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A. Detailed Theoretical Analysis
Proof of Theorem 1 Assuming a task Ti is sampled from E , its training and testing samples are i.i.d. drawn from
distribution Si, i.e., DtrTi ∼ Si and DteTi ∼ Si. According to Theorem 3 in (Kuzborskij & Lampert, 2017), if L is convex, the
base learner fθTi SGD is ε(Si, θ0)-on-average-stable with
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where R∗ = infθ∈HR(θ).
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where K = CL and B̂(l−1)∗C+c =
1
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LC . Note that the first equality

holds by converting the Hadamard product into matrix multiplication, and the first and the second approximations come
from first-order taylor series of sigmoid and hybolic functions. In addition, in the C − L − 1 hierarchical structure, ∀l,
pl = 1.

From Eqn. 1, we can see that ε(St, θ0) depends
√
R(θ0). Like (Kuzborskij & Lampert, 2017), when the optimization

process for task Tt starts from the equivalent form that θ0t =
∑K
k=1 B̂kθ0, we can bound ε(St, θ0t) by using Hoeffding
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Figure 1. Illustration of Existance of
∑K

k=1 B̂k.

bound as:
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)
. (3)

Thus, we reach the conclusion.

Proof of Theorem 2 In non-convex case, we assume L is η-smooth and has ρ-Lipschitz Hessian. According to the
Corollary 1 and Proposition 1 in (Kuzborskij & Lampert, 2017), for task Tt, we define:
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Then, we use Hoeffding inequality and get
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Thus, we reach our conclusion.

Existance of
∑K
k=1 B̂k Here, we provides more details about the analysis of existence of

∑K
k=1 B̂k, i.e.,

∃{B̂k}Kk=1, s.t., R̂DtrTt
(θ0t) ≤ R̂DtrTt (θ0). Though the negative gradient descent, we can get

θ̂0 = θ0 − α∇Lθ′
= (I− α∇L(θ0)(θ0I)−1)θ0.

(8)

Then, we can find a
∑K
k=1 B̂k = I− α∇L(θ0)(θ0I)−1. It can also be verified in Figure 1. Assume θ0 is in the red contour,

we can find a better parameter θ̂0 inside the contour through its negative gradient direction.

B. Detailed Description of the New Few-shot Classification Benchmark
The new benchmark consists of four image classification datasets. All images are resized to 84× 84× 3. Here, we briefly
introduce each of them as follows:

• Caltech-UCSD Birds-200-2011 (CUB-200-2011) (Wah et al., 2011) is a bird image dataset which contains 11,788
photos of 200 bird species. In this paper, we randomly select 100 species with 60 photos in each species. We split the
meta-training/meta-validation/meta-testing sets as 64/16/20 species.



– Meta-training: Savannah Sparrow, Dark eyed Junco, Black footed Albatross, Henslow Sparrow, Cape Glossy Starling, Black
throated Sparrow, Northern Waterthrush, Hooded Warbler, Baltimore Oriole, Scarlet Tanager, Cerulean Warbler, Downy
Woodpecker, Black and white Warbler, Tropical Kingbird, Canada Warbler, Blue Jay, Elegant Tern, Groove billed Ani, Mallard,
European Goldfinch, Red breasted Merganser, Geococcyx, Red winged Blackbird, Ringed Kingfisher, Prairie Warbler, Florida
Jay, Hooded Oriole, American Redstart, Western Wood Pewee, Sayornis, Myrtle Warbler, Yellow Warbler, Tree Swallow, Rufous
Hummingbird, Fish Crow, Bewick Wren, Seaside Sparrow, Vesper Sparrow, American Crow, Eared Grebe, Blue headed Vireo,
White necked Raven, Frigatebird, Horned Lark, Tree Sparrow, Red bellied Woodpecker, Pacific Loon, Caspian Tern, Anna
Hummingbird, Olive sided Flycatcher, Common Tern, Cedar Waxwing, Great Crested Flycatcher, Blue Grosbeak, White breasted
Kingfisher, White eyed Vireo, Purple Finch, Cliff Swallow, Scissor tailed Flycatcher, Harris Sparrow, Western Grebe, Gadwall,
American Goldfinch, Pine Warbler.

– Meta-validation: Mockingbird, Vermilion Flycatcher, Cape May Warbler, Prothonotary Warbler, White crowned Sparrow,
Ovenbird, Pomarine Jaeger, Indigo Bunting, Blue winged Warbler, Chipping Sparrow, Horned Grebe, Fox Sparrow, Green
Violetear, Nashville Warbler, Least Tern, Marsh Wren.

– Meta-testing: Rose breasted Grosbeak, Nighthawk, Long tailed Jaeger, Bronzed Cowbird, California Gull, Ivory Gull, Northern
Fulmar, Brown Pelican, Ring billed Gull, Great Grey Shrike, White breasted Nuthatch, Mourning Warbler, Sage Thrasher, Horned
Puffin, Pied Kingfisher, Shiny Cowbird, Scott Oriole, Red eyed Vireo, Song Sparrow, Winter Wren.

• Describable Textures Dataset (DTD) (Cimpoi et al., 2014) is a texture image dataset which contains 5640 images
from 47 classes. Each class contains 120 images. Meta-training/Meta-validation/Meta-testing contains 30/7/10 classes
respectively.

– Meta-training: pitted, woven, crosshatched, crystalline, sprinkled, lacelike, bubbly, marbled, dotted, bumpy, striped, zigzagged,
lined, smeared, pleated, stratified, waffled, knitted, gauzy, porous, spiralled, grooved, banded, potholed, stained, veined, swirly,
frilly, freckled, studded.

– Meta-validation: wrinkled, grid, perforated, cobwebbed, honeycombed, cracked, blotchy.
– Meta-testing: fibrous, matted, scaly, chequered, flecked, paisley, braided, polka-dotted, interlaced, meshed.

• Fine-Grained Visual Classification of Aircraft (FGVC-Aircraft) (Maji et al., 2013) is a image dataset for fine grained
visual categorization of aircraft. The dataset contains 102 different aircraft variants. In this paper, we randomly select 100
variants with 100 images in each variant. We split the meta-training/meta-validation/meta-testing to 64/16/20 variants
respectively.

– Meta-training: MD-90, 737-600, A310, An-12, DR-400, Falcon-900, DC-3, Challenger-600, Fokker-70, Cessna-172, 747-400,
ERJ-145, Dornier-328, A330-300, A319, Model-B200, E-170, A340-500, BAE-125, Metroliner, 747-300, C-130, DH-82, Hawk-
T1, 727-200, 767-300, DC-10, Spitfire, E-195, BAE-146-300, F-16A-B, Beechcraft-1900, 747-200, Boeing-717, Falcon-2000,
777-300, Cessna-560, DHC-8-100, Cessna-525, 737-200, DC-8, Global-Express, DHC-1, CRJ-200, A340-300, DC-9-30, CRJ-
900, A320, 737-300, Eurofighter-Typhoon, SR-20, E-190, Saab-340, C-47, Il-76, MD-87, 757-300, DHC-6, Tu-154, 777-200,
767-200, A318, 757-200, A300B4.

– Meta-validation: 737-900, A340-600, 737-800, 737-400, L-1011, A330-200, Gulfstream-V, 737-500, A340-200, ATR-72,
MD-11, CRJ-700, EMB-120, Fokker-100, DC-6, 737-700.

– Meta-testing: 707-320, PA-28, Cessna-208, F-A-18, DHC-8-300, ERJ-135, Tornado, BAE-146-200, A321, ATR-42, Saab-2000,
Tu-134, Fokker-50, A380, MD-80, Gulfstream-IV, Yak-42, 747-100, 767-400, Embraer-Legacy-600.

• FGVCx-Fungi (Fungi) (Fun, 2018) contains over 100,000 fungi images of nearly 1,500 wild mushroom species. We
first filter the species with less than 150 images and then randomly select 100 species with 150 images in each species.
We split the meta-training/meta-validation/meta-testing to 64/16/20 species respectively.

– Meta-training: Suillus granulatus, Phaeolus schweinitzii, Cystoderma amianthinum, Pycnoporellus fulgens, Psathyrella can-
dolleana, Meripilus giganteus, Phellinus pomaceus, Laccaria laccata, Laccaria proxima, Amanita excelsa, Ganoderma pfeifferi,
Clitopilus prunulus, Agaricus arvensis, Hericium coralloides, Plicatura crispa, Agrocybe praecox, Steccherinum ochraceum,
Hypholoma fasciculare, Xerocomellus pruinatus, Xerocomellus chrysenteron, Crepidotus cesatii, Auricularia auricula-judae, Het-
erobasidion annosum, Entoloma clypeatum, Cortinarius torvus, Mycena tintinnabulum, Laetiporus sulphureus, Datronia mollis,
Pholiota squarrosa, Cerioporus squamosus, Tricholoma terreum, Coprinellus micaceus, Cylindrobasidium laeve, Dacrymyces
stillatus, Gloeophyllum sepiarium, Lycoperdon perlatum, Hygrophorus pustulatus, Clavulina coralloides, Xerocomus ferrugineus,
Cortinarius alboviolaceus, Byssomerulius corium, Boletus edulis, Hymenopellis radicata, Basidioradulum radula, Cortinarius
elatior, Schizophyllum commune, Cortinarius malicorius, Suillellus luridus, Ganoderma applanatum, Oligoporus guttulatus,
Tubaria furfuracea, Cortinarius largus, Pleurotus ostreatus, Stereum hirsutum, Xylodon raduloides, Peniophora incarnata, Sutorius
luridiformis, Flammulina velutipes var. velutipes, Phlebia radiata, Hygrocybe conica, Chlorophyllum olivieri, Armillaria ostoyae,
Peniophora quercina, Mycena galericulata

– Meta-validation: Agaricus impudicus, Daedaleopsis confragosa, Fomitopsis pinicola, Cortinarius anserinus, Mucidula mu-
cida, Trametes versicolor, Stropharia cyanea, Ramaria stricta, Radulomyces confluens, Gliophorus psittacinus, Psathyrella
spadiceogrisea, Coprinopsis lagopus, Daedalea quercina, Amanita muscaria, Armillaria lutea, Vuilleminia comedens



– Meta-testing: Hygrocybe ceracea, Trametes hirsuta, Polyporus tuberaster, Lacrymaria lacrymabunda, Fistulina hepatica,
Gymnopus dryophilus, Amanita rubescens, Fuscoporia ferrea, Craterellus undulatus, Tricholoma scalpturatum, Mycena pura,
Russula depallens, Bjerkandera adusta, Trametes gibbosa, Tremella mesenterica, Cerioporus varius, Amanita fulva, Xylodon
paradoxus, Cuphophyllus virgineus, Cortinarius flexipes

C. Hyperparameters & Additional Experiment Settings
We summarize the hyperparameters in this paper in Table 1. Like (Finn et al., 2017), we compute the full Hessian-vector
products for MAML. All cluster centers are randomly initialized. Note that, in few-shot classification problem, we use
the change of averaged training accuracy to determine whether to increase clusters. Thus, µ < 1 in this problem. For toy
regression task, the pre-aggregator embedding F(·, ·) is a fully connected layer. Following (Finn et al., 2017), the base
learner has two hidden layers with 40 neurons in each. For few-shot image classification task, the pre-aggregator embedding
F(·, ·) is a block of two convolutional layers with two fully connected layers. The base learner is a standard base learner
with 4 standard convolutional blocks. For continual scenario, we add one cluster every time. All the experiments are
implemented using Tensorflow (Abadi et al., 2016).

Table 1. Hyperparameter summary
Hyperparameters Toy Regreesion miniImageNet Multi-Datasets (New Benchmark)
Input Scale (only for image data) / 84× 84× 3 84× 84× 3
Meta-batch Size (task batch size) 25 4 4
Inner loop learning rate (α) 0.001 0.001 0.001
Outer loop learning rate (β) 0.001 0.01 0.01
Filters of CNN (only for image data) / 32 32
Meta-training adaptation steps 5 5 5
Task representation size 40 128 128
Reconstruction loss weight (ξ) 0.01 0.01 0.01
Image Embedding Size (before aggregator) / 64 64
Continual Training Threshold (τ ) 1.25 / 0.85
# epoch (Q) for computing loss 1000 / 100

D. Results of MiniImagenet
In this part, we present the additional comparison on MiniImagenet dataset. Similar to the analysis in (Finn et al., 2018),
the sampled tasks in this benchmark do not have obvious heterogeneity and uncertainty. Thus, the goal is to compare our
approach with gradient-based meta-learning methods and other previous models. The expressive capacity of each model is
controlled by using 4 standard convolutional layers and the results are shown in Table 2. With the same expressive capacity,
our model can achieve comparable performance with MAML-based models and other previous models in meta-learning
field.

E. Leave-one-out Experiments on Few-shot Image Classification
In this part, we design a more difficult experiment for few-shot image classification. For each dataset, we use three datasets
for meta-training and the remaining dataset for meta-testing. For example, we use texture, bird and aircraft datasets for
meta-training, and fungi dataset for meta-testing. Different from all the previous meta-learning settings which only use
different classes for meta-testing, the leave-one-out experiment use a totally different dataset to test the generalization
performance, which is more challenging.

The results of 5-way 1-shot classification are shown in Table 3. We compare our methods with MAML and MUMOMAML
(the best baseline in few-shot classification). We can see all results are significantly worse than the results without the
leave-one-out technique, which shows the difficulty of this experiment. However, by capturing task clustering structure, our
method can still achieves better performance than MAML and MUMOMAML.



Table 2. Comparison between our approach and prior few-shot learning techniques on the 5-way, 1-shot MiniImagenet benchmark. For
MT-Net (Lee & Choi, 2018), we remove the T-block since it introduces several 1× 1 convolutional layers which increases the expressive
capacity of base learner (Lin et al., 2013). For BMAML (Yoon et al., 2018), 24 classes are used for meta-testing in their original paper,
while other methods use 20 classes. Since they have not released their code, we are not able to know the used classes. Thus, we implement
it and report their performance on the standard classes (i.e., 20 classes for testing). Like (Finn et al., 2018), we bold methods whose
highest scores that overlap in their confidence intervals.

MiniImagenet 5-way 1-shot Accuracy
Matching Nets (Vinyals et al., 2016) 43.56± 0.34%
meta-learner LSTM (Ravi & Larochelle, 2016) 43.44± 0.77%
Prototypical Network (Snell et al., 2017) 46.61± 0.78%
SNAIL (Mishra et al., 2018) 45.10± 0.00%
mAP-DLM (Triantafillou et al., 2017) 49.82± 0.78%
Relation Net (Yang et al., 2018) 50.44± 0.82%
GNN (Garcia & Bruna, 2017) 50.33± 0.36%

MAML (Finn et al., 2017) 48.70± 1.84%
LLAMA (Finn & Levine, 2017) 49.40± 1.83%
BMAML (Yoon et al., 2018) 50.01± 1.86%
MT-Net (Lee & Choi, 2018) 49.75± 1.83%
MUMOMAML (Vuorio et al., 2018) 49.86± 1.85%
Reptile (Nichol & Schulman, 2018) 49.97± 0.32%
MetaSGD (Li et al., 2017) 50.47± 1.87%
PLATIPUS (Finn et al., 2018) 50.13± 1.86%

HSML (ours) 50.38± 1.85%

Table 3. Comparison of leave-one-out experiments on 5-way 1-shot classification. 4000 tasks are used to test the performance. For each
dataset, the performance is reported when this dataset is used for meta-testing.

Model Bird Texture Aircraft Fungi Average
MAML 40.76± 0.68% 29.50± 0.65% 29.54± 0.63% 29.94± 0.64% 32.43%
MUMOMAML 41.58± 0.68% 30.24± 0.68% 30.69± 0.66% 30.63± 0.66% 33.28%
HSML-RTG 42.54± 0.67% 30.90± 0.67% 31.23± 0.64% 32.98± 0.68% 34.41%

F. Additional Results of Few-shot Classification
Table 4 and Table 5 contain the full results (accuracy with 95% confident interval) of few-shot image classfiation. Table 4
shows the full results of the bottom table in Figure 7 (in paper). Table 5 contains the full results of Table 3 (in paper).

Table 4. Comparison of online update results on few-shot image classification 5-way 1-shot scenario (Full Table).
Model Bird Texture Aircraft Fungi Average
MUMOMAML 56.66± 1.43% 33.68± 1.37% 45.73± 1.39% 40.38± 1.40% 44.11%
HSML-Static (2C) 60.77± 1.43% 33.41± 1.40% 51.28± 1.37% 40.78± 1.34% 46.56%
HSML-Static (10C) 59.16± 1.49% 34.48± 1.36% 52.30± 1.35% 40.56± 1.39% 46.63%
HSML-Dynamic 61.16± 1.42% 34.53± 1.35% 54.50± 1.36% 41.66± 1.41% 47.96%

Table 5. Comparison of different cluster numbers (Full Table).
Num. of Clus. Bird Texture Aircraft Fungi Average
(2, 2, 1) 58.37± 1.42% 33.18± 1.34% 56.15± 1.36% 42.90± 1.41% 47.65%
(4, 2, 1) 60.98± 1.50% 35.01± 1.36% 57.38± 1.40% 44.02± 1.39% 49.35%
(6, 3, 1) 60.55± 1.45% 34.02± 1.34% 55.79± 1.38% 43.43± 1.39% 48.45%
(8, 4, 4, 1) 59.55± 1.46% 34.74± 1.37% 57.83± 1.39% 44.18± 1.38% 49.08%



G. Effect of Different Aggregator
In our experiment, we found that the recurrent aggregator performs the best. To give more quantitative insight about the
choice of aggregator, we compare these two aggregators with different shots in Table 6. We can see that recurrent aggregator
significantly outperforms in 1-shot scenario. With the increase of the size of training samples, the performances of the two
aggregators become more similar. Therefore, compared with recurrent aggregator, training a better mean pooling aggregator
may require more data.

Table 6. Comparison of different aggregator on different shot, where HSML-RAA and HSML-MPAA represent HSML with recurrent
autoencoder aggregator and mean pooling autoencoder aggregator, respectively.

Model Bird Texture Aircraft Fungi Average

1-shot HSML-MPAA 57.87± 1.48% 32.07± 1.36% 53.76± 1.41% 40.88± 1.37% 46.14%
HSML-RAA 60.98± 1.50% 35.01± 1.36% 57.38± 1.40% 44.02± 1.39% 49.35%

3-shot HSML-MPAA 67.80± 0.91% 44.33± 0.82% 67.73± 0.83% 52.45± 0.94% 58.07%
HSML-RAA 68.01± 0.88% 45.07± 0.87% 68.59± 0.82% 53.51± 0.96% 58.80%

5-shot HSML-MPAA 71.80± 0.70% 48.02± 0.68% 71.79± 0.74% 54.01± 0.82% 61.40%
HSML-RAA 71.68± 0.73% 48.08± 0.69% 73.49± 0.68% 56.32± 0.80% 62.39%

8-shot HSML-MPAA 75.75± 0.62% 52.90± 0.57% 73.03± 0.55% 58.20± 0.73% 64.97%
HSML-RAA 75.52± 0.63% 51.52± 0.59% 75.33± 0.53% 57.68± 0.71% 65.01%

H. Ablation Studies
To investigate the contribution of different components of HSML (i.e., task representation, hierarchical task clustering,
knowledge adaptation), we conduct the following ablation studies from four perspectives in Table 7, where 5-way, 1-shot
results on image classification are reported. The detailed ablations are provided in follows:

• (A1) We train four MAMLs for four clusters, i.e., bird, texture, aircraft and fungi, by assigning a task to its groundtruth
cluster. The results can be regarded as an upper-bound application of MAML with task clustering, provided with
groundtruth clusters of all tasks which are unfortunately absent in real-world applications. HSML outperforms as the
soft and hierarchical clustering not only accurately captures the task relationship but also encourages knowledge transfer
across clusters.

• (A2) We investigate different variants of task representation learning in (A2a) and (A2b). In (A2a), we first use
reconstruction loss to train task embeddings. Next, we fix the parameters of the task representation learning component
and backpropagate meta-gradients to only train the other two components. The results are inferior, showing that meta-
learning gradients further optimize task embeddings. In (A2b), we replace our task embedding with the last hidden state
of the encoder. The results higher than MUMOMAML show the contribution of hierarchical clustering, while they worse
than ours further justify the capability of our task embedding.

• (A3) We analyze the effect of hierarchical clustering in (A3). In (A3a), we remove the hierarchical task clustering
component. In (A3b), we consider the flat instead of hierarchical task clustering. The results of (A3a) lower than (A3b)
consolidate our motivation of knowledge generalization with a cluster.

• (A4) We also study three variants of knowledge adaptation in (A4a)-(A4c). In (A4a), we revise Eqn. (8) by only using the
clustering representation. The results still compete with state-of-the-art baselines, but empirically the combination with
the task representation yields the best performance. In (A4b), we replace the parameter gate oi with FiLM (Perez et al.,
2018), where the comparable results verify the primary contribution of hierarchical clustering. In order to validate the
effectiveness of parameter gate, in (A4c), we directly learn the initialization from the task representation and the cluster
representation instead of using the parameter gate to mask a shared initialization. The poor results show that the parameter
gate masking a shared set of parameters θ0 may 1) prevent the curse of dimensionality and constrain the optimization
space, given the high dimensionality of parameters; 2) serve as the warm-start for a new cluster of tasks in continual
learning.



Table 7. Ablation Studies. Results of 5-way, 1-shot image classification are reported.
Ablation Bird Texture Aircraft Fungi
(A1): Train a MAML for each cluster,
e.g., bird, by assigning a task to its
groundtruth cluster.

58.25± 1.46% 34.53± 1.36% 55.73± 1.37% 43.59± 1.39%

(A2a): Use reconstruction loss to
pretrain the task representation learn-
ing component, and then fix the
paramters of it and backpropagate
meta-gradients to only train the other
two components.

56.97± 1.44% 29.12± 1.30% 45.71± 1.38% 40.92± 1.39%

(A2b): Replace our task embedding
with the last hidden state of the en-
coder.

58.25± 1.49% 34.53± 1.36% 55.73± 1.37% 43.59± 1.39%

(A3a): Remove the hierarchical task
clustering component.

58.22± 1.48% 33.30± 1.36% 55.35± 1.38% 42.68± 1.40%

(A3b): Consider only flat rather than
hierarchical task clustering.

58.08± 1.45% 34.26± 1.35% 56.11± 1.38% 43.38± 1.39%

(A4a): Infer the parameter gate with
the clustering representation only.

59.01± 1.50% 33.69± 1.35% 56.69± 1.39% 42.88± 1.40%

(A4b): Replace the parameter gate
with FiLM (Perez et al., 2018).

61.02± 1.47% 34.87± 1.37% 56.53± 1.40% 44.56± 1.38%

(A4c): Learn the initialization directly
from task and cluster representations
rather than using the parameter gate.

53.95± 1.47% 32.35± 1.35% 52.15± 1.37% 42.31± 1.40%



I. Additional Task Clustering Results of Toy Regression Tasks
In Figure I, we show the additional results of task clustering analysis of toy regression. In this figure, we further verify that
tasks can be clustered by their shapes. Clusters 1 reflects the fluctuation mode curve (e.g., Sin a1-a4, Cubic a1-a4), while
cluster 2 reflects an arc (e.g., Quad a2-a4). Cluster 3 mainly reflects a linear shape with positive slope (e.g. Line a1, Line a2,
Quad a1, Quad a2, Cubic a1). Cluster 4 mainly reflects a linear shape with negative slope (e.g., Line a3, Line a4, Cubic a4).

Sin a1 Sin a2 Sin a3 Sin a4

Line a1 Line a2 Line a3 Line a4

Quad a1 Quad a2 Quad a3 Quad a4

Cubic a1 Cubic a2 Cubic a3 Cubic a4

Heatmap of soft-assignment

Ground Truth MAMLSelected Point MUMOMAML HSML

Figure 2. Additional results of task clustering analysis of toy regression problem.



J. Additional Task Clustering Analysis of Few-shot Classification
In Figure 3, we show the additional results of task clustering analysis. The soft-assignment heatmap with their training
images and activation paths of twelve tasks are illustrated. The conclusion is similar to that we draw previously in the
paper. Tasks from different datasets mainly activate different clusters: bird→cluster 2, texture→cluster 4, aircraft→cluster
1, fungi→cluster 3. The left cluster and right cluster in the second layer may represent environment and surface texture,
respectively.
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Figure 3. Additional results of task clustering analysis of few-shot image classification problem.
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