A. Proofs of Propositions 1,2

Proof of Proposition 1. Let v^{π} be the value function of π. Since $M \in \mathcal{M}^{\text {trans }}(\mathcal{S}, \mathcal{A}, \gamma, \phi)$, we have $P\left(s^{\prime} \mid s, a\right)=$ $\sum_{k \in[K]} \psi_{k}\left(s^{\prime}\right) \phi_{k}(s, a)$ for some ψ_{k} 's. We have

$$
\begin{aligned}
Q^{\pi}(s, a) & =r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, a\right) v^{\pi}\left(s^{\prime}\right)=r(s, a)+\gamma \sum_{k \in[K]} \phi_{k}(s, a) \sum_{s^{\prime} \in \mathcal{S}} \psi_{k}\left(s^{\prime}\right) v^{\pi}\left(s^{\prime}\right) \\
& =r(s, a)+\gamma \sum_{k \in[K]} \phi_{k}(s, a) w^{\pi}(k)
\end{aligned}
$$

where vector $w^{\pi} \in \mathbb{R}^{K}$ is specified by

$$
\forall k \in[K]: w^{\pi}(k)=\sum_{s^{\prime} \in \mathcal{S}} \psi_{k}\left(s^{\prime}\right) v^{\pi}\left(s^{\prime}\right)
$$

Therefore $Q^{\pi} \in \operatorname{Span}(r, \phi)$.
Proof of Proposition 2. "If" direction: Since $M \in \mathcal{M}^{\text {trans }}$, we have from the proof of Proposition 1 that for any $Q \in \mathcal{F}$, $\mathcal{T} Q \in \mathcal{F}$.
"Only if" direction: If $d(\mathcal{T F}, \mathcal{F})=0$, then for any $Q \in \mathcal{F}$ We have

$$
\mathcal{T} Q=r+\gamma P V(Q) \in \mathcal{F} .
$$

We can then pick a maximum-sized set $\left\{Q_{1}, Q_{2}, \ldots Q_{k}\right\} \subset \mathcal{F}$ such that $V\left(Q_{1}\right), V\left(Q_{2}\right), \ldots V\left(Q_{k}\right)$ are linear independent. Note that $k \leq K$. Denote $A=\left[V\left(Q_{1}\right), V\left(Q_{2}\right), \ldots V\left(Q_{k}\right)\right], B=\left[\mathcal{T} Q_{1}, \mathcal{T} Q_{2}, \ldots, \mathcal{T} Q_{k}\right]$ and $R=[r, r, r \ldots, r]$ (with k columns). We then have

$$
B=R+\gamma P A .
$$

Hence we have

$$
P=\gamma^{-1}(B-R) A^{\top}\left(A A^{\top}\right)^{-1} .
$$

Since each column of $B-R$ is a vector in \mathcal{F}, we conclude that each column of P is a vector in \mathcal{F}.

B. Proof of Theorem 1

Proof of Theorem 1. Let \mathcal{M}^{\prime} be the class of all tabular DMDPs with state space \mathcal{S}^{\prime}, action space \mathcal{A}^{\prime}, and discount factor γ. Let \mathcal{K}^{\prime} be an algorithm for such a class of DMDPs with a generative model. Let

$$
N=O\left(\frac{\left|\mathcal{S}^{\prime}\right|\left|\mathcal{A}^{\prime}\right|}{(1-\gamma)^{3} \cdot \epsilon^{2} \cdot \log \epsilon^{-1}}\right)
$$

For each $M^{\prime} \in \mathcal{M}^{\prime}$, let $\pi^{\mathcal{K}^{\prime}, M^{\prime}, N}$ be the policy returned by \mathcal{K}^{\prime} with querying at most N samples from the generative model. The lower bound in Theorem B. 3 in Sidford et al. (2018a)(which is derived from Theorem 3 in Azar et al. (2013)) states that

$$
\inf _{\mathcal{K}^{\prime}} \sup _{M^{\prime} \in \mathcal{M}^{\prime}} \mathbb{P}\left[\sup _{s \in \mathcal{S}}\left(v^{*, M^{\prime}}(s)-v^{\pi^{\kappa^{\prime}, M^{\prime}, N}}(s)\right) \geq \epsilon\right] \geq 1 / 3
$$

where $v^{*, M^{\prime}}$ is the optimal value function of M^{\prime}. Suppose, without loss of generality, $K=\left|\mathcal{S}^{\prime}\right|\left|\mathcal{A}^{\prime}\right|+1$. We prove Theorem 1 by showing that every DMDP instance $M^{\prime} \in \mathcal{M}^{\prime}$ can be converted to an instance $M \in \mathcal{M}_{K}^{\text {trans }}(\mathcal{S}, \mathcal{A}, \gamma)$ such that any algorithm \mathcal{K} for $\mathcal{M}_{K}^{\text {trans }}(\mathcal{S}, \mathcal{A}, \gamma)$ can be used to solve M^{\prime}.
For a DMDP instance $M^{\prime}=\left(\mathcal{S}^{\prime}, \mathcal{A}^{\prime}, P^{\prime}, r^{\prime}, \gamma\right) \in \mathcal{M}^{\prime}$, we construct a corresponding DMDP instance $M=(\mathcal{S}, \mathcal{A}, P, r, \gamma) \in$ $\mathcal{M}_{K}^{\text {trans }}(\mathcal{S}, \mathcal{A}, \gamma)$ with a feature representation ϕ. We pick \mathcal{S} and \mathcal{S} to be supersets of \mathcal{S} and \mathcal{A}^{\prime} respectively, so that the transition distributions and rewards remain unchanged on $\mathcal{S}^{\prime} \times \mathcal{A}^{\prime}$, i.e., $P(\cdot \mid s, a)=P^{\prime}(\cdot \mid s, a)$ and $r(s, a)=r^{\prime}(s, a)$ for $s \in \mathcal{S}^{\prime}, a \in \mathcal{A}^{\prime}$. From $(s, a) \in(\mathcal{S} \times \mathcal{A}) /\left(\mathcal{S}^{\prime} \times \mathcal{A}^{\prime}\right)$, the process transitions to an absorbing state $s^{0} \in \mathcal{S} / \mathcal{S}^{\prime}$ with probability 1 and stays there with reward 0 .

Now we show that M admits a feature representation $\phi: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^{K}$ as follows. Say (s, a) is the k-th element in $\mathcal{S}^{\prime} \times \mathcal{A}$, we let $\phi(s, a)=\mathbf{1}_{\mathbf{k}}$, which is the unit vector whose k th entry equals one. For $(s, a) \notin \mathcal{S}^{\prime} \times \mathcal{A}^{\prime}$, we let $\phi(s, a)=\mathbf{1}_{\mathbf{K}}$. Then we can verify that $P\left(s^{\prime} \mid s, a\right)=\sum_{k \in[K]} \phi_{k}(s, a) \psi_{k}\left(s^{\prime}\right)$ for some ψ_{k} 's. Thus we have constructed an MDP instance $M^{\prime} \in \mathcal{M}_{K}^{\text {trans }}(\mathcal{S}, \mathcal{A}, \gamma)$ with feature representation ϕ.
Suppose that \mathcal{K} is an algorithm that applies to M using N samples. Based on the reduction, we immediately obtained an algorithm \mathcal{K}^{\prime} that applies to M^{\prime} using N samples and the feature map ϕ : \mathcal{K}^{\prime} works by applying \mathcal{K} to M and outputs the restricted policy on $\mathcal{S}^{\prime} \times \mathcal{A}^{\prime}$. It can be easily verified that if π is an ϵ-optimal policy for M then the reduction gives an ϵ-optimal policy for M^{\prime}. By virtue of the reduction, one gets

$$
\begin{aligned}
\inf _{\mathcal{K}} \sup _{M \in \mathcal{M}_{K}^{\text {trans }}(\mathcal{S}, \mathcal{A}, \gamma)} \mathbb{P}\left(\sup _{s \in \mathcal{S}}\left(v^{*}(s)-v^{\pi^{\mathcal{K}, M, N}}(s)\right) \geq \epsilon\right) & \geq \inf _{\mathcal{K}^{\prime}} \sup _{M^{\prime} \in \mathcal{M}^{\prime}} \mathbb{P}\left(\sup _{s \in \mathcal{S}}\left(v^{*, M^{\prime}}(s)-v^{\pi^{\mathcal{K}^{\prime}, M^{\prime}, N}}(s)\right) \geq \epsilon\right) \\
& \geq 1 / 3
\end{aligned}
$$

This completes the proof.

C. Proof of Theorem 2.

Proof. Recall that $P_{\mathcal{K}}$ is a submatrix of P formed by the rows indexed by \mathcal{K}. We denote $\widetilde{P}_{\mathcal{K}}$ in the same manner for \widetilde{P}. Recall that $\|P-\widetilde{P}\|_{1, \infty} \leq \xi$. Let $\widehat{P}_{\mathcal{K}}^{(t)}$ be the matrix of empirical transition probabilities based on $m:=N /(K R)$ sample transitions per $(s, a) \in \mathcal{K}$ generated at iteration k. It can be viewed as an estimate of $P_{\mathcal{K}}$ at iteration t. Since \widetilde{P} admits a context representation, it can be written as

$$
\widetilde{P}=\Phi \Psi \quad \text { where } \quad \Psi=\Phi_{\mathcal{K}}^{-1} \widetilde{P}_{\mathcal{K}}
$$

Let $\widehat{\Psi}^{(t)}=\Phi_{\mathcal{K}}^{-1} \widehat{P}_{\mathcal{K}}^{(t)}$ be the estimate of Ψ at iteration t. We can view $\Phi \widehat{\Psi}^{(t)}$ as an estimate of P.
We will show that each iteration of the algorithm is an approximate value iteration. We first define the approximate Bellman operator, $\widehat{\mathcal{T}}$ as, $\forall v \in \mathbb{R}^{\mathcal{S}}$:

$$
\left[\widehat{\mathcal{T}}^{(t)} v\right](s)=\max _{a}\left[r(s, a)+\gamma \phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1} \widehat{P}_{\mathcal{K}}^{(t)} v\right]
$$

Notice that, by definition of the algorithm,

$$
V_{w^{(t)}} \leftarrow \widehat{\mathcal{T}}^{(t)} \Pi_{[0, H]}\left[V_{w^{(t-1)}}\right]
$$

where $w^{(0)}=0 \in \mathbb{R}^{K}$ and $w^{(t)}$ is the w at the end of the t-th iteration of the algorithm and $H=(1-\gamma)^{-1}$ and $\Pi_{[0, H]}(\cdot)$ denotes entrywise projection to $[0, H]$. For the rest of the proof, we denote

$$
\widehat{V}_{w^{(t-1)}}=\Pi_{[0, H]}\left[V_{w^{(t-1)}}\right]
$$

We now show the approximation quality of $\widehat{\mathcal{T}}$, i.e., estimate $\left\|\widehat{\mathcal{T}}^{(t)} \widehat{V}_{w^{(t-1)}}-\mathcal{T} \widehat{V}_{w^{(t-1)}}\right\|_{\infty}$, where \mathcal{T} is the exact Bellman operator. Notice that

$$
\forall s: \quad\left|\left[\widehat{\mathcal{T}}^{(t)} \widehat{V}_{w^{(t-1)}}\right](s)-\left[\mathcal{T} \widehat{V}_{w^{(t-1)}}\right](s)\right| \leq \gamma \max _{a}\left|\phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1} \widehat{P}_{\mathcal{K}}^{(t)} \widehat{V}_{w^{(t-1)}}-P(\cdot \mid s, a)^{\top} \widehat{V}_{w^{(t-1)}}\right|
$$

It remains to show the right hand side of the above inequality is small.
Denote \mathcal{F}_{t} to be the filtration defined by the samples up to iteration t. Then, by the Hoeffding inequality and the fact that the samples at iteration t are independent with that from iteration $t-1$, we have

$$
\operatorname{Pr}\left[\left\|\widehat{P}_{\mathcal{K}}^{(t)} \widehat{V}_{w^{(t-1)}}-P_{\mathcal{K}} \widehat{V}_{w^{(t-1)}}\right\|_{\infty} \leq \epsilon_{1} \mid \mathcal{F}_{t-1}\right] \geq 1-\delta / R
$$

where we denote

$$
\epsilon_{1}=c H \cdot \sqrt{\frac{\log \left(K R \delta^{-1}\right)}{m}}
$$

for some generic constant c. Next, let \mathcal{E}_{t} be the event that,

$$
\left\|\widehat{P}_{\mathcal{K}}^{(t)} \widehat{V}_{w^{(t-1)}}-P_{\mathcal{K}} \widehat{V}_{w^{(t-1)}}\right\|_{\infty} \leq \epsilon_{1}
$$

We thus have $\operatorname{Pr}\left[\mathcal{E}_{t} \mid \mathcal{F}_{t-1}\right] \geq 1-\delta / R$ and $\operatorname{Pr}\left[\mathcal{E}_{t} \mid \mathcal{E}_{1}, \mathcal{E}_{2}, \ldots \mathcal{E}_{t-1}\right] \geq 1-\delta / R$ since $\mathcal{E}_{1}, \mathcal{E}_{2}, \ldots \mathcal{E}_{t-1}$ are adapted to \mathcal{F}_{t-1}. This lead to

$$
\operatorname{Pr}\left[\mathcal{E}_{1} \cap \mathcal{E}_{2} \cap \ldots \cap \mathcal{E}_{R}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \ldots \geq 1-\delta
$$

Now we consider event $\mathcal{E}:=\mathcal{E}_{1} \cap \mathcal{E}_{2} \cap \ldots \cap \mathcal{E}_{R}$, on which we have, for all $t \in[R]$,

$$
\left|\phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1} \widehat{P}_{\mathcal{K}}^{(t)} \widehat{V}_{w^{(t-1)}}-\phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1} P_{\mathcal{K}} \widehat{V}_{w^{(t-1)}}\right| \leq\left\|\phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1}\right\|_{1} \cdot \epsilon_{1} \leq L \epsilon_{1}
$$

Note that, $\left\|P_{\mathcal{K}}-\widetilde{P}_{\mathcal{K}}\right\|_{1, \infty} \leq \xi$, we thus have

$$
\left|\phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1} \widehat{P}_{\mathcal{K}}^{(t)} \widehat{V}_{w^{(t-1)}}-\phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1} \widetilde{P}_{\mathcal{K}} \widehat{V}_{w^{(t-1)}}\right| \leq L \epsilon_{1}+\left|\phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1}\left(P_{\mathcal{K}}-\widetilde{P}_{\mathcal{K}}\right) \widehat{V}_{w^{(t-1)}}\right| \leq L \epsilon_{1}+L H \xi
$$

Further using

$$
\left|\left(\phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1} \widetilde{P}_{\mathcal{K}}^{(t)}-P(\cdot \mid s, a)^{\top}\right) \widehat{V}_{w^{(t-1)}}\right| \leq H \xi
$$

we thus have

$$
\begin{aligned}
&\left|\phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1} \widehat{P}_{\mathcal{K}}^{(t)} \widehat{V}_{w^{(t-1)}}-P(\cdot \mid s, a)^{\top} \widehat{V}_{w^{(t-1)}}\right| \leq \mid \phi(s, a)^{\top}\left(\Phi_{\mathcal{K}}^{-1} \widehat{P}_{\mathcal{K}}^{(t)}-\Phi_{\mathcal{K}}^{-1} \widetilde{P}_{\mathcal{K}}^{(t)}+\Phi_{\mathcal{K}}^{-1} \widetilde{P}_{\mathcal{K}}^{(t)}\right) \widehat{V}_{w^{(t-1)}} \\
&-P(\cdot \mid s, a)^{\top} \widehat{V}_{w^{(t-1)}} \mid \\
& \leq L \epsilon_{1}+L H \xi+H \xi
\end{aligned}
$$

Further notice that $\Pi_{[0, H]}$ can only makes error smaller. Therefore, we have shown that the $\widehat{V}_{w^{(t)}} \mathrm{s}$ follow an approximate value iteration with error $\gamma\left[L \epsilon_{1}+(L+1) H \xi\right]$ with probability at least $1-\delta$. Because of the contraction of the operator \mathcal{T}, we have, after R iterations,

$$
\left\|\widehat{V}_{w^{(R-1)}}-v^{*}\right\|_{\infty} \leq \gamma^{R-1} H+\gamma R\left[L \epsilon_{1}+(L+1) H \xi\right] \leq \gamma R\left[2 L \epsilon_{1}+(L+1) H \xi\right]
$$

for appropriately chosen $R=\Theta(\log (N H) /(1-\gamma))$. Since $Q_{w^{(R)}}(s, a)=r(s, a)+\gamma \phi(s, a)^{\top} \Phi_{\mathcal{K}}^{-1} \widehat{P}_{\mathcal{K}}^{(R)} \widehat{V}_{w^{(R-1)}}$, we have,

$$
\left\|Q_{w^{(R)}}-Q^{*}\right\|_{\infty} \leq 2 \gamma R\left[2 L \epsilon_{1}+(L+1) H \xi\right]
$$

happens with probability at least $1-\delta$. It follows that (see, e.g., Proposition 2.1.4 of (Bertsekas, 2005)),

$$
\left\|v^{\pi_{w}(R)}-v^{*}\right\|_{\infty} \leq 2 \gamma R H\left[2 L \epsilon_{1}+(L+1) H \xi\right]
$$

with probability at least $1-\delta$. Plugging the values of H, ϵ_{1} and m, we have

$$
\left\|v^{\pi_{w}(R)}-v^{*}\right\|_{\infty} \leq C \gamma \cdot \frac{\log (N H)}{1-\gamma} \cdot \frac{1}{1-\gamma} \cdot L \cdot \sqrt{\frac{K \log \left(K R \delta^{-1}\right)}{(1-\gamma)^{2} \cdot N} \cdot \frac{\log (N H)}{1-\gamma}}+C \gamma \cdot \frac{\log (N H)}{1-\gamma} \cdot \frac{L}{(1-\gamma)^{2}} \cdot \xi
$$

for some generic constant $C>0$. This completes the proof.

D. Proof of Theorem 3

According to the discussions following Assumption 2, we assume without loss of generality:

- For each anchor $\left(s_{k}, a_{k}\right) \in \mathcal{K}, \phi\left(s_{k}, a_{k}\right)$ is a vector with ℓ_{1}-norm 1 .

Then Assumption 2 further implies

- $\phi(s, a)$ is a vector of probabilities for all (s, a).
- For each $(s, a), P(\cdot \mid s, a)=\sum_{k} \phi_{k}(s, a) P\left(\cdot \mid s_{k}, a_{k}\right)$.

D.1. Notations

\mathcal{T}-operator For any value function $V: \mathcal{S} \rightarrow \mathbb{R}$ and policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$, we denote the Bellman operators as

$$
\mathcal{T} V[s]=\max _{a \in \mathcal{A}}\left[r(s, a)+\gamma P(\cdot \mid s, a)^{\top} V\right] \quad \text { and } \quad \mathcal{T}_{\pi} V[s]=r(s, \pi(s))+\gamma P(\cdot \mid s, \pi(s))^{\top} V
$$

The key properties, e.g. monotonicity and contraction, of the \mathcal{T}-operator can be found in Puterman (2014). For completeness, we state them here.
Fact 4 (Bellman Operator). For any value function $V, V^{\prime}: \mathcal{S} \rightarrow \mathbb{R}$, if $V \leq V^{\prime}$ entry-wisely, we then have,

$$
\begin{array}{cll}
\mathcal{T} V \leq \mathcal{T} V^{\prime} & \text { and } \quad \mathcal{T}_{\pi} V \leq \mathcal{T}_{\pi} V^{\prime} \\
\left\|\mathcal{T} V-v^{*}\right\|_{\infty} \leq \gamma\left\|V-v^{*}\right\|_{\infty} & \text { and } \quad\left\|\mathcal{T}_{\pi} V-v^{\pi}\right\|_{\infty} \leq \gamma\left\|V-v^{\pi}\right\|_{\infty} \\
\lim _{t \rightarrow \infty} \mathcal{T}^{t} V=v^{*} & \text { and } \quad \lim _{t \rightarrow \infty} \mathcal{T}_{\pi}^{t} V=v^{\pi}
\end{array}
$$

Q-function We let, for any (s, a),

$$
\begin{aligned}
& Q_{\theta^{(i, j)}}(s, a)=r(s, a)+\gamma \phi(s, a)^{\top} \bar{w}^{(i, j)} \\
& \bar{Q}_{\theta^{(i, j)}}(s, a)=r(s, a)+\gamma P(\cdot \mid s, a)^{\top} V_{\theta^{(i, j-1)}}(\cdot)
\end{aligned}
$$

Variance of value function For (s, a), we denote the variance of a function (or a vector) $V: \mathcal{S} \rightarrow \mathbb{R}$ as,

$$
\sigma_{s, a}[V]:=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{2}\left(s^{\prime}\right)-\left(\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)\right)^{2}
$$

we also denote $\sigma_{k}(\cdot)=\sigma_{s_{k}, a_{k}}(\cdot)$ for $\left(s_{k}, a_{k}\right) \in \mathcal{K}$.
\mathcal{E}-event In Algorithm 2, let $\mathcal{E}^{(i, 0)}$ be the event that

$$
\forall k \in[K]:\left|w^{(i, 0)}(k)-P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{(i, 0)}}\right| \leq \epsilon^{(i, 0)}(k) \leq C\left[\sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right) \sigma_{k}\left[V_{\theta^{(i, 0)}}\right]}{m}}+\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma) m^{3 / 4}}\right]
$$

for some generic constant $C>0$. Let $\mathcal{E}^{(i, j)}$ be the event on which

$$
\forall k \in[K]: \quad\left|w^{(i, j)}(k)-w^{(i, 0)}(k)-P\left(\cdot \mid s_{k}, a_{k}\right)^{\top}\left(V_{\theta^{(i, j-1)}}-V_{\theta^{(i, 0)}}\right)\right| \leq C(1-\gamma)^{-1} 2^{-i} \sqrt{\log \left(R^{\prime} R K \delta^{-1}\right) / m_{1}},
$$

where R^{\prime}, R, m, m_{1} are parameters defined in Algorithm 2.
\mathcal{G}-event Let $\mathcal{G}^{(i)}$ be the event such that

$$
0 \leq V_{\theta^{(i, 0)}}(s) \leq \mathcal{T}_{\pi_{\theta^{(i, 0)}}} V_{\theta^{(i, 0)}}[s] \leq v^{*}(s), \quad v^{*}(s)-V_{\theta^{(i, 0)}}(s) \leq c 2^{-i} /(1-\gamma), \quad \forall s \in \mathcal{S}
$$

for some sufficiently small constant c.

D.2. Some Properties

Firstly we notice that the parameterized functions Q_{θ}, V_{θ} (eq. (5)) increase pointwisely (as index (i, j) increases).
Lemma 5 (Monotonicity of the Parametrized V). For every $(i, j),\left(i^{\prime}, j^{\prime}\right) \in\left[R^{\prime}\right] \times[R]$, and $s \in \mathcal{S}$, if $(i, j) \leq\left(i^{\prime}, j^{\prime}\right)$ (in lexical order), we have

$$
V_{\theta^{(i, j)}}(s) \leq V_{\theta^{\left(i^{\prime}, j^{\prime}\right)}}(s)
$$

We note the triangle inequality of variance.
Lemma 6. For any $V_{1}, V_{2}: \mathcal{S} \rightarrow \mathbb{R}$, we have $\sqrt{\sigma_{k}\left[V_{1}+V_{2}\right]} \leq \sqrt{\sigma_{k}\left[V_{1}\right]}+\sqrt{\sigma_{k}\left[V_{2}\right]}$ for all $k \in[K]$.
The next is a key lemma showing a property of the convex combination of the standard deviations, which relies on the anchor condition.

Lemma 7. For any $V: \mathcal{S} \rightarrow \mathbb{R}$ and $s, a \in \mathcal{S} \times \mathcal{A}$:

$$
\sum_{k \in[K]} \phi_{k}(s, a) \sqrt{\sigma_{k}[V]} \leq \sqrt{\sigma_{s, a}(V)}
$$

Proof. Since $\left[\phi_{1}(s, a), \ldots, \phi_{K}(s, a)\right]$ is a vector of probability distribution (due to Assumption 2 without loss of generality), by Jensen's inequality we have,

$$
\begin{aligned}
\sum_{k} \phi_{k}(s, a) \sqrt{\sigma_{k}[V]} \leq \sqrt{\sum_{k} \phi_{k}(s, a) \sigma_{k}[V]} & =\sqrt{\sum_{k} \phi_{k}(s, a)\left[\sum_{s^{\prime}} P\left(s^{\prime} \mid s_{k}, a_{k}\right) V^{2}\left(s^{\prime}\right)-\left(\sum_{s^{\prime}} P\left(s^{\prime} \mid s_{k}, a_{k}\right) V\left(s^{\prime}\right)\right)^{2}\right]} \\
& =\sqrt{\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{2}\left(s^{\prime}\right)-\sum_{k} \phi_{k}(s, a)\left[\left(\sum_{s^{\prime}} P\left(s^{\prime} \mid s_{k}, a_{k}\right) V\left(s^{\prime}\right)\right)^{2}\right]}
\end{aligned}
$$

By the Jensen's inequality again, we have

$$
\sum_{k} \phi_{k}(s, a)\left(\sum_{s^{\prime}} P\left(s^{\prime} \mid s_{k}, a_{k}\right) V\left(s^{\prime}\right)\right)^{2} \geq\left(\sum_{k} \phi_{k}(s, a) \sum_{s^{\prime}} P\left(s^{\prime} \mid s_{k}, a_{k}\right) V\left(s^{\prime}\right)\right)^{2}=\left(\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)\right)^{2}
$$

Combining the above two equations, we complete the proof.

D.3. Monotonicity Preservation

The next lemma illustrates, conditioning on $\mathcal{E}^{(i, j)}$ and $\mathcal{G}^{(i)}$, a monotonicity property is preserved throughout the inner loop. Lemma 8 (Preservation of Monotonicity Property). Conditioning on the events $\mathcal{G}^{(i)}, \mathcal{E}^{(i, 0)}, \mathcal{E}^{(i, 1)}, \ldots, \mathcal{E}^{(i, j)}$, we have for all $s \in \mathcal{S}, j^{\prime} \in[0, j]$,

$$
\begin{equation*}
V_{\theta^{\left(i, j^{\prime}\right)}}(s) \leq \mathcal{T}_{\pi_{\theta^{\left(i, j^{\prime}\right)}}} V_{\theta^{\left(i, j^{\prime}\right)}}[s] \leq \mathcal{T} V_{\theta^{\left(i, j^{\prime}\right)}}[s] \leq v^{*}(s) \tag{6}
\end{equation*}
$$

Moreover, for any fixed policy π^{*}, we have, for $j^{\prime} \in[j]$,

$$
\begin{equation*}
v^{*}(s)-V_{\theta^{\left(i, j^{\prime}\right)}}(s) \leq \gamma P\left(\cdot \mid s, \pi^{*}(s)\right)^{\top}\left(v^{*}-V_{\theta^{\left(i, j^{\prime}-1\right)}}\right)+2 \gamma \sum_{k} \phi_{k}\left(s, \pi^{*}(s)\right) \epsilon^{\left(i, j^{\prime}\right)}(k) \tag{7}
\end{equation*}
$$

Proof.

Proof of (6) by Induction: We first prove the inequalities in (6) by induction on j^{\prime}. The base case of $j^{\prime}=0$ holds by definition of $\mathcal{G}^{(i)}$.

Now assuming it holds for $j^{\prime}-1 \geq 0$, let us verify that (6) holds for j^{\prime}. For any $s \in \mathcal{S}$, we rewrite the corresponding value function defined in (5) as follows:

$$
V_{\theta^{\left(i, j^{\prime}\right)}}(s)=\max \left\{\max _{a} Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a), V_{\theta^{\left(i, j^{\prime}-1\right)}}(s)\right\}
$$

For any $s \in \mathcal{S}$, there are only two cases to make the above equation hold:

1. $V_{\theta^{\left(i, j^{\prime}\right)}}(s)=V_{\theta^{\left(i, j^{\prime}-1\right)}}(s) \Rightarrow \max _{a} Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a)<V_{\theta^{\left(i, j^{\prime}-1\right)}}(s)$ and $\pi_{\theta^{\left(i, j^{\prime}\right)}}(s)=\pi_{\theta^{\left(i, j^{\prime}-1\right)}}(s)$;
2. $V_{\theta^{\left(i, j^{\prime}\right)}}(s)=\max _{a} Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a) \Rightarrow \max _{a} Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a) \geq V_{\theta^{\left(i, j^{\prime}-1\right)}}(s)$ and $\pi_{\theta^{\left(i, j^{\prime}\right)}}(s)=\arg \max _{a} Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a)$.

We investigate the consequences of case 1 . Since (6) holds for $j^{\prime}-1$, we have $V_{\theta^{\left(i, j^{\prime}\right)}}(s)=V_{\theta^{\left(i, j^{\prime}-1\right)}}(s) \leq v^{*}(s)$. Moreover, since (6) holds for $j^{\prime}-1$ and $\pi_{\theta^{\left(i, j^{\prime}\right)}}(s)=\pi_{\theta^{\left(i, j^{\prime}-1\right)}}(s)$, we have

$$
\begin{aligned}
V_{\theta^{\left(i, j^{\prime}\right)}}(s)=V_{\theta^{\left(i, j^{\prime}-1\right)}}(s) & \leq \mathcal{T}_{\pi_{\theta^{\left(i, j^{\prime}\right)}}} V_{\theta^{\left(i, j^{\prime}-1\right)}}[s] & & \triangleright \text { by induction hypothesis } \\
& \leq \mathcal{T}_{\pi^{\left(i, j^{\prime}\right)}} V_{\theta^{\left(i, j^{\prime}\right)}}[s] & & \triangleright \text { by Lemma } 5 \text { and the monotonicity of } \mathcal{T}_{\pi} \\
& \leq \mathcal{T} V_{\theta^{\left(i, j^{\prime}\right)}}[s] . & &
\end{aligned}
$$

We now investigate the consequences of case 2 . Notice that conditioning on $\mathcal{E}^{(i, 0)}, \mathcal{E}^{(i, 1)} \ldots, \mathcal{E}^{\left(i, j^{\prime}\right)}$ (by specifying the constant C appropriately), we can verify that,

$$
\forall k \in[K]: \quad \bar{w}^{\left(i, j^{\prime}\right)}(k):=\Pi_{[0, H]}\left(w^{\left(i, j^{\prime}\right)}(k)-\epsilon^{\left(i, j^{\prime}\right)}(k)\right) \leq P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{\left(i, j^{\prime}-1\right)}}
$$

where $H=(1-\gamma)^{-1}$. Thus, for any $a \in \mathcal{A}$,

$$
Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a)=r(s, a)+\gamma \phi(s, a)^{\top} \bar{w}^{\left(i, j^{\prime}\right)} \leq r(s, a)+\gamma \sum_{k \in[K]} \phi_{k}(s, a) P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{\left(i, j^{\prime}-1\right)}}=\bar{Q}_{\theta^{\left(i, j^{\prime}\right)}}(s, a)
$$

Then we have

$$
\begin{align*}
0 \leq \max _{a} Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a) & =Q_{\theta^{\left(i, j^{\prime}\right)}}\left(s, \pi_{\theta^{\left(i, j^{\prime}\right)}}(s)\right) \\
\max _{a} Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a) \leq \bar{Q}_{\theta^{\left(i, j^{\prime}\right)}}\left(s, \pi_{\theta^{\left(i, j^{\prime}\right)}}(s)\right) & =\mathcal{T}_{\pi_{\theta^{\left(i, j^{\prime}\right)}}} V_{\theta^{\left(i, j^{\prime}-1\right)}}[s] \\
\max _{a} Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a) \leq \max _{a} \bar{Q}_{\theta^{\left(i, j^{\prime}-1\right)}}(s, a) & =\mathcal{T} V_{\theta^{\left(i, j^{\prime}-1\right)}}[s] \tag{8}
\end{align*}
$$

As a result, we obtain

$$
\begin{aligned}
0 & \leq V_{\theta^{\left(i, j^{\prime}\right)}}(s)=\max _{a} Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a) \leq \mathcal{T}_{\pi_{\theta^{\left(i, j^{\prime}\right)}}(s)} V_{\theta^{\left(i, j^{\prime}-1\right)}}[s] \\
& \leq \mathcal{T}_{\pi_{\theta^{\left(i, j^{\prime}\right)}}} V_{\theta^{\left(i, j^{\prime}\right)}}[s] \quad \triangleright \text { by Lemma } 5 \text { and the monotonicity of } \mathcal{T}_{\pi} \\
& \leq \mathcal{T} V_{\theta^{\left(i, j^{\prime}\right)}}[s] .
\end{aligned}
$$

We see that $0 \leq V_{\theta^{\left(i, j^{\prime}\right)}}(s) \leq \mathcal{T}_{\pi_{\theta^{\left(i, j^{\prime}\right)}}} V_{\theta^{\left(i, j^{\prime}\right)}}[s] \leq \mathcal{T} V_{\theta^{\left(i, j^{\prime}\right)}}[s]$ holds in both cases 1 and 2. Also note that since (6) holds for $j^{\prime}-1$, we have $V_{\theta\left(i, j^{\prime}-1\right)} \leq v^{*}$. It follows from the monotonicity of the Bellman operator that

$$
0 \leq V_{\theta^{\left(i, j^{\prime}\right)}}(s) \leq \mathcal{T}_{\pi_{\theta^{\left(i, j^{\prime}\right)}}} V_{\theta^{\left(i, j^{\prime}-1\right)}}[s] \leq \mathcal{T}_{\pi_{\theta^{\left(i, j^{\prime}\right)}}} v^{*}[s] \leq v^{*}(s)
$$

This completes the induction.

Proof of (7): Let π^{*} be some fixed optimal policy. For each $j^{\prime} \in[j]$, by (5), we have

$$
V_{\theta^{\left(i, j^{\prime}\right)}}(s) \geq \max _{a \in \mathcal{A}} Q_{\theta^{\left(i, j^{\prime}\right)}}(s, a):=\max _{a \in \mathcal{A}}\left[r(s, a)+\gamma \phi(s, a)^{\top} \bar{w}^{\left(i, j^{\prime}\right)}\right]
$$

By definition of $\mathcal{E}^{\left(i, j^{\prime}\right)}$, we have

$$
\forall k \in[K]: \quad \bar{w}^{\left(i, j^{\prime}\right)}(k) \geq w^{\left(i, j^{\prime}\right)}(k)-\epsilon^{\left(i, j^{\prime}\right)}(k) \geq P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{\left(i, j^{\prime}-1\right)}}-2 \epsilon^{\left(i, j^{\prime}\right)}(k)
$$

Therefore,

$$
V_{\theta^{\left(i, j^{\prime}\right)}}(s) \geq \max _{a}\left[r(s, a)+\gamma \sum_{k} \phi_{k}(s, a)\left(P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{\left(i, j^{\prime}-1\right)}}-2 \epsilon^{\left(i, j^{\prime}\right)}(k)\right)\right]
$$

Hence,

$$
\begin{aligned}
v^{*}(s)-V_{\theta^{\left(i, j^{\prime}\right)}}(s) & \leq r^{\pi^{*}}(s)+\gamma P^{\pi^{*}}(\cdot \mid s)^{\top} v^{*}-\max _{a}\left[r(s, a)+\gamma \sum_{k} \phi_{k}(s, a)\left(P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{\left(i, j^{\prime}-1\right)}}-2 \epsilon^{\left(i, j^{\prime}\right)}(k)\right)\right] \\
& \leq r^{\pi^{*}}(s)+\gamma P^{\pi^{*}}(\cdot \mid s)^{\top} v^{*}-\left[r\left(s, \pi^{*}(s)\right)+\gamma \sum_{k} \phi_{k}\left(s, \pi^{*}(s)\right)\left(P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{\left(i, j^{\prime}-1\right)}}-2 \epsilon^{\left(i, j^{\prime}\right)}(k)\right)\right] \\
& =\gamma P^{\pi^{*}}(\cdot \mid s)^{\top}\left(v^{*}-V_{\theta^{\left(i, j^{\prime}-1\right)}}\right)+2 \gamma \sum_{k} \phi_{k}\left(s, \pi^{*}(s)\right) \epsilon^{\left(i, j^{\prime}\right)}(k),
\end{aligned}
$$

where $P^{\pi^{*}}(\cdot \mid s)=P\left(\cdot \mid s, \pi^{*}(s)\right)$ and we use the fact that $P^{\pi^{*}}(\cdot \mid s)=\sum_{k} \phi_{k}\left(s, \pi^{*}(s)\right) P\left(\cdot \mid s_{k}, a_{k}\right)$ in the last equality.

D.4. Accuracy of Confidence Bounds

We show that the mini-batch sample sizes picked in Algorithm 2 are sufficient to control the error occurred in the inner-loop iterations, such that the events $\mathcal{E}^{(i, 0)}, \mathcal{E}^{(i, 1)}, \ldots, \mathcal{E}^{(i, R)}$ jointly happen with close-to-1 probability.
Lemma 9. For $i=0,1,2, \ldots, R^{\prime}$,

$$
\operatorname{Pr}\left[\mathcal{E}^{(i, 0)}, \mathcal{E}^{(i, 1)}, \ldots, \mathcal{E}^{(i, R)} \mid \mathcal{G}^{(i)}\right] \geq 1-\delta / R^{\prime}
$$

Proof. We analyze each event separately.

Probability of $\mathcal{E}^{(i, 0)}$: We first show that $\operatorname{Pr}\left[\mathcal{E}^{(i, 0)} \mid \mathcal{G}^{(i)}\right] \geq 1-\delta /\left(R R^{\prime}\right)$. Note that $V_{\theta^{(i, 0)}}(s) \in\left[0, \frac{1}{1-\gamma}\right]$ is determined by the samples obtained before the outer-iteration i starts, therefore samples obtained in iteration (i, j) for $j \geq 0$ are independent with $V_{\theta^{(i, 0)}}$. Hence, conditioning on $\mathcal{G}^{(i)}$, for a fixed $\delta \in(0,1)$ and $k \in[K]$, by the Bernstein's and the Hoeffding's inequalities, for some constant $c_{1}>0$, the following two inequalities hold with probability at least $1-\delta$,

$$
\begin{aligned}
& \left|w^{(i, 0)}(k)-P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{(i, 0)}}\right| \leq \min \left\{c_{1} \sqrt{\frac{\log \left[\delta^{-1}\right] \sigma_{k}\left[V_{\theta^{(i, 0)}}\right]}{m}}+\frac{c_{1} \log \delta^{-1}}{(1-\gamma) m}, \quad c_{1}(1-\gamma)^{-1} \cdot \sqrt{\frac{\log \left[\delta^{-1}\right]}{m}}\right\} \\
& \left|z^{(i, 0)}(k)-P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{(i, 0)}}^{2}\right| \leq c_{1}(1-\gamma)^{-2} \cdot \sqrt{\frac{\log \left[\delta^{-1}\right]}{m}}
\end{aligned}
$$

where we recall the notation $\sigma_{k}\left[V_{\theta^{(i, 0)}}\right]=P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{(i, 0)}}^{2}-\left[P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{(i, 0)}}\right]^{2} \leq(1-\gamma)^{-2}$ (see D.1). Conditioning on the preceding two inequalities, we have

$$
\left|\sigma_{k}\left[V_{\theta^{(i, 0)}}\right]-\sigma^{(i, 0)}(k)\right|=\left|\sigma_{k}\left[V_{\theta^{(i, 0)}}\right]-\left(z^{(i, 0)}(k)-w^{(i, 0)}(k)^{2}\right)\right| \leq c_{1}^{\prime}(1-\gamma)^{-2} \cdot \sqrt{\frac{\log \left[\delta^{-1}\right]}{m}}
$$

for some constant c_{1}^{\prime}, where $\sigma^{(i, 0)}(k):=z^{(i, 0)}-\left(w^{(i, 0)}(k)\right)^{2}$ according to tep 13 of Alg. 2. Thus, $\sigma_{k}\left[V_{\theta^{(i, 0)}}\right] \leq \sigma^{(i, 0)}(k)+$ $c_{1}^{\prime}(1-\gamma)^{-2} \cdot \sqrt{\frac{\log \left[\delta^{-1}\right]}{m}}$. We further obtain,

$$
\sqrt{\sigma^{(i, 0)}(k)+c_{1}^{\prime}(1-\gamma)^{-2} \cdot \sqrt{\frac{\log \left[\delta^{-1}\right]}{m}}} \leq \sqrt{\sigma^{(i, 0)}(k)}+\left(c_{1}^{\prime 2}(1-\gamma)^{-4} \frac{\log \left[\delta^{-1}\right]}{m}\right)^{1 / 4}
$$

By plugging in $\delta \leftarrow \delta /\left(K R^{\prime} R\right)$, we have,

$$
\begin{aligned}
\left|w^{(i, 0)}(k)-P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{(i, 0)}}\right| & \leq c_{1} \sqrt{\frac{\log \left[K R R^{\prime} \delta^{-1}\right] \sigma_{k}\left[V_{\theta^{(i, 0)}}\right]}{m}}+\frac{c_{1} \log \left(K R R^{\prime} \delta^{-1}\right)}{(1-\gamma) m} \\
& \leq \Theta\left[\sqrt{\frac{\log \left[R^{\prime} R K \delta^{-1}\right] \cdot \sigma^{(i, 0)}(k)}{m}}+\frac{\log \left[R^{\prime} R K \delta^{-1}\right]}{(1-\gamma) m^{3 / 4}}\right] \\
& =\epsilon^{(i, 0)}(k)
\end{aligned}
$$

with probability at least $1-\delta /\left(K R^{\prime} R\right)$, where $\epsilon^{(i, 0)}(k)$ is defined in Step 13 of Algorithm 2. Since $\sigma^{(i, 0)}(k) \leq \sigma_{k}\left[V_{\theta^{(i, 0)}}\right]+$ $c_{1}^{\prime}(1-\gamma)^{-2} \cdot \sqrt{\frac{\log \left[\delta^{-1}\right]}{m}}$, we further have

$$
\epsilon^{(i, 0)}(k) \leq \Theta\left[\sqrt{\log \left(R R^{\prime} K \delta^{-1}\right) \sigma_{k}\left[V_{\theta^{(i, 0)}}\right] / m}+\left((1-\gamma)^{-4} \frac{\log \left[R R^{\prime} K \delta^{-1}\right]^{4}}{m^{3}}\right)^{1 / 4}\right]
$$

Therefore, by applying an union bound over all $k \in[K]$, we have

$$
\operatorname{Pr}\left[\mathcal{E}^{(i, 0)} \mid \mathcal{G}^{(i)}\right] \geq 1-\delta /\left(R R^{\prime}\right)
$$

Reminder that if $\mathcal{E}^{(i, 0)}$ happens, then $w^{(i, 0)}-\epsilon^{(i, 0)} \leq P\left(\cdot \mid s_{k}, a_{k}\right)^{\top} V_{\theta^{(i, 0)}}$.

Probability of $\mathcal{E}^{(i, j)}$ by Induction: We now prove by induction that

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{E}^{(i, j)} \mid \mathcal{E}^{(i, j-1)}, \mathcal{E}^{(i, j-2)}, \ldots, \mathcal{E}^{(i, 0)}, \mathcal{F}^{(i)}\right] \geq 1-\delta /\left(R R^{\prime}\right) \tag{9}
\end{equation*}
$$

For the base case $j=1$, we have

$$
w^{(i, 1)}=w^{(i, 0)} \quad \text { and } \quad \epsilon^{(i, 1)}=\epsilon^{(i, 0)}+\Theta(1-\gamma)^{-1} 2^{-i} \sqrt{\log \left(R R^{\prime} K / \delta\right)}
$$

therefore $\operatorname{Pr}\left[\mathcal{E}^{(i, 1)} \mid \mathcal{E}^{(i, 0)}, \mathcal{G}^{(i)}\right]=1$. Now consider j. Conditioning on $\mathcal{E}^{(i, j-1)}, \mathcal{E}^{(i, j-2)}, \ldots, \mathcal{E}^{(i, 0)}, \mathcal{F}^{(i)}$, we have with probability at least $1-\delta$,

$$
\begin{array}{ll}
\left\lvert\, \frac{1}{m_{1}}\right. & \sum_{\ell=1}^{m_{1}}\left(V_{\theta^{(i, j-1)}}\left(x_{k}^{(\ell)}\right)-V_{\theta^{(i, 0)}}\left(x_{k}^{(\ell)}\right)\right)-P\left(\cdot \mid s_{k}, a_{k}\right)^{\top}\left(V_{\theta^{(i, j-1)}}-V_{\theta^{(i, 0)}}\right) \mid \\
& \leq c_{2} \max _{s}\left|V_{\theta^{(i, j-1)}}(s)-V_{\theta^{(i, 0)}}(s)\right| \cdot \sqrt{\frac{\log \left(\delta^{-1}\right)}{m_{1}}} \\
& \leq c_{2} \max _{s}\left|v^{*}(s)-V_{\theta^{(i, 0)}}(s)\right| \cdot \sqrt{\log \left(\delta^{-1}\right) / m_{1}} \\
& \quad \triangleright V_{\theta^{(i, 0)}} \leq V_{\theta^{(i, j-1)}} \leq v^{*} \\
& \leq c_{2} 2^{-i}(1-\gamma)^{-1} \cdot \sqrt{\log \left(\delta^{-1}\right) / m_{1}} .
\end{array} \quad \triangleright \text { By definition of } \mathcal{G}^{(i)} .
$$

Letting $\delta \leftarrow \delta /\left(R R^{\prime} K\right)$ and applying a union bound over $k \in[K]$, we obtain (9).

Probability of Joint Events: Finally, we have that

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{E}^{(i, 0)} \cap \mathcal{E}^{(i, 1)} \ldots \cap \mathcal{E}^{(i, R)} \mid \mathcal{G}^{(i)}\right] & =\operatorname{Pr}\left[\mathcal{E}^{(i, 0)} \mid \mathcal{G}^{(i)}\right] \operatorname{Pr}\left[\mathcal{E}^{(i, 1)} \mid \mathcal{E}^{(i, 0)}, \mathcal{G}^{(i)}\right] \ldots \operatorname{Pr}\left[\mathcal{E}^{(i, R)} \mid \mathcal{E}^{(i, 0)}, \mathcal{E}^{(i, 1)}, \ldots, \mathcal{E}^{(i, R-1)}, \mathcal{G}^{(i)}\right] \\
& \geq 1-\delta / R^{\prime}
\end{aligned}
$$

Lemma 10 (Upper Bound of $\epsilon^{(i, j)}(k)$). Conditioning on the events $\mathcal{F}^{(i)}, \mathcal{E}^{(i, 0)}, \mathcal{E}^{(i, 1)}, \ldots, \mathcal{E}^{(i, j)}$, we have, for all $k \in[K]$

$$
\epsilon^{(i, j)}(k) \leq C\left[\sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right) \sigma_{k}\left[v^{*}\right]}{m}}+\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma) m^{3 / 4}}+2^{-i} \sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma)^{2} m_{1}}}\right]
$$

for some universal constant $C>0$.
Proof. Conditioning on $\mathcal{F}^{(i)}, \mathcal{E}^{(i, 0)}, \mathcal{E}^{(i, 1)}, \ldots, \mathcal{E}^{(i, j)}$, we have

$$
\begin{aligned}
\epsilon^{(i, 0)}(k) & \leq c_{1}\left[\sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right) \sigma_{k}\left[V_{\theta^{(i, 0)}}\right]}{m}}+\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma) m^{3 / 4}}\right] \\
& \leq c_{1}^{\prime}\left[\sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right) \sigma_{k}\left[v^{*}\right]}{m}}+\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma) m^{3 / 4}}+2^{-i} \sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma)^{2} m}}\right]
\end{aligned}
$$

for some generic constants c_{1}, c_{1}^{\prime}, where we use the fact that $\left\|V_{\theta^{(i, 0)}}-v^{*}\right\|_{\infty} \leq 2^{-i} /(1-\gamma)$ and the triangle inequality. Using the definition of $\epsilon^{(i, j)}$ and the fact $m_{1} \leq m$, we have

$$
\begin{aligned}
\epsilon^{(i, j)}(k) & =\epsilon^{(i, 0)}(k)+c_{2} 2^{-i} \sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma)^{2} m_{1}}} \\
& \leq c_{2}^{\prime}\left[\sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right) \sigma_{k}\left[v^{*}\right]}{m}}+\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma) m^{3 / 4}}+2^{-i} \sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma)^{2} m_{1}}}\right]
\end{aligned}
$$

for some generic constants c_{2}, c_{2}^{\prime}, where we use the fact that $m \geq m_{1}$. This concludes the proof.

D.5. Error Accumulation in One Outer Iteration

Lemma 11. For $i=0,1,2, \ldots, R^{\prime}, \operatorname{Pr}\left[\mathcal{G}^{(i+1)} \mid \mathcal{G}^{(i)}\right] \geq 1-\delta /\left(R^{\prime}+1\right)$.
Proof of Lemma 11. Conditioning on $\mathcal{G}^{(i)}$, suppose that the events $\mathcal{E}^{(i, 0)}, \mathcal{E}^{(i, 1)}, \ldots, \mathcal{E}^{(i, R)}$ all happen, which has probability at least $1-\delta / R^{\prime}$ according to Lemma 9 . For any $s \in \mathcal{S}$, we analyze the total error accumulated in the i-th outer iteration:

$$
\begin{aligned}
v^{*}(s)-V_{\theta^{(i, j)}}(s) \leq & \gamma P^{\pi^{*}}(\cdot \mid s)^{\top}\left(v^{*}-V_{\theta^{(i, j-1)}}\right)+2 \gamma \sum_{k} \phi_{k}\left(s, \pi^{*}(s)\right) \epsilon^{(i, j)}(k) \quad \triangleright \text { Lemma } 8 \\
\leq & \gamma^{2} \sum_{s^{\prime}} P^{\pi^{*}}\left(s^{\prime} \mid s\right)^{\top} P^{\pi^{*}}\left(\cdot \mid s^{\prime}\right)^{\top}\left(v^{*}-V_{\theta^{(i, j-2)}}\right)+2 \gamma^{2} P^{\pi^{*}}(\cdot \mid s)^{\top} \sum_{k} \phi_{k}\left(\cdot, \pi^{*}(\cdot)\right) \epsilon^{(i, j-1)}(k) \\
& +2 \gamma \sum_{k} \phi_{k}\left(s, \pi^{*}(s)\right) \epsilon^{(i, j)}(k) \quad \triangleright \text { applying Lemma } 8 \text { again on } v^{*}-V_{\theta^{(i, j-1)}} \\
\leq \ldots r & \triangleright \text { applying Lemma } 8 \text { recursively }
\end{aligned}
$$

$$
\leq \gamma^{j}\left[\left(P^{\pi^{*}}\right)^{j}\left(v^{*}-V_{\theta^{(i, 0)}}\right)\right](s)+2 \sum_{j^{\prime}=0}^{j-1} \gamma^{j^{\prime}+1} \sum_{k, s^{\prime}}\left(P^{\pi^{*}}\right)_{s, s^{\prime}}^{j^{\prime}} \phi_{k}\left(s^{\prime}, \pi^{*}\left(s^{\prime}\right)\right) \epsilon^{\left(i, j-j^{\prime}\right)}(k)
$$

$$
\leq \gamma^{j}(1-\gamma)^{-1}+C \sum_{j^{\prime}=0}^{j-1} \gamma^{j^{\prime}+1}\left[\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma) m^{3 / 4}}+2^{-i} \sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma)^{2} m_{1}}}\right]
$$

$$
+C \sum_{j^{\prime}=0}^{j-1} \gamma^{j^{\prime}+1} \sum_{s^{\prime}}\left(P^{\pi^{*}}\right)_{s, s^{\prime}}^{j^{\prime}} \cdot \sum_{k} \phi_{k}\left(s^{\prime}, \pi^{*}\left(s^{\prime}\right)\right) \sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right) \sigma_{k}\left[v^{*}\right]}{m}}
$$

$$
\triangleright \text { using }\left\|v^{*}-V_{\theta^{(i, 0)}}\right\|_{\infty} \leq \frac{1}{1-\gamma} \text { and the upperbound of } \epsilon^{(i, j)} \text { (Lemma 10) }
$$

$$
\leq \gamma^{j}(1-\gamma)^{-1}+C \sum_{j^{\prime}=0}^{j-1} \gamma^{j^{\prime}+1}\left[\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma) m^{3 / 4}}+2^{-i} \sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma)^{2} m_{1}}}\right]
$$

$$
+C \sum_{j^{\prime}=0}^{j-1} \gamma^{j^{\prime}+1} \sum_{s^{\prime}}\left(P^{\pi^{*}}\right)_{s, s^{\prime}}^{j^{\prime}} \cdot \sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right) \sigma_{s^{\prime}, \pi^{*}\left(s^{\prime}\right)}\left[v^{*}\right]}{m}}
$$

$$
\triangleright \text { applying Lemma } 7
$$

$$
=\gamma^{j}(1-\gamma)^{-1}+C \frac{1-\gamma^{j}}{1-\gamma} \cdot\left[\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma) m^{3 / 4}}+2^{-i} \sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma)^{2} m_{1}}}\right]+
$$

$$
C \sum_{j^{\prime}=0}^{j-1} \gamma^{j^{\prime}+1} \sum_{s^{\prime}}\left(P^{\pi^{*}}\right)_{s, s^{\prime}}^{j^{\prime}} \cdot \sqrt{\frac{\log \left(R^{\prime} R K \delta^{-1}\right) \sigma_{s^{\prime}, \pi^{*}\left(s^{\prime}\right)}\left[v^{*}\right]}{m}}
$$

where C is a generic constant. By Lemma C. 1 of (Sidford et al., 2018a) (a form of law of total variance for the Markov chain under π^{*}), we have,

$$
\sum_{j^{\prime}=0}^{j-1} \gamma^{j^{\prime}+1} \sum_{s^{\prime}}\left(P^{\pi^{*}}\right)_{s, s^{\prime}}^{j^{\prime}} \sqrt{\sigma_{s^{\prime}, \pi^{*}\left(s^{\prime}\right)}\left[v^{*}\right]} \leq C^{\prime} \sqrt{(1-\gamma)^{-3}}
$$

for some generic constant C^{\prime}. Combining the above equations, and setting

$$
m=C^{\prime \prime} \frac{1}{\epsilon^{2}} \cdot \frac{\log \left(R^{\prime} R K \delta^{-1}\right)^{4 / 3}}{(1-\gamma)^{3}} \quad \text { and } \quad m_{1}=C^{\prime \prime} \cdot \frac{\log \left(R^{\prime} R K \delta^{-1}\right)}{(1-\gamma)^{2}}
$$

$R \geq \Theta\left[i \cdot(1-\gamma)^{-1}\right]$ and $2^{-i} /(1-\gamma) \geq \Theta(\epsilon)$ for some generic constant $C^{\prime \prime}$, we can make the accumulated error as small as

$$
v^{*}(s)-V_{\theta^{(i, R)}}(s) \leq c 2^{-i} /(1-\gamma)
$$

for some $c>0$. Since $V_{\theta^{(i+1,0)}}(s)=V_{\theta^{(i, R)}}(s)$ together with the monotonicity properties shown in Lemma 8 , we obtain that conditioning on $\mathcal{G}^{(i)}, \mathcal{E}^{(i, 0)}, \mathcal{E}^{(i, 1)}, \ldots, \mathcal{E}^{(i, R)}$, the event $\mathcal{G}^{(i+1)}$ happens with probability 1.

D.6. Proof of Theorem 3

Proof of Theorem 3. Conditioning on $\mathcal{G}^{\left(R^{\prime}\right)}$, we have

$$
\forall s \in \mathcal{S}: \quad 0 \leq v^{*}(s)-V_{\theta^{\left(R^{\prime}, R\right)}}(s) \leq 2^{-R^{\prime}} /(1-\gamma)
$$

Since $R^{\prime}=\Theta\left(\log \left[\epsilon^{-1}(1-\gamma)^{-1}\right]\right)$, we have $\left|v^{*}(s)-V_{\theta^{\left(R^{\prime}, R\right)}}(s)\right| \leq \epsilon$. Moreover, we have

$$
v^{*}(s)-\epsilon \leq V_{\theta^{\left(R^{\prime}, R\right)}}(s) \leq \mathcal{T}_{\pi_{\theta\left(R^{\prime}, R\right)}} V_{\theta^{\left(R^{\prime}, R\right)}}[s] \leq v^{\pi_{\theta\left(R^{\prime}, R\right)}}[s] \leq v^{*}(s)
$$

where the third inequality follows from monotonicity of $\mathcal{T}_{\pi^{\left(R^{\prime}, R\right)}}$. Therefore $\pi_{\theta\left(R^{\prime}, R\right)}$ is an ϵ-optimal policy from any initial state s. Notice that $\operatorname{Pr}\left[\mathcal{G}^{(i)} \mid \mathcal{G}^{(i-1)}\right] \geq 1-\delta / R^{\prime}$, we have $\operatorname{Pr}\left[\mathcal{G}^{\left(R^{\prime}\right)}\right] \geq \operatorname{Pr}\left[\mathcal{G}^{\left(R^{\prime}\right)} \cap \mathcal{G}^{(R-1)} \cap \ldots \mathcal{G}^{(0)}\right] \geq 1-\delta$. Finally, one can show the main result by counting the number of samples needed by the algorithm.

