliu@nuist.edu.cn>, Zhouchen Lin <zlin@pku.edu.cn>.

Proceedings of the 36 th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by
the author(s).

Differentiable Linearized ADMM

Similarly, from optimality conditions of Ek+1 in (11), we have:

g(E)− g(Ek+1) + 〈E−Ek+1,λk + βk ◦ (AZk+1 + Ek+1 −X)〉 ≥ 0, ∀E.

Also, we can get:
g(E)− g(Ek+1) + 〈E−Ek+1,λk+1〉 ≥ 0, ∀E. (24)

Note that, we have:
(βk)−1 ◦ (λk+1 − λk)− (AZk+1 + Ek+1 −X) = 0. (25)

Combining (23), (24) and (25) together, we get:

h(u)− h(uk+1) + 〈ω − ωk+1,Nk〉 ≥ 0, ∀ωk,

where

Nk =

 W>
k (λk+1 + βk ◦ (Ek −Ek+1))

λk+1

AZk+1 + Ek+1 −X

+

 Dk(Zk+1 − Zk)
0

(βk)−1 ◦ (λk − λk+1)

 .

Using the notations of Fk,Gk andHk, we complete the proof immediately.

B.2. Proof of Lemma 4.2

Proof. Setting ω = ω∗ in (15), we have:

〈ωk+1 − ω∗,Hk(ωk − ωk+1)〉 ≥ h(uk+1)− h(u∗) + 〈ωk+1 − ω∗,Fk(ωk+1) + Gk(Ek −Ek+1)〉 . (26)

Since ω∗ ∈ Ω∗ and by the Section 2.2 in (He & Yuan, 2015; Liu et al., 2018b), we have:

h(uk+1)− h(u∗) + 〈ωk+1 − ω∗,F∗(ω∗)〉 ≥ 0, (27)

where

F∗(ω) =

 A>λ
λ

AZ + E−X

 .

According to the above inequality, we have:

h(uk+1)− h(u∗) + 〈(∆k)ω, Fk(ωk+1)〉 = h(uk+1)− h(u∗) + 〈(∆k)ω, F∗(ω∗)〉+ 〈(∆k)ω, Fk(ωk+1)−F∗(ω∗)〉
≥ 〈λk+1, (Wk −A)(Zk+1 − Z∗)〉 ,

(28)
where (∆k)ω = ωk+1 − ω∗.
Note that AZ∗ + E∗ = X and by the notation of Gk in Table 1, we obtain:

〈ωk+1 − ω∗,Gk(Ek −Ek+1)〉
= 〈βk ◦ (Ek −Ek+1),WkZk+1 + Ek+1 −X〉 − 〈βk ◦ (Ek −Ek+1), (Wk −A)Z∗〉
= 〈(Ek −Ek+1),βk ◦ (AZk+1 + Ek+1 −X)〉+

〈
(Ek −Ek+1),βk ◦

(
(Wk −A)(Zk+1 − Z∗)

)〉
= 〈βk ◦ (Ek −Ek+1), (Wk −A)(Zk+1 − Z∗)〉+ 〈(Ek −Ek+1),λk+1 − λk〉 .

(29)

From optimality conditions of Ek+1 in (11), we have:

0 ∈ ∂g(Ek+1) + λk+1.

Due to the convexity of the function g(·), we can conclude that:

〈(Ek −Ek+1),λk+1 − λk〉 ≥ 0.

Consider that Zk,Ek belong to the image of some proximal operators which are single-valued mappings. We prove
finiteness by induction. We assume ‖ωk‖F < ∞ for all k ∈ [1, k − 1]. The single-valuedness of prox, finiteness of ωk

Differentiable Linearized ADMM

and closedness of the functions make ωk+1 exist. Hence, when the σk is small enough or even equal to 0, then for any
(Wk,θk,βk) ∈ S(σk,A), we can obtain:

〈(Ek −Ek+1),λk+1 − λk〉+ 〈λk+1,∆k(Zk+1 − Z∗)〉+ 〈βk ◦ (Ek −Ek+1),∆k(Zk+1 − Z∗)〉 ≥ 0,

where ∆k = Wk −A. Combing the lower bounds in (28) and (29) together, we have the bound in (16) immediately.
Furthermore, due to (16) we have:

‖ωk − ω∗‖2Hk
=‖ωk − ωk+1 + ωk+1 − ω∗‖2Hk

=‖ωk+1 − ω∗‖2Hk
+ ‖ωk − ωk+1‖2Hk

+ 2〈ωk+1 − ω∗,Hk(ωk − ωk+1)〉
≥‖ωk+1 − ω∗‖2Hk

+ ‖ωk − ωk+1‖2Hk
.

We get the bound in (17) directly and can easily derive the finiteness of ‖ωk‖F from it. We finish the proof.

B.3. Proof of Theorem 1

Proof. From the Lemma 4.2, given one ω∗ ∈ Ω∗, there exist proper (Wk,θk,βk) ∈ S(σk,A) such that:

∞∑
k=0

‖ωk − ωk+1‖2Hk
≤
∞∑
k=0

‖ωk − ω∗‖2Hk
− ‖ωk+1 − ω∗‖2Hk

≤ ‖ω0 − ω∗‖2H0 +

∞∑
k=0

∣∣∣‖ωk+1 − ω∗‖2(Hk+1−Hk)

∣∣∣ .
If we define some large enough θ∗,β∗ and let σk → 0, θk → θ∗ and βk → β∗ with a speed faster than 1/k2, i.e.,
‖Hk+1 −Hk‖ = O(1/k2), then we can get

∑∞
k=0

∣∣∣‖ωk+1 − ω∗‖2(Hk+1−Hk)

∣∣∣ <∞, and thus:

∞∑
k=0

‖ωk − ωk+1‖2Hk
<∞.

Consequently, we have ‖ωk − ωk+1‖2Hk
→ 0. Since (Wk,θk,βk) ∈ S(σk,A), we have Hk � 0. Then, by (17) and∑∞

k=0 ‖ωk+1 − ω∗‖2(Hk+1−Hk) < ∞, we know that the sequence {ωk} is bounded and let {ωkt} be a subsequence of
{ωk} converging to ω∞. Considering the inequality (15) for the subsequence {ωkt}, taking the limit over t. Since we let
σk → 0, then use the fact that ‖ωkt − ωkt+1‖2Hk

→ 0, we obtain:

h(u)− h(u∞) + 〈ω − ω∞,F∞(ω∞)〉 ≥ 0,

where F∞(·) = F∗(·) define in (27) when σk → 0. We conclude that ω∞ ∈ Ω∗. Since Hk � 0 for all k and
‖ωk − ωk+1‖2Hk

→ 0, we immediately have ωk → ω∞ as k →∞ and the proof is complete.

B.4. Proof of Lemma 4.3

Proof. On the one hand any (Wk,θk,βk) ∈ S(σ,A) does not change the solution of (11), on the other hand prox is
single-valued. Hence we conclude that (AZk + Ek − X) = 0, and λk = 0 or σk = 0. According to the optimality
conditions of the (11) and ωk = ωk+1, we have:

0 ∈ ∂f(Zk+1) + ATλk+1, AZk+1 + Ek+1 −X = 0.

Note that we already have 0 ∈ ∂g(Ek+1) + λk+1. Hence, ωk = ωk+1 are the KKT point. Since the original problem (1) is
convex with linear constraint, the KKT conditions are also sufficient, thus we conclude that ωk = ωk+1 ∈ Ω∗.

B.5. Proof of Theorem 2

Proof. We assume that there exists some (Wk,θk,βk) ∈ S(σ,A) to make the ωk+1 6= ωk, or by the Lemma 4.3 we have
ωk+1 ∈ Ω∗ and finish the proof.

Differentiable Linearized ADMM

Without loss of generality, we assume that ‖ωk+1 − ωk‖2Hk
6= 0, otherwise we can perturb (Wk,θk,βk) ∈ S(σk,A) to

make ωk+1 6= ωk. Due to ‖ωk+1 − ωk‖2Hk
6= 0, there exists κk > 0 such that:

dist2
Hk

(ωk+1,Ω
∗) ≤ κk‖ωk+1 − ωk‖2Hk

. (30)

Following from (17), we have:

dist2
Hk

(ωk+1,Ω
∗) ≤ dist2

Hk
(ωk,Ω

∗)− ‖ωk − ωk+1‖2Hk
.

Combing the above inequality with (30), we get:

dist2
Hk

(ωk+1,Ω
∗) ≤

(
1 +

1

κk

)−1

dist2
Hk

(ωk,Ω
∗).

For the ω∗ ∈ Ω∗ such that dist2
Hk

(ωk+1,Ω
∗) = ‖ωk+1 − ω∗‖2Hk

, we have:

dist2
Hk+1

(ωk+1,Ω
∗) ≤ ‖∆k‖2Hk

+ ‖∆k‖2Hk+1−Hk
,

where ∆k = ωk+1 − ω∗.
If we define some large enough θ∗,β∗ and let σk → 0, θk → θ∗ and βk → β∗ with a fast enough speed, i.e., ‖Hk+1 −
Hk‖2 = O(1/αk) where α > 1. We can obtain:

dist2
Hk+1

(ωk+1,Ω
∗) ≤ (1 +

1

cαk
) dist2

Hk
(ωk+1,Ω

∗),

where c > 0 is some constant. When k is large enough, with large enough c and α, we can conclude that:(
1 +

1

cαk

)(
1 +

1

κk

)−1

< 1.

Hence, we have dist2
Hk+1

(ωk+1,Ω
∗) < dist2

Hk
(ωk,Ω

∗), and finish the proof.

B.6. Proof of Theorem 3

Proof. Case 1: When k ≥ K0, for one ω∗ ∈ Ω∗ such that dist2
H∗(ω̃,Ω∗) = ‖ω̃ − ω∗‖2H∗ , we have:

dist2
Hk+1

(ω̃,Ω∗) ≤ dist2
H∗(ω̃,Ω∗) +

∣∣∣‖ω̃ − ω∗‖2Hk+1−H∗

∣∣∣ .
If we let σk → 0, θk → θ∗ and βk → β∗ with a linear decay rate , i.e., ‖Hk+1 −Hk‖ = O(1/αk) where α > 1. Then we
have:

dist2
Hk+1

(ω̃,Ω∗) < 2 dist2
H∗(ω̃,Ω∗). (31)

Similarly, we have:
‖ω̃ − ωk‖2H∗ = ‖ω̃ − ω∗‖2Hk

+
∣∣‖ω̃ − ω∗‖2H∗−Hk

∣∣ < 2‖ω̃ − ω∗‖2Hk
. (32)

Combing (31) and (32) together, we have:

dist2
Hk+1

(ω̃,Ω∗) <
κ

4
‖ω̃ − ωk‖2Hk

. (33)

Note that ‖ · ‖H is a norm ifH � 0, then we have:

distHk+1
(ωk+1,Ω

∗) ≤ ‖ωk+1 − ω̃‖Hk+1
+ distHk+1

(ω̃,Ω∗)

<

√
κ

2
(‖ωk+1 − ωk‖Hk

+ ‖ωk+1 − ω̃‖Hk
) + ‖ωk+1 − ω̃‖Hk+1

.
(34)

We already have ω̃ = T (A,θ∗,β∗)(ωk) and ωk+1 = T (Wk,θk,βk)(ωk). The operator T consists of prox and linear
operators, hence T is firmly-nonexpansive with respect to the parameter (W,θ,β), i.e.,:

‖ωk+1 − ω̃‖F ≤ O(‖∆Θ‖F),

Differentiable Linearized ADMM

where ∆Θ = (Wk,θk,βk)− (A,θ∗,β∗). Due toHk � 0 for all k, we can obtain:
√
κ

2
‖ωk+1 − ω̃‖Hk

+ ‖ωk+1 − ω̃‖Hk+1
≤ O(‖∆Θ‖F). (35)

Since (Wk,θk,βk)→ (A,θ∗,β∗) with a linear decay rate, without loss of generality, we let {(Wk,θk,βk)} convergence
faster than {ωk}. With large enough K0 and proper c, α, we have:

O(‖∆Θ‖F) ≤ 1

cαk
≤ 1

2
distHk+1

(ωk+1,Ω
∗). (36)

Combing the inequalities (34)-(36), we conclude that:

dist2
Hk+1

(ωk+1,Ω
∗) < κ‖ωk+1 − ωk‖2Hk

. (37)

Case 2: When k < K0, from the convergence of D-LADMM in Theorem 1 and the inequality (17), we know that
dist2

Hk+1
(ωk+1,Ω

∗) < ‖ω0 − ω∗‖2H0 +
∑K0

k=0

∣∣∣‖ωk+1 − ω∗‖2(Hk+1−Hk)

∣∣∣ <∞. Hence there exists one constant B > 0

such that dist2
Hk+1

(ωk+1,Ω
∗) < B. Since ‖ωk − ωk+1‖2Hk

6= 0, there exists one constant ε > 0 such that ‖ωk −
ωk+1‖2Hk

> ε when k < K0. We immediately have:

dist2
Hk+1

(ωk+1,Ω
∗) <

B

ε
‖ωk+1 − ωk‖2Hk

.

Letting κ̃ = max{Bε , κ}. Following from (17) and the Monotonicity of D-LADMM in Theorem 2, we get

dist2
Hk+1

(ωk+1,Ω
∗) <

(
1 +

1

κ̃

)−1

dist2
Hk

(ωk,Ω
∗).

We finish the proof.

B.7. Proof of Lemma 4.5

Proof. From the monotonicity of D-LADMM in Theorem 2, we have dist(ω,Ω∗) ≤ ε for some constant ε when k large
enough, then the error bound condition (18) can be rewritten as:

dist2
H∗(ω̃,Ω∗) ≤ κ

16
‖ω̃ − ωk‖2H∗ ∀ωk, (38)

where dist(ω,Ω∗) ≤ ε. The left proof is the same as that in the Section 3.2 of (Liu et al., 2018b).

B.8. Proof of Lemma 4.4

Proof. In this proof, we only consider the case for n = 1, namely Z ∈ Rd1 and E ∈ Rd2 , in the following, we use the
lowercase letters to denote the vector. The result for the matrix case can be derived from the vector case. Without loss of
generality, we let θ∗ = 1 and β∗ = 1, then by the condition (4), we get ‖A‖ < 1 and ‖B‖ < 1.

When fixing ((W1)k, (W2)k,θk,βk) to (A,B,θ∗,β∗), D-LADMM degenerate to LADMM:
zk+1 = proxf

{
zk −A>(λk + Azk + Bek − x)

}
,

ek+1 = proxg
{
ek −B>(λk + Azk+1 + Bek − x)

}
,

λk+1 = λk + Azk+1 + Bek+1 − x,

For convenience, we also let θk = 1, βk = 1 and (W1)k = A in the proximal operator and left one learnable scalar for the
Lagrange multiplier, then our D-LADMM reads as:

zk+1 = proxf
{
zk −A>(λk + Azk + Bek − x)

}
,

ek+1 = proxg
{
ek −W>

k (λk + Azk+1 + Bek − x)
}
,

λk+1 = λk + Azk+1 + Bek+1 − x,

Differentiable Linearized ADMM

We denote proxg(·) as ηg(·). Given (zk, ek,λk), we let yk = λk + Azk+1 + Bek − x. Now we consider the update of the
variable e, if we have:

ηg(ek −W>
k yk)− ηf (ek −B>yk) = c(e∗ − ηf (ek −B>yk)), (39)

for some constant 0 < c < 1. The above equation implies the output of D-LADMM is closer to the solution set than
LADMM on variable e. Actually, the term on the right side of the equation (39) is the direction from the output of LADMM
to the solution set. Due to the bijectiveness of the ηg(·), the equation (39) can be rewritten as

∆>wyk = η−1
g

(
c(e∗ − ηf (ek −B>yk))

)
, rk.

From the definition of yk, we know that yk belongs to the space span by the matrix A and B. We denote the basis of the the
space span by the matrix A and B as M ∈ Rm×d3 . yk can be written as yk = Mak, where ak ∈ Rd3 . Now we define the
support set of rk as Sr = support(rk) and let the support set of ak as Sa = support(ak). Given any i ∈ [d1], we consider
cases.

Case 1: i 6∈ Sr, then (rk) = 0. Under this circumstance, we let the i-th column of ∆w as zero column, i.e., (∆w)i = 0.
Case 2: i ∈ Sr, then (rk)i 6= 0. We can set the i-th column of ∆w as tMj , where j ∈ Sa and t = (rk)i/(ak)j . Then we
have (∆w)>i Mak = (ak)j

(rk)i
(ak)j

= (rk)i.
By the above way of setting, we find a ∆w such that having (39) satisfied. Let the output of the D-LADMM be ω̂k+1 and
the output of the LADMM be ωk+1, then

‖ωk+1 − ω∗‖22 − ‖ω̂k+1 − ω∗‖22 ≥ c‖∆e‖22 − c‖B∆e‖22 ≥ c(1− ‖B‖2)‖∆e‖22 > 0, (40)

where ∆e = e∗ − ηf (ek −B>yk). Note that ωk+1 6∈ Ω∗, then ‖∆e‖2 > 0. The last inequality comes from the condition
‖B‖ < 1.
The above (40) implies the output of D-LADMM is closer to the solution set than LADMM. We finish the proof.

