
Variational Russian Roulette for Deep Bayesian Nonparametrics

Kai Xu 1 Akash Srivastava 1 2 Charles Sutton 1 3 4

Abstract
Bayesian nonparametric models provide a princi-
pled way to automatically adapt the complexity
of a model to the amount of the data available, but
computation in such models is difficult. Amor-
tized variational approximations are appealing be-
cause of their computational efficiency, but cur-
rent methods rely on a fixed finite truncation of
the infinite model. This truncation level can be
difficult to set, and also interacts poorly with amor-
tized methods due to the over-pruning problem.
Instead, we propose a new variational approxima-
tion, based on a method from statistical physics
called Russian roulette sampling. This allows
the variational distribution to adapt its complex-
ity during inference, without relying on a fixed
truncation level, and while still obtaining an unbi-
ased estimate of the gradient of the original vari-
ational objective. We demonstrate this method
on infinite sized variational auto-encoders using a
Beta-Bernoulli (Indian buffet process) prior.

1. Introduction
A major challenge in unsupervised learning is to infer the
complexity of the latent structure, such as the number of
clusters or the size of a continuous representation, that is
necessary to describe a data set. A principled method from
statistics to choose the complexity of a model is provided
by Bayesian nonparametric methods (Walker et al., 1999;
Müller & Quintana, 2004; Orbanz & Teh, 2010; Gershman
& Blei, 2012). Nonparametric methods allow for the size of
the inferred model to automatically adapt to the amount of
data, so that simpler models are preferred for smaller data
sets, and more complex models are preferred for larger data
sets. For example, a latent feature model with an Indian buf-

1School of Informatics, University of Edinburgh, Edinburgh,
United Kingdom 2MIT-IBM Watson AI Lab, Cambridge, MA,
United States 3Google AI, Mountain View, CA, United States
4Alan Turing Institute, London, United Kingdom. Correspondence
to: Kai Xu <kai.xu@ed.ac.uk>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

fet process (IBP) prior is a representation learning method
that infers a latent binary vector for each data point, where
the number of binary features is chosen adaptively based on
the data. Within machine learning, Bayesian nonparamet-
ric methods have been applied within models as diverse as
clustering (Antoniak, 1974; Görür & Rasmussen, 2010; Teh
et al., 2005), topic modeling (Teh et al., 2006), and infinite
deep neural networks (Adams et al., 2010).

However, inference in Bayesian nonparametric models can
be computationally challenging. Amortized variational
methods (Kingma & Welling, 2013; Rezende et al., 2014;
Ranganath et al., 2014a; Mnih & Gregor, 2014) are an ap-
pealing option, because they exploit the smoothing proper-
ties of deep neural networks to accelerate inference. For
Bayesian nonparametric models, however, amortized in-
ference is challenging because the dimensionality of the
latent space is not fixed. Previous methods for variational
inference in such models rely on a truncated approxima-
tion, which places an upper bound on the size of the latent
space under the approximate posterior (Blei & Jordan, 2004;
Doshi-Velez et al., 2009). Similarly, recent work on amor-
tized inference in Bayesian non-parametrics relies on trun-
cation, albeit sometimes within an outer loop that searches
over the truncation size (Miao et al., 2017; Nalisnick &
Smyth, 2017; Chatzis, 2014; Singh et al., 2017).

However, the truncated approximation has several draw-
backs. If the truncation level is chosen too small, the accu-
racy of the approximation degrades, whereas if the trunca-
tion level is chosen too large, then inference will be slow,
removing one of the main advantages of a variational ap-
proximation. Perhaps more fundamentally, the truncation
level can interact poorly with amortized inference, because
of a well-known issue called component collapsing (Dinh &
Dumoulin, 2016; van den Oord et al., 2017), which is also
called over-pruning (Burda et al., 2015; Yeung et al., 2017).
This refers to the problem when the inferred latent represen-
tation includes components whose conditional distribution
given a test data point tends to remains very similar to the
prior. These components are useless as they do not help
explain the data.

In this work, we overcome these limitations using a new
dynamic variational approximation, which we call Roulette-
based Amortized Variational Expectations (RAVE). The goal

Variational Russian Roulette for Deep Bayesian Nonparametrics

of RAVE is to allow the approximate variational posterior
to adapt its size over the course of the optimization. But
this causes the problem that expectations for the evidence
lower-bound (ELBO) then require computing an infinite
summation which cannot be tackled using the reparame-
terization trick (Williams, 1992; Kingma & Welling, 2013;
Rezende et al., 2014). To surmount this problem, we use
a different Monte Carlo approximation, namely, the Rus-
sian roulette sampling method from statistical physics (Lux
& Koblinger, 1991; Carter & Cashwell, 1975; Lyne et al.,
2015), which allows us to approximate this sum by a sample
from a Markov chain. This leads to an unbiased estimate of
the gradient of the ELBO which can be maximized using
stochastic gradient ascent.

We demonstrate RAVE on an infinite variational autoencoder
(Chatzis, 2014), which assigns each data point to a continu-
ous representation whose size is automatically inferred from
the data. The prior on the number of components is given
by an Indian buffet process model. We show empirically
that previous amortized variational methods suffer from the
component collapsing problem and tend to infer useless
components, whereas RAVE infers a model with many fewer
components, while inferring an overall model of similar
explanatory power.

2. Background
We review material from nonparametric Bayesian statistics
and variational inference. We also introduce the basic form
of the Russian roulette estimate that we will use.

2.1. Indian buffet process

An important problem in representation learning is to learn
to represent each data item by a binary vector whose ele-
ments indicate latent features underlying the data. If the
necessary number of features is unknown, we can take a
Bayesian approach, and place a prior distribution over all
possible latent feature matrices. One such prior distribution
is the Indian buffet process (IBP), denoted Z � IBP(�),
which is a probability distribution over sparse binary matri-
ces with a finite number of rows and an unbounded number
of columns (Griffiths & Ghahramani, 2011). We define the
IBP using the stick-breaking construction (SBC) of Teh et al.
(2007), which defines a distribution over Z as

�k � Beta(�; 1); �k =

kY
j=1

�j ; znk � Bern(�k); (1)

for n 2 1 : : : N and k 2 1; 2; : : : ;1. Intuitively, we start
with a stick of length 1 and break it at random to obtain a new
stick of length �1. We then break this new stick at another
random proportion �2 to obtain a new stick of length �1�2.
We write Z � SBC(�;N;K) to indicate the distribution

of the binary matrix Z if this process is stopped after K
columns, and N is the number of data points which should
be clear in context. We denote by IBP(�) the stochastic
process that results from SBC(�;N;K) as K !1.

2.2. Latent Feature Models

The IBP can be used as a prior over sparse latent represen-
tation Z = [z1 : : : zN] of data X = [x1 : : :xN] 2 RN�D.
Using this prior, we model the data as

Z � IBP(�); A � N (0; �2
AI); X � p�(X j Z;A); (2)

for n 2 1 : : : N . A popular model arises when A is a
matrix with D columns and infinitely many rows and when
p�(X jZ;A) = N (X jZA; �2

XI). This is the well-studied
linear Gaussian model.1

Alternatively, we can use a deep network to parameterize
p�(X j Z;A). Specifically, choose p�(X j Z;A) = N (X j
��(Z � A); ��(Z � A)) or p�(X j Z;A) = Bern(X j
p�(Z � A)) where � is the Hadamard product (Chatzis,
2014; Singh et al., 2017), ��, ��, and p� are multi-layer
neural networks with parameter �. We refer to these three
neural networks together as a deep decoder. This leads to
the infinite variational autoencoder, which we describe next.

2.3. Infinite Variational Autoencoders

The infinite variational autoencoder (infinite VAE) arises
when apply variational inference to the deep latent feature
model of the previous section. In that model, the poste-
rior distribution over the latent variables P (Z;A;� jX) is
intractable, so one popular approximation is variational in-
ference. Singh et al. (2017) present a structured variational
inference method for this model, based on the method of
Hoffman & Blei (2015), which performs better than the
more common mean-field approximation, as it introduces
dependencies in the approximate posterior distribution, be-
tween Z and �: The variational posterior from Singh et al.
(2017) has the form

q(Z;A;�(1:K)) = q(A)q(�(1:K))

NY
n=1

KY
k=1

q(znk j �(1:K));

where K is the truncation level. Each component of q
has parameters, called variational parameters, which are
optimized to make q(Z;A;�(1:K)) as close as possible to
the true posterior p(Z;A;�(1:K)jX) as measured by KL-
divergence. This is accomplished by optimizing a lower
bound called the evidence lower-bound (ELBO). Optimiz-
ing the ELBO requires sampling from a Monte Carlo esti-
mate, which is designed to be differentiable with respect to

1Following Chatzis (2014); Singh et al. (2017), we omit the
prior distribution p(A) for this linear model when doing amortized
inference, and instead optimize over A .

Variational Russian Roulette for Deep Bayesian Nonparametrics

the model parameters and the variational parameters. This
can be made possible with the reparameterization trick.2

Singh et al. (2017) employs reparameterizations of the Beta
distribution (Nalisnick & Smyth, 2017) and the Bernoulli
distribution (Jang et al., 2016; Maddison et al., 2016).

2.4. Russian roulette sampling

Russian roulette sampling (Lux & Koblinger, 1991; Carter &
Cashwell, 1975; Lyne et al., 2015; Georgoulas et al., 2017)
is a Monte Carlo technique for estimating very large sums.
Suppose we want to compute an infinite sum

S =

1X
k=1

Tk; (3)

where we assume S <1: In Russian roulette sampling, we
estimate S by truncating the sum after � terms, where � is
random. As a simple example, let S = T1 + T2: We can
approximate S by the estimate Ŝ = T1 with probability 0:5;
and Ŝ = T1 + 2T2 with probability 0:5: It is easy to see that
E[Ŝ] = S: Applying this trick recursively yields the general
Russian roulette estimate.

More generally, let P (�) = (1� ��+1)
Q�
s=1 �s; be a dis-

tribution over the number of terms � in the estimate. The
probabilities �1; �2; : : : are parameters of the approximation.
Define the truncated sum

ŜK =

KX
k=1

Tk
pk
; (4)

where pk =
Qk
j=1 �j is the probability that � > k; dividing

by this quantity has the effect of correcting for the fact that
later terms are less likely to be included in the estimate.
Then we define the Russian roulette estimate as Ŝ = S�
with probability P (�): It can be shown that this estimate is
unbiased for S, e.g. see the Appendix of Lyne et al. (2015).

3. Method
Now we introduce RAVE, an amortized variational inference
method based on dynamic truncation. For concreteness, we
describe RAVE in the context of a deep latent factor model
with an IBP prior, but the method can be used more gen-
erally. First, we introduce a variational family in which
the number of latent dimensions is random, governed by
its own variational parameters (Section 3.1); this is essen-
tially an infinite mixture of truncated variational distribu-
tions. Then, we present the ELBO over all the variational
parameters, showing that it can be written as an infinite sum
(Section 3.2). Then we show how Russian roulette sampling

2Alternatives include REINFORCE (Williams, 1992), general-
ized reparameterization gradient (Ruiz et al., 2016), and automatic
differentiation variational inference (Kucukelbir et al., 2017).

can be used to obtain an unbiased Monte Carlo estimate the
gradient of this sum (Section 3.3). Finally, we put all of
these ideas together into a stochastic gradient optimization
algorithm that works on a finite representation of the infinite
number of parameters (Section 3.4).

3.1. Infinite-sized Variational Family

We start by describing the variational family of approximate
posterior distributions that we consider in RAVE. Unlike
previous amortized variational methods, the dimensionality
is not bounded a priori, but is controlled by continuous
variational parameters. We define the variational family
using the stick-breaking construction as

�k � Beta(�k; �k); �k =

kY
j=1

�j ;

K� = k with probability mk = (1� �k+1)

kY
i=1

�i; (5)

znk � Bern(f�(�k;xn) � �fk � K�g)

for n 2 1 : : : N and k 2 1; 2; : : : ;1. We de-
note a single variational distribution in this family as
q(�;K�;Zj�; �; �; �): In this equation, �k, �k, �k, and
� are the variational parameters, and the neural network f�
is an inference network that amortizes the approximation
of the posterior distribution. One can view this variational
distribution as a mixture of infinitely many truncated ones.

The only parameters we amortize are those for the varia-
tional distribution of Z: The parameters of the inference
network are an infinite sequence of vectors � = (�0; �1 : : :)
with �k 2 RD+1: Then our inference network is

f�(�k;xn) = �(logit(�k) + �>k [xn; 1]); (6)

where � is the sigmoid function.3 Note that f� outputs a
scalar, essentially the approximate posterior distribution for
a single hidden unit.

For the Beta and Bernoulli distributions, we use the Monte
Carlo “reparameterization trick” during training for gradient.
We use the Kumaraswamy reparameterization for the Beta
distribution (Nalisnick & Smyth, 2017) and the Concrete
reparameterization for the Bernoulli distribution (Jang et al.,
2016; Maddison et al., 2016), following Singh et al. (2017).

We have defined this variational family to have an infinite
number of parameters: all of the variational parameters �;
�; �; and � are infinite sequences. In order to optimize
these parameters practically, observe for any integer k; the
conditional distribution q(�;ZjK� = k; �; �; �; �) depends

3The notation [xn, 1] represents vector concatenation, so that
the dot product implicitly incorporates the bias term.

Variational Russian Roulette for Deep Bayesian Nonparametrics

only on the first k variational parameters. It is this property
that we use to approximate the ELBO in the next section.

This completes the description of the approximate posterior
distribution q(�;Z;K�) for the parameters of the IBP prior.
We also need a variational distribution q(A) over the param-
eters A of the observation model, which we choose to be
Gaussian. It is only amortised when using deep decoders.

3.2. Approximating the ELBO Gradient

To find the best approximate posterior distribution, we max-
imize the ELBO

L =� KL [q(�) k p(�)]� KL [q(A) k p(A)]

+ Eq�

�
EqZ

�
log

p(X j Z;A)p(Z j �)

q(Z j �)

��
;

(7)

which can be derived from the KL-divergence between
the marginal distribution q(�;Z;A)4 and the true poste-
rior p(�;Z;AjX): Optimizing this function is challenging
for several reasons. First, there are an infinite number of
variational parameters, so we need to obtain a finite repre-
sentation. Second, the distribution q(Z j �) in the third term
is not easy to compute, because it is a marginal distribution
q(Z j �) =

P1
k=0 q(Z;K

� = k j �): Finally, optimizing
with respect to � is particularly challenging, intuitively be-
cause � determines the stochastic control flow of q; see
Algorithm 1.

Computing the first two terms of Equation 7 is straightfor-
ward (see Appendix A). For the third term, we re-write this
expectation using the tower property

EqZ

�
log

p(X j Z;A)p(Z j �)

q(Z j �)

�
=

1X
k=0

mkEqZ

�
log

p(X j Z;A)p(Z j �)

q(Zj�)
jK� = k

�
: (8)

Because the expectation now conditions on K� = k; we
know thatZ will have at most k nonzero columns, and so the
numerator within the expectation is now computable. The
denominator q(Zj�) is still challenging, because it marginal-
izes outK�; and still contains an infinite sum. We can obtain
a slightly looser variational lower bound using the inequality

q(Zj�) =

1X
j=1

mjq(ZjK� = j;�) � q(ZjK� = Ky;�);

(9)
whereKy := maxfk j 9n; znk 6= 0g, the maximum column
index for which that column of Z is not all 0s. The inequality
comes from two facts. First, q(ZjK� = j;�) = 0 for j <
Ky because it is impossible to generate more than j features

4We have omitted the dependence of q on the variational pa-
rameters for brevity.

if the process is truncated at j. Second, q(ZjK� = j;�) is
a monotonically decreasing function for j � Ky because
observing more columns of zeros will only decrease the
probability under the Bernoulli distribution. A more detailed
proof is provided in the Appendix B.

Combining Equations 7–9, we obtain the training objective

~L =

1X
k=0

mk
~Lk; (10)

where

~Lk = �KL [q(�) k p(�)]� KL [q(A) k p(A)]

+ Eq�

�
EqZ

�
log

p(X j Z;A)p(Z j �)

q(ZjK� = Ky;�)
jK� = k

��
:

(11)
Note that we also move the KL terms for � and A inside the
infinite summation. This is valid as the infinite summation
is an expectation. This expectation cannot be computed
exactly, but we will present a method for approximating it
in the next section.

When RAVE is used with the IBP, we will refer to the
overall method as RRS-IBP, where RR stands for Russian
roulette and S stands for either Structured or Sampling, at
the reader’s option.

Interpretation as random truncation. We give another
interpretation of the ELBO in Equation 10. During training,
~Lk is exactly the ELBO for the truncated variational method

with truncation level k (Singh et al., 2017). Therefore, the
lower bound ~L that we use can be interpreted as the expecta-
tion of the truncated ELBO, where the expectation is taken
over our variational distribution q(K� = k) = mk over the
truncation level.

3.3. Russian roulette estimation of the ELBO gradient

Finally, we describe how we optimize the ELBO ~L. To
simplify the presentation, we introduce the notation k =
(�k; �k; �k; �k), the vector of the variational and model
parameters for component k, except for �k, and we define
the matrix 1:k = (1 : : : k). Then, ~L has the form

~L =

1X
k=1

mkTk(1:k); (12)

where mk = (1� �k+1)
Qk
i=1 �i depends only on �1:k+1,

and Tk depends only on the other parameters 1:k. This can
be optimized by stochastic gradient ascent if we can obtain
an unbiased estimate of its gradient.

First, the gradient with respect to k is

@ k
:=

@ ~L
@ k

=

1X
i=k

mi
@Ti
@ k

: (13)

Variational Russian Roulette for Deep Bayesian Nonparametrics

We assume each @Ti

@ k
can be computed by standard auto-

matic differentiation techniques. To estimate this, we use a
Russian roulette estimate @̂RR

 with probabilities mt: More
specifically, we sample � with probability P (� = t) = mt;

and then return the estimate @̂RR
 k

= @̂� k
, where

@̂� k
=

�X
i=k

mi�Qi
j=1 �j

� @Ti
@ k

=

�X
i=k

(1� �i+1)
@Ti
@ k

: (14)

To derive the derivatives for �k, first the chain rule yields

@�k
:=

@ ~L
@�k

=

1X
i=1

@ ~L
@mi

@mi

@�k
=

1X
i=1

Ti
@mi

@�k
; (15)

where

@mi

@�k
=

8><>:
0 i < k � 1

� mi

1��k
i = k � 1

mi

�k
i > k � 1

: (16)

This yields

@�k
=

1X
i=k�1

miwiTi; wi =

(
1

�k�1 i = k � 1
1
�k

i > k � 1
: (17)

Finally, the Russian roulette estimate @̂RR
�k

is

@̂��k
=

�X
i=k�1

miwiTi�Qi
j=1 �j

� =

�X
i=k�1

(1� �i+1)wiTi (18)

with probability P (� = t) = mt:

Now, each Ti is still difficult to compute, because it contains
the expectation

Eq�

�
EqZ

�
log

p(X j Z;A)p(Z j �)

q(ZjK� = Ky;�)
jK� = i

��
:

We obtain a Monte Carlo approximation of both of these
expectations using the standard reparameterization tricks.

In general, the Russian roulette estimation can have high
variance, but what makes it so nice for variational inference
is that because we are using a stick breaking construction,
the earlier terms in the summation are the most important to
include in the estimate.5

3.4. Stochastic gradient algorithm

Now that we have Monte Carlo estimates of the necessary
derivatives, we can define the stochastic gradient algorithm.

5It is also possible to estimate (13) and (16) via naive MC esti-
mation as both of them can be written as an expectation under m.
However, this estimate is of high variance which cannot be easily
overcame by using more samples. We empirically illustrate this in
Appendix C with comparison to our Russian roulette estimates.

Algorithm 1 Sampling the truncation level � during varia-
tional optimization, with lazy parameter initialization.
t 0
loop
t t+ 1
if t > L then
�t+1 0:5, �t �, �t 1:0, �t �0, �t �0
L L+ 1

return � = t with probability 1� �t+1

f� is the IBP parameter and �0 � N (0; I)g

The key point is how we operate with only a finite rep-
resentation of the variational parameters; essentially, we
lazily instantiate only the finite subset of variational pa-
rameters that receive stochastic gradient updates. More
specifically, at every point in the optimization algorithm, we
maintain a finite representation of the variational parame-
ters = (0 : : : L) and � = (�0 : : : �L): These matrices
will lazily grow in size as needed, that is, L will grow over
the course of the optimization. At the beginning of the
algorithm L = 0:

Each iteration of stochastic gradient ascent computes new
parameters (0; �0) from the current values (; �). To do
this, first we sample � from the distribution P (�) defined in
the previous section. Importantly, it can happen that � > L,
which means that the current iteration will introduce new
parameters, which are initialized to default values. To make
this clear, see Algorithm 1.

Given a value of �; we make the gradient updates

 0k k + �0@̂
�
 k
; k 2 1; 2; : : : �

�0k �k + �1@̂
�
�k
; k 2 2; 3; : : : � + 1

where �0 and �1 are step sizes. We only need perform the
updates for k 2 1; 2; : : : � for k because @̂� k

= 0 if k > � ,
and similarly for @̂��k

. We enforce that �1 = 1 to ensure
� > 0. Note that the gradient steps for � are important to
the method, because this determines the inferred number of
features. Finally, in practice each gradient is an average over
M independent roulette samples; Appendix D describes
how to reuse computation over the samples.

4. Experiments
To evaluate the RRS-IBP method, we compare it with two
previous amortized inference approaches for IBP models:
MF-IBP (Chatzis, 2014) and S-IBP (Singh et al., 2017).
Following Singh et al. (2017), a multiplier greater than 1
is put on the KL term for � during training for structured
variational methods, to encourage adhering to the IBP prior.
See Appendix E for other training details. Source code
of the implementation of our method is also available at

Variational Russian Roulette for Deep Bayesian Nonparametrics

(a) MF-IBP

0.0 0.2 0.4 0.6 0.8

(b) S-IBP

0.0 0.2 0.4 0.6 0.8

(c) RRS-IBP

Figure 1.Features learned by VAEs (α = 4 .0).

https://github.com/xukai92/RAVE.jl .

4.1. Synthetic data

First, in order to check the correctness of the inference,
we compare the different inference methods on synthetic
dataset, for which the true data distribution and number of
components are known. This data set, proposed by Griffiths
& Ghahramani (2011), contains 6 � 6 gray-scale images,
each of which are generated as a linear combination of four
black and white images with random weights, plus Gaussian
noise N (0; 0:12): We sample 2,400 images for training and
400 held-out images for testing.6

All inference methods are applied to the linear-Gaussian
IBP model (Section 2.1). We set � = 4 so that the expected
number of components is not the same as the true distribu-
tion. For MF-IBP and S-IBP, the truncation level is set to 9;
greater than the number of true features in the data.

First, we are interested in whether the inference methods
identify the correct number of features for this data. One
way to measure this is by the expected number of features
per images under the posterior distribution, which we define
as M = N�1

PN
n=1 EqZ

[
P
k znkjxn] ; where xn are the

test images. For the true generating process, M = 2:275.
Because the training data set is large, and the model family
contains the generating distribution, the variational approxi-
mations should identify a similar number of features. We
find thatM = 5:647 for MF-IBP andM = 6:021 for S-IBP,
while M = 3:464 for RRS-IBP. In other words, both MF-
IBP and S-IBP infer many more features than are present in
the true distribution, while RRS-IBP infers a value that is
closer to the true one.

It may be surprising that the methods are inferring such
different values for the number of features, because all three
approximate the same posterior distribution. To understand
this better, we visualize the learned features in Figure 1,
which is simply the matrix A in the linear decoder. As we
can see, S-IBP and RRS-IBP recover four black-and-white
image features, which indeed are the images that were used
to generate the data. MF-IBP recovers these four features

6Different from Griffiths & Ghahramani (2011) in which each
feature is activated with probability 0.5, we sample an activation
matrix Z � SBC(4.0, 2800, 4) (Equation 1) and generate the
dataset as X = ZA , where A is the predefined feature matrix.

2 4 6 8
k-th feature

0

100

200

300

Fr
ac

tio
n

(a) S-IBP

O Q
©J²¦=¤£~²³°£

M

NMM

OMM

PMM

c°
~¡
²§­
¬

(b) RRS-IBP

M O Q S U
©

MKM

MKO

MKQ

MKS

MKU

mE
h
G
Z
©F

(c) P (K � = k)

Figure 2.Number activations per feature and truncation probability

up to a scaling of the image intensities, but also introduces
an unnecessary negative feature (lower left in Figure 1(a)).
Additionally, both MF-IBP and SS-IBP infer several useless
features, which we will call “dummy features”.

Such dummy features do no harm if they are never activated,
that is, if their corresponding column in Z is always zero.
However, in Figure 2(a), we plot the activation frequencies
i.e. the number of features activated from a single sample
of q(Zj�), inferred by S-IBP, for the testing set. This figure
shows that the some top features from S-IBP are almost
always activated, and in fact some are the black features in
Figure 1(b). In other words, meaningful features in S-IBP
do not necessarily come in order, as the method can infer
“dummy” features.7 On the other hand, RRS-IBP mostly
avoids this issue (Figure 2(b)), as it learns only one dummy
feature and this feature is not always being activated. As we
can see the four meaningful features for S-IBP and RRS-IBP
actually has similar activation probabilities. We hypothesize
that this activation of dummy feature phenomena comes
from the fact that when training with a high truncation level,
there are many local maxima.

The plot of the probability mass function of the stopping
level in Figure 2(c) shows that after training, the variational
posterior for the truncation level puts most of its mass on
the right level of truncation. This plot is not available for
the other methods because their truncation level is fixed.

4.2. Image data

Now we compare the inference methods on benchmark im-
age data sets, namely the MNIST dataset of handwritten dig-
its (LeCun et al., 1998) and Fashion-MNIST, a dataset of im-
ages of products (Xiao et al., 2017). We use a deep decoder,
where the prior is p(A) = N (A; 0; 1); and a Bernoulli ob-
servation distribution. Both the encoder and the decoder are
two layer neural networks with 500 hidden units and ReLU
activation function. We also report the performance of the
same model and architecture on the synthetic data from the
last section; for that simpler data, we use hidden layer of
size 50 and a Gaussian observation distribution.

We measure both the quality of the inferred models and
the number of inferred features. To measure model qual-

7This was also observed by Singh et al. (2017) on a different
synthetic data set (see their appendix).

