
Variational Russian Roulette for Deep Bayesian Nonparametrics

A. KL terms for A and ν

The computation for the KL terms for A and ν in Equation 7 is omitted in the main paper and we present here to show how
to compute them.

The KL term for A is the KL between two Normal distributions qA = N (µφ(x), σφ(x)) and pA = N (0, I). We use its
closed-form expression adapted from the Appendix of Kingma & Welling (2013)

KL [q(A) ‖ p(A)] = −1

2

∞∑
k=1

(
1 + log((σk)2)− (µk)2 − σk)2

)
, (19)

where µk := µφk
(x) and σk := σφk

(x).

The KL term for ν is the KL between the Kumaraswamy and Beta distributions q(νk) = Kumaraswamy(ak, bk) and
p(νk) = Beta(α, 1). We use its closed-form expression adapted from Appendix of Nalisnick & Smyth (2017)

KL [q(ν) ‖ p(ν)] =

∞∑
k=1

KL [Kumaraswamy(ak, bk) ‖Beta(α, 1)] , (20)

where
KL [Kumaraswamy(a, b) ‖Beta(α, β)]

=
a− α
a

(
−γ −Ψ(b)− 1

b

)
+ log ab+ logB(α, β)− b− 1

b
+ (β − 1)b

∞∑
m=1

1

m+ ab
B
(m
a
, b
)
.

(21)

We approximate the infinite sum in Equation 21 using its first 11 terms as it is suggested by Nalisnick & Smyth (2017).

B. Proof of the Inequality in Equation 9
Equation 9 states the inequality that

q(Z|ν) =

∞∑
j=1

mjq(Z|K∗ = j,ν) ≤ q(Z|K∗ = K†,ν), (9)

where K† := maxk{∃n, znk 6= 0}, the maximum column index for which that column of Z is not all 0s.

To prove this, we begin with the definition of qZ given a truncation level j

q(Z|K∗ = j,ν) := δ{j ≥ K†}
N∏
n=1

j∏
k=1

πznk

k (1− πk)(1−znk). (22)

First, q(Z|K∗ = j,ν) = 0 for j < K† because of the delta function that comes from the truncation. Second, q(Zk|K∗ =
j,ν) is a monotonically decreasing function for j ≥ K†. To see this, consider q(Z|K∗ = l,ν) for which K† ≤ j < l

q(Z|K∗ = l,ν) = δ{l ≥ K†}
N∏
n=1

l∏
k=1

πznk

k (1− πk)(1−znk)

=

N∏
n=1

 j∏
k=1

πznk

k (1− πk)(1−znk)
l∏

k=j+1

πznk

k (1− πk)(1−znk)

=

(
N∏
n=1

j∏
k=1

πznk

k (1− πk)(1−znk)

) N∏
n=1

l∏
k=j+1

πznk

k (1− πk)(1−znk)

= q(Z|K∗ = j,ν)

 N∏
n=1

l∏
k=j+1

πznk

k (1− πk)(1−znk)

=: q(Z|K∗ = j,ν)Q

≤ q(Z|K∗ = j,ν)

(23)

Variational Russian Roulette for Deep Bayesian Nonparametrics

0 5 10 15 20 25 30 35 40
k

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P(
K

=
k)

0

100

200

300

400

500

600

T(
k)

(a) P (K = k) and T (k)

0 5 10 15 20 25 30 35 40
K

0

20

40

60

80

96
100

S K

SK =
K

k = 1
P(K = k)T(k)

(b) SK∗

Figure 5. Functions and the target summation in the toy example

The last step comes from the fact that Q <= 1 since πk ∈ [0, 1], ∀k = 1, . . . ,∞. Now we can show

q(Z|ν) =

∞∑
j=1

mjq(Z|K∗ = j,ν)

=

K†−1∑
j=1

mjq(Z|K∗ = j,ν) +

∞∑
j=K†

mjq(Z|K∗ = j,ν)

≤
∞∑

j=K†

mjq(Z|K∗ = K†,ν)

≤
∞∑
j=1

mjq(Z|K∗ = K†,ν) = q(Z|K∗ = K†,ν)

C. Comparison of Russian roulette estimation against naive Monte Carlo estimation
As a way to motivate the Russian roulette sampler, in this section we show the empirical evidence that, when estimating an
infinite summation like (13) or (16), naive Monte Carlo can have very high variance which cannot be easily overcame by
using more MC samples.

Suppose that we want to estimate S = limK∗→∞ SK∗ where SK∗ =
∑K∗

k=1 P (K = k)T (k). In this illustration, we set
T (k) = T ∗(k) +N (0, 1) where

T ∗(k) =

{
(k − 25)2 k < 25

0.01(k − 25) k ≥ 25
.

in order to mimic a common loss curve for different sized truncation levels, and set P (K = k) = mk = (1−ρk+1)
∏k
i=1 ρi

where

ρk =

{
1

1+exp(−5(k−1)/29) k < 30

0.5 k ≥ 30
.

in order to mimic a distribution of truncation level which is still away from an optimal one. Figure 5 shows T (k) and
P (K = k) (Figure 5(a)) as well as how SK∗ changes with different level of K∗ (Figure 5(b)). As can be seen from
Figure 5(b), S is approximately 96.

Variational Russian Roulette for Deep Bayesian Nonparametrics

We compare to the native Monte Carlo estimate in which we sample k1 . . . kN independently from P (K) and compute

ŜMC =
1

N

N∑
i=1

T (ki).

We run each estimation for 100 times with the number of samples varying from 1 to 200. We report the mean and variance
over the 100 runs. We also report the efficiency (Pharr et al., 2016) which is defined as 1/vt where v is the variance and t is
the time required by the estimation. These results are given in Figure 6. As you can see from the top plot for the mean, both
estimates are unbiased towards the approximated true value. However, the variance of the naive Monte Carlo estimator is
much higher. This is shown more clearly in the plot in the middle, which shows how the variance asymptotically changes
with the number of samples. It can be seen that the Russian roulette estimates have much lower variance than naive Monte
Carlo. In fact, the naive Monte Carlo estimation retains a variance of 63.5 even with 200 samples while Russian roulette
reaches a variance of around 10 with 15 samples. The final plot in the bottom compares the efficiency of the two estimators
and it can be seen that the efficiency for the naive Monte Carlo one increases very slowly with more samples. Thus we can
conclude that using a naive Monte Carlo estimation for an infinite summation like (13) or (16) is of very high variance and
the variance cannot be easily overcame by using more MC samples.

D. Algorithmic description for effective RAVE

A naive implementation requires running the encoder and decoder once for each Russian roulette sample, but in this appendix
we show how computation can be reused across samples. When we average over M independent Russian roulette samples,
of each the truncation level is τm, the gradient estimate for ρk becomes

∂̂Mρk :=
1

M

M∑
m=1

τm∑
i=1

aiTi, . (24)

where Ti = L̃i and we define
ai = (1− ρi+1)wi. (25)

A naive way to compute the weighted summation of ∂̂Mρk is by running the encoder and decoder multiple times for each
truncation level τm required and sum up, but this involves much wasted computation.

Instead, a re-weighting trick be applied to reuse computation. We first draw M samples {τm}Mm=1 of the truncation level
from the distribution defined by P (τm = k) = mk. Then we compute τ∗ = maxm τm. We run the encoder once at the
truncation level of K∗ = τ∗ and run the decoder multiple times (with truncation level K∗ = 1, . . . , τ∗), and compute the
final estimate as the weighted sum

∂̂Mρk =

τ∗∑
i=1

biTi, (26)

where

bi =
1

M

M∑
m=1

aiδ(τm ≥ i). (27)

It can be seen by reordering terms that this is equal to (24).

A similar re-weighting method applies to computing ∂̂Mψk
with M samples, for which one only needs to re-weight each term

in the forward pass of the EBLO computation as

L̃M =

τ∗∑
i=1

ciTi, where ci =
1

M

M∑
m=1

(1− ρi+1)δ(τm ≥ i) (28)

and automatic differentiation can compute the gradient for all the parameters in the inference and generative network in (14).

Note that for the KL term, K1:i, in each L̃i for i = 1, . . . , τ∗, as K1:i is a sum of independent KL terms for each feature, Kj ,
this term can be computed after the single run of encoder by K1:i =

∑i
j=1Kj , where Kj is the KL term of the j-th feature.

The complete algorithm that uses this re-weighting trick is given in Algorithm 2. This requires a single run of the encoder and
τ∗ runs of the decoder. Additionally, Equation (26) for all ks (i.e. Line 10 in Algorithm 2) can be vectorized and implemented
as matrix multiplications. We omit the details here and refer readers to our source code for concrete vectorization.

Variational Russian Roulette for Deep Bayesian Nonparametrics

Algorithm 2 Effective RAVE with re-weighting trick.
input {Xi}Bi=1: B mini batches of data
input M : the number of Russian roulette samples to use

1: for i = 1, . . . , B do
2: Sample M samples {τm}Mm=1 from the truncation distribution mk

3: Compute τ∗ = maxm τm
4: Compute {bk}τ

∗

k=1 following (27)
5: Encode Xi into variational distributions with a truncation level of τ∗

6: Compute KL between variational posterior and prior for each level {K1:k}τ
∗

k=1

7: for k = 1, . . . , τ∗ do
8: Compute the expected reconstruction termRk in Tk under variational distributions
9: Compute ELBO L̃i for each level i: {L̃i = Rk −K1:k}τ

∗

k=1

10: Compute ∂̂Mρk for k = 1, . . . , τ∗ using (26)
11: Compute and return the weighted ELBO L̃M in (28) to automatic differentiation
12: Obtain {∂̂Mψk

}τ∗k=1 from automatic differentiation
13: Update {ρk, ψk}τ

∗

k=1 using {∂̂Mρk , ∂̂
M
ψk
}τ∗k=1 via gradient optimization methods

E. Training details
For optimization, we use Adam (Kingma & Ba, 2014) with a learning rate of 0.001 and momentum parameters set to 0.99
and 0.999, for all parameters except for ρ. For ρ we use a stochastic gradient descent optimizer (Robbins & Monro, 1985)
with a learning rate of 0.002. During training, the temperature of Concrete reparameterization is set to 0.1. We found that in
order to to use a low temperature, it is necessary to use high-precision 64-bit floating-point numbers. Using 32-bit floating
point numbers with a temperature of 0.1 frequently results in numerical errors.

Note again that we use a multiplier on the KL term for ν for structured variational methods during training to encourage
adhering to the IBP prior, following Singh et al. (2017). It is set to 1,000 on both MNIST and FMNIST datasets. This has a
similar effect of using a large α in the IBP prior.

F. Visualization of component collapsing of S-IBP on Fashion-MNIST
For Fashion-MNIST, the corresponding component collapsing visualization of Figure 4 is given in Figure 7. Note that worse
than MNIST, there are even dummy features that are activated as frequently as active features, e.g. the 7-th features in
Figure 7(a) is shown to be frequently activated in Figure 7. The number of active features shown in Figure 7(a) is 8, which
is the mode of the truncation distribution inferred by RRS-IBP, indicated in vertical red lines in both plots, which means
RRS-IBP successfully inferred the same number of active features.

Variational Russian Roulette for Deep Bayesian Nonparametrics

25 50 75 100 125 150 175 200

90.00

95.00
95.98

100.00

105.00
mean (n_runs=100)

rr naive true

25 50 75 100 125 150 175 200
7.6

63.5

500.0

1000.0

variance (n_runs=100)
rr naive

25 50 75 100 125 150 175 200
0.000

0.001

0.002

0.003

0.004

efficiency (n_runs=100)
rr naive

Figure 6. Mean, variance and efficiency for Russian roulette and naive Monte Carlo estimation. In all plots, rr stands for Russian roulette
and naive stands for naive Monte Carlo. In the first plot, true represents the value of S that we are estimating.

Variational Russian Roulette for Deep Bayesian Nonparametrics

0 20 40
k-th feature

0.0

0.2

0.4

0.6

0.8

L1
 n

or
m

 o
f q

A k

(a) Mean absolute value of qA

0 20 40
k-th feature

0

2500

5000

7500

10000
Fr

ac
tio

n

(b) Activation frequency of Z

Figure 7. Effects of truncation level for S-IBP with a deep decoder. All plots are computed from the whole testing set of Fashion-MNIST
dataset. The vertical line at 8.0 in red is the corresponding truncation level learned by RRS-IBP.

