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Abstract

We present tight lower bounds on the number of kernel evaluations required to approximately solve
kernel ridge regression (KRR) and kernel k-means clustering (KKMC) on n input points. For KRR, our
bound for relative error approximation to the minimizer of the objective function is Ω(ndλeff/ε) where dλeff

is the effective statistical dimension, which is tight up to a log(dλeff/ε) factor. For KKMC, our bound for
finding a k-clustering achieving a relative error approximation of the objective function is Ω(nk/ε), which
is tight up to a log(k/ε) factor. Our KRR result resolves a variant of an open question of El Alaoui and
Mahoney, asking whether the effective statistical dimension is a lower bound on the sampling complexity
or not. Furthermore, for the important practical case when the input is a mixture of Gaussians, we
provide a KKMC algorithm which bypasses the above lower bound.
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1 Introduction

The kernel trick in machine learning is a general technique that takes linear learning algorithms that only
depend on the dot products of the data, including linear regression, support vector machines, principal
component analysis, and k-means clustering, and boosts them to powerful nonlinear algorithms. This is done
by replacing the inner product between two data points with their inner product after applying a kernel map,
which implicitly maps the points to a higher dimensional space via a non-linear feature map. The simplicity
and power of kernel methods has lead to wide adoption across the machine learning community: nowadays,
kernel methods are a staple both in theory [FHT01] and in practice [STV+04, ZMLS07]. We refer the reader
to [SS01] for more background on kernel methods.

However, one problem with kernel methods is that the computation of the kernel matrix K, the matrix
containing all pairs of kernel evaluations between n data points, requires Ω(n2) time, which is prohibitively
expensive for the large-scale data sets encountered in modern data science. To combat this, a large body
of literature in the last decade has been devoted to designing faster algorithms that attempt to trade a
small amount of accuracy in exchange for speed and memory, based on techniques such as random Fourier
features [RR08], sampling [Bac13, EAM15, MM17, MW17], sketching [YPW17], and incomplete Cholesky
factorization [BJ02, FS01]. We refer the reader to the exposition of [MM17] for a more extensive overview
of recent literature on the approximation of kernel methods.

1.1 Previous work on kernel query complexity

In this work, we consider lower bounds on the query complexity of the kernel matrix. The kernel query
complexity is a fundamental information-theoretic parameter of kernel problems and both upper and lower
bounds have been studied by a number of works [LWZ14, CBMS15, MM17, MW17].

For kernel ridge regression, a lower bound has been shown for additive error approximation of the objective
function value in Corollary 8 of [CBMS15], which is a weaker approximation guarantee than what we study
in this work. However, their bound is not known to be tight. Furthermore, the best known upper bounds for
kernel ridge regression are in terms of a data-dependent quantity known as the effective statistical dimension
[EAM15, MM17], on which the [CBMS15] bound does not depend. The question of whether the effective
statistical dimension gives a lower bound on the sample complexity has been posed as an open question
by El Alaoui and Mahoney [EAM15]. We will answer this question affirmatively under a slightly different
approximation guarantee than they use, which is nevertheless satisfied by known algorithms nearly tightly,
for instance by [MM17].

Another kernel problem for which lower bounds have been shown is the problem of giving a (1 + ε)
relative Frobenius norm error rank k approximation of the kernel matrix, which has a bound of Ω(nk/ε) by
Theorem 13 of [MW17]. For kernel k-means clustering, there are no kernel complexity lower bounds to our
knowledge.

Similar cost models have also been studied in the context of semisupervised/interactive learning. Intu-
itively, kernel evaluations are queries that ask for the similarity between two objects, where the notion of
similarity in this context is the implicit notion of similarity recognized by humans, i.e. the “crowd kernel”. In
such situations, the dominant cost is the number of these queries that must be made to users, making kernel
query complexity an important computational parameter. Mazumdar and Saha [MS17] study the problem
of clustering under the setting where the algorithm obtains information by adaptively asking users whether
two data points belong to the same cluster or not. In this setting, the dominant cost that is analyzed is the
number of same-cluster queries that the algorithm must make, which exactly corresponds to the kernel query
complexity of clustering a set of n points drawn from k distinct points with the indicator function kernel and
the 0-1 loss (as opposed to k-means clustering, which uses the `2 loss). In [TLB+11], the authors consider
the problem of learning a “crowd kernel”, where the implicit kernel function is crowdsourced and the cost
is measured as the number of queries of the form “is a more similar to b than c?” rather than queries that
directly access the underlying kernel evaluations.
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Kernel problem Upper bound Lower bound

KRR O
(
ndλeff
ε log

dλeff
ε

)
([MM17], Theorem 15) Ω

(
ndλeff
ε

)
(this work, Theorem 3.1)

KKMC O
(
nk
ε log k

ε

)
([MM17], Theorem 16) Ω

(
nk
ε

)
(this work, Theorem 4.5)

Figure 1: Table of upper bounds and lower bounds on the kernel query complexity.

1.2 Our contributions

In this work, we resolve the kernel query complexity of kernel ridge regression and kernel k-means clustering
up to log(dλeff/ε) and log(k/ε) factors, respectively. Our lower bounds apply even to adaptive algorithms,
that is, algorithms that are allowed to decide which kernel entries to query based on the results of previous
kernel queries. This is a crucial aspect of our contributions, since some of the most efficient algorithms
known for kernel ridge regression and kernel k-means clustering make use of adaptive queries, most notably
through the use of a data-dependent sampling technique known as ridge leverage score sampling [MM17].

For kernel ridge regression, we present Theorem 3.1, in which we construct a distribution over kernel ridge
regression instances such that any randomized algorithm requires Ω(ndλeff/ε) adaptive kernel evaluations.
This matches the upper bound given in Theorem 15 of [MM17] up to a log(dλeff/ε) factor. Although we
present the main ideas of the proof using the kernel as the dot product kernel, our proof in fact applies to
any kernel that is of the form (c1 − c0)1(ei = ej) + c0 for constants c1 > c0 when restricted to the standard
basis vectors (Theorem 3.7). This includes any kernel that can be written as functions of dot products and
Euclidean distances, including the polynomial kernel and the Gaussian kernel. This result resolves a variant
of an open question posed by [EAM15], which asks whether the effective statistical dimension is a lower
bound on the sampling complexity or not. In their paper, they consider the approximation guarantee of a
(1 + ε) relative error in the statistical risk, while we consider a (1 + ε) relative error approximation of the
minimizer of the KRR objective function. By providing tight bounds on the query complexity in terms of the
effective statistical dimension dλeff , we definitively establish the fundamental importance of the quantity as a
computational parameter, in addition to its established significance as a statistical parameter in the statistics
literature [FHT01]. Furthermore, our result also clearly gives a lower bound on the time complexity of kernel
ridge regression that matches Theorem 15 of [MM17] up to a Õ(dλeff/ε) factor for intermediate ranges of ε.
This is in contrast to the conditional Ω(n2−o(1)) time complexity lower bound of [BIS17], which operates in
the regime of ε = exp(−ω(log2 n)) for approximating the argmin of the objective function.

For kernel k-means clustering, we present Theorem 4.5, which shows a lower bound of Ω(nk/ε) for the
problem of outputting a clustering which achieves a (1 + ε) relative error value in the objective function.
This matches the upper bound given in Theorem 16 of [MM17] up to a log(k/ε) factor. We also note
that the problem of outputting a (1 ± ε) relative error approximation of the optimal cost itself has an
O(nk)+poly(k, 1/ε, log n) algorithm, and we complement it with a lower bound of Ω(nk) in Proposition 4.3.

Although our lower bounds show that existing upper bounds for kernel ridge regression and kernel k-
means clustering are optimal, up to logarithmic factors, in their query complexity, one could hope that
for important input distributions that may occur in practice, that better query complexities are possible.
We show specifically in the case of kernel k-means that when the n points are drawn from a mixture of k
Gaussians with 1/ poly(k/ε) mixing probabilities and a separation between their means that matches the
information-theoretically best possible for learning the means given by [RV17], one can bypass the Ω(nk/ε)
lower bound, achieving an (n/ε) poly(log(k/ε)) query upper bound, effectively saving a factor of k from the
lower bounds for worst-case input distributions. This is our Theorem 5.1.

1.3 Our techniques

To prove our lower bounds, we design hard input distributions of kernel matrices as inner product matrices
of an i.i.d. sample of vectors.

For our KRR lower bound, we draw our sample of vectors as follows: with probability 1/2, we draw our
vector uniformly from the first (1/2)(k/ε) standard basis vectors, and with probability 1/2, we draw our
vector uniformly from the next (1/4)(k/ε) standard basis vectors. Now if we draw our data set as n points
sampled from this distribution, then, on average, half of the input points have nε/k copies of themselves in
the data set while the other half have 2nε/k copies. We first show that correctly deciding between these two
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cases for a constant fraction of the n input points requires Ω(nk/ε) queries by standard arguments. We will
then show that running KRR with a regularization of λ = n/k and a target vector of all ones can solve this
problem, while having an effective statistical dimension of Θ(k), giving the desired theorem. To see this,
first note that the kernel matrix K has rank (3/4)(k/ε), where each of the jth nonzero eigenvalue nj is the
number of copies of the jth standard basis vector in the data set. Then, we show that the true argmin of
the KRR objective has the ith coordinate as (nj + λ)−1, where nj is the number of copies of the ith input
vector. Then, if nj = nε/k, then this is (k/n)/(1 + ε) while if nj = 2nε/k, then this is (k/n)/(1 + 2ε).
Since these two cases are separated by a (1 ± ε) factor, a (1 + ε)-relative approximation of the argmin can
distinguish these cases for a constant fraction of coordinates by averaging.

For our KKMC lower bound, we draw our sample of vectors as follows: we first divide the coordinates of
Rk/ε into k blocks of size 1/ε, uniformly select a block, uniformly select a pair of coordinates j1 6= j2 from
the block, and draw the sum of the corresponding standard basis vectors ej1 + ej2 . Intuitively, an optimal
clustering should cluster points in the same block together, and it turns out that this clustering has a cost of
n(1− 2ε). We first show that for any set S of size at most |S| ≤ 2n/5 points, there is a lower bound on the
cost of at least |S| − (77/40)nε, and that for the set S′ of points x belonging to a cluster in which uniformly
sampling a point x′ in its cluster has 〈x,x′〉 6= 0 with probability less than o(ε), then the cost is |S′|(1−o(ε)).
Then setting S to be the complement of S′, i.e. points with an Ω(ε) probability of sampling a nonzero inner
product, we conclude that if |S′| ≥ 3n/5, then the cost is not within a (1 + ε/40) factor of the optimal cost.
Thus, |S′| ≤ 3n/5 and so for at least a 2n/5 fraction of points, there must be an Ω(ε) probability of sampling
a nonzero inner product among its cluster. However, we then show that constructing a clustering with this
guarantee requires Ω(nk/ε) inner products by standard arguments, giving the theorem.

In our algorithm for mixtures of Gaussians, we exploit the input distribution itself to efficiently compute
sketches Sx of the input points x, where S is a matrix of zero mean i.i.d. Gaussians. Once we have computed
these sketches, we show that we may compute an approximately optimal clustering in no more inner product
evaluations.

1.4 Open questions

We suggest several related open questions. First, the error guarantee that we consider for the KRR lower
bound does not directly measure the predictive performance of the KRR estimator. Thus, a more desirable
result would be to find tight lower bounds for an algorithm outputting an estimator that guarantees, say,
a (1 + ε) relative error guarantee for the statistical risk of the resulting estimator. This is the main error
guarantee considered in [MM17] as well. Another interesting direction is to characterize the complexity
of finding KRR estimators with objective function value guarantees as well, for which there are no query
complexity efficient algorithms to the best of our knowledge.

A couple of other kernel problems have query complexity efficient algorithms using ridge leverage score
sampling, including kernel principal component analysis and kernel canonical correlation analysis [MM17].
We leave it open to determine whether these problems have matching lower bounds as well.

1.5 Paper outline

In section 2, we recall basic definitions and results about KRR and KKMC that we use in our lower bound
results. We then prove our KRR lower bound in section 3 and our KKMC lower bound in section 4. Finally,
our query complexity efficient clustering algorithm for mixtures of Gaussians is given in section 5.

2 Preliminaries

2.1 Notation

We denote the set {1, 2, . . . , n} by [n]. For j ∈ [d], we write ej ∈ Rd for the standard Euclidean basis vectors.
We write In ∈ Rn×n for the n× n identity matrix and 1n ∈ Rn for the vector of all ones in n dimensions.

Let S be a finite set. Given two distributions µ, ν on S, the total variation distance between µ and ν is

DTV (µ, ν) =
∑
s∈S
|µ(s)− ν(s)|. (2.1)
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We write Unif(S) for the uniform distribution on S.
Let X be the input space of a data set and F a reproducing kernel Hilbert space with kernel k : X×X → R.

We write ϕ : X → F for the feature map, i.e. the ϕ such that k(x,y) = 〈ϕ(x), ϕ(y)〉F . For a set of vectors
{xi}ni=1 ⊆ X and a kernel map k : X ×X → R, we write K ∈ Rn×n for the kernel matrix, i.e. the matrix with
e>i Kej := k(xi,xj). Note that K is symmetric and positive semidefinite (PSD). We refer the reader to [SS01]
for more details on the general theory of kernel methods. For all of our lower bound constructions, we will
take X = Rd and our kernel to be the linear kernel, i.e. the standard dot product on Rd, k(xi,xj) = xi · xj .
Hence, we will frequently refer to kernel queries alternatively as inner product queries.

2.2 Kernel ridge regression

The kernel ridge regression (KRR) task is defined as follows. We parameterize an instance of KRR by a
triple (K, z, λ), where K ∈ Rn is the kernel matrix of a data set {xi}ni=1, z ∈ Rn is the target vector, and λ
is the regularization parameter. The problem is to compute

αopt := argmin
α∈Rn

‖Kα− z‖22 + λα>Kα. (2.2)

It is well-known that the solution to the above is given in closed form by

αopt = (K + λIn)
−1

z (2.3)

which can be shown for example by completing the square.
An important parameter to the KRR instance (K, z, λ) is the effective statistical dimension:

Definition 2.1 (Effective statistical dimension ([FHT01, Zha05]). Given a rank r kernel matrix K with
eigenvalues σ2

i for i ∈ [r] and a regularization parameter λ, we define the effective statistical dimension as

dλeff(K) := tr
(
K(K + λIn)

−1
)

=

r∑
i=1

σ2
i

σ2
i + λ

. (2.4)

We simply write dλeff when the kernel matrix K is clear from context.

The effective statistical dimension was first introduced to measure the statistical capacity of the KRR
instance, but has since been used to parameterize its computational properties as well, in the form of bounds
on sketching dimension [ACW17] and sampling complexity [EAM15, MM17].

2.2.1 Approximate solutions

In the literature, various notions of approximation guarantees for KRR have been studied, including (1 + ε)
relative error approximations in the objective function cost [ACW17] and (1+ε) relative error approximations
in the statistical risk [Bac13, EAM15, MM17]. In our paper, we consider a slightly different approximation
guarantee, namely a (1 + ε) relative error approximation of the argmin of the KRR objective function.

Definition 2.2 ((1 + ε)-approximate solution to kernel ridge regression). Given a kernel ridge regression
instance (K, z, λ), we say that α̂ ∈ Rn is a (1 + ε)-approximate solution to kernel ridge regression if

‖α̂−αopt‖2 ≤ ε‖αopt‖2 = ε
∥∥(K + λIn)−1z

∥∥
2
. (2.5)

This approximation guarantee is natural, and we note that it is achieved by the estimator of [MM17].
This guarantee is then used to prove their main statistical risk guarantee. We will briefly reproduce the proof
of this fact from Theorem 15 of [MM17] below for completeness. Indeed, using a spectral approximation
K̃ satisfying K − K̃ � λεIn, they output an estimator α̂ := (K̃ + λIn)−1z which satisfies the guarantee of
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equation (2.5) since

‖α̂−αopt‖2 =
∥∥∥(K̃ + λIn)−1z− (K + λIn)−1z

∥∥∥
2

=
∥∥∥(K̃ + λIn)−1[(K + λIn)− (K̃ + λIn)](K + λIn)−1z

∥∥∥
2

=
∥∥∥(K̃ + λIn)−1[K− K̃](K + λIn)−1z

∥∥∥
2

≤
∥∥∥(K̃ + λIn)−1

∥∥∥
2

∥∥∥K− K̃
∥∥∥

2

∥∥(K + λIn)−1z
∥∥

2

≤ 1

λ
(λε)‖αopt‖2 = ε‖αopt‖2.

(2.6)

2.3 Kernel k-means clustering

Recall the feature map ϕ : X → F for an input space X and a reproducing kernel Hilbert space F . The
problem of kernel k-means clustering (KKMC) involves forming a partition of the data set {xi}ni=1 into k
clusters C := {Cj}kj=1 with centroids µj := 1

|Cj |
∑

x∈Cj ϕ(x) such that the objective function

cost(C) :=

k∑
j=1

∑
x∈Cj

∥∥ϕ(x)− µj
∥∥2

F (2.7)

is minimized. The problem of finding exact solutions are known to be NP-hard [ADHP09], but it has
nonetheless proven to be an extremely popular model in practice [Har75].

With an abuse of notation, we will also talk about the cost of a single cluster, which is just the above
sum taken only over one cluster:

cost(Cj) :=
∑
x∈Cj

∥∥ϕ(x)− µj
∥∥2

F . (2.8)

As done in [BDM09, CEM+15, MM17] and many other works, we consider the approximation guarantee
of finding a clustering that achieves a (1 + ε) relative error in the objective function cost, i.e. a finding a
partition {C ′j}kj=1 such that

cost({C ′j}kj=1) =

k∑
j=1

∑
x∈C′j

∥∥ϕ(x)− µj
∥∥2

F

≤ (1 + ε) min
C

cost(C) = (1 + ε) min
C={Cj}kj=1

k∑
j=1

∑
x∈Cj

∥∥ϕ(x)− µj
∥∥2

F .

(2.9)

3 Lower bound for kernel ridge regression

We present our lower bound on the number of kernel entries required in order to compute a (1+ε)-approximate
solution to kernel ridge regression (see definition 2.2).

Theorem 3.1 (Query lower bound for kernel ridge regression). Consider a possibly randomized algorithm
A that correctly outputs a (1 + ε)-approximate solution α̂ ∈ Rn (see definition 2.2) to any kernel ridge
regression instance (K, z, λ) with probability at least 2/3. Then there exists an input instance (K, z, λ) on
which A reads at least Ω(ndλeff/ε) entries of K, possibly adaptively, in expectation.

Our lower bound is nearly optimal, matching the ridge leverage score algorithm in Theorem 15 of [MM17]

which reads O
(
ndλeff
ε log

ndλeff
ε

)
kernel entries up to a log

dλeff
ε factor.

6



3.1 Main lower bound

Definition 3.2 (Hard input distribution – kernel ridge regression). Let J, n ∈ N and assume for simplicity
that 4 | J . We define a distribution µKRR(n, J) on binary PSD matrices K ∈ Rn×n defined as follows.
We first define a distribution νKRR(J) over standard basis vectors {ej ∈ R3J/4 : j ∈ [3J/4]}, where with
probability 1/2 we draw a uniformly random ej from S1 := {ej : j ∈ [J/2]} and with probability 1/2 we draw
a uniformly random ej from S2 := {ej+J/2 : j ∈ [J/4]}. We then generate K by drawing n i.i.d. samples

{xi}ni=1 from νKRR(J) and letting K be the inner product matrix of {xi}ni=1, that is, e>i Kej := xi · xj.

Theorem 3.3. Let ε ∈ (0, 1/2) and J = k/ε with J2 = O(n) and k a parameter. Suppose that there exists a
possibly randomized algorithm A that, with probability at least 2/3 over its random coin tosses and random
kernel matrix drawn from K ∼ µKRR(n, J), correctly outputs a (1 + ε/100)-approximate solution α̂ ∈ Rn
(see definition 2.2) to the kernel ridge regression instance (K, z, λ) with z = 1n and λ = n/k. Furthermore,
suppose that A reads at most r positions of K on any input, possibly adaptively. Then, dλeff(K) = Θ(k) and
r = Ω(ndλeff/ε).

To prove Theorem 3.3, we will make a reduction to the following hardness lemma.

Lemma 3.4. Recall the definitions of µKRR(n, J), νKRR(J), S1, S2 from definition 3.2. Suppose that there
exists a possibly randomized algorithm A that, with probability at least 2/3 over its random coin tosses and
random inputs drawn from µKRR(n, k/ε), correctly outputs whether xi corresponds to ej with j ∈ S1 or
j ∈ S2 for at least a 9/10 fraction of rows e>i K for i ∈ [n]. Further, suppose that A reads at most r positions
of K on any input, possibly adaptively. Then, r = Ω(nJ).

2n
J

n
J

permute

Figure 2: The hardness lemma – does the ith row have 2n
J or n

J ones?

Proof of Lemma 3.4. First consider a single draw x ∼ νKRR(J). We claim that Ω(J) adaptive inner product
queries x · ej are required to correctly output whether x ∈ S1 or x ∈ S2 with probability at least 2/3 over
νKRR(J). Suppose there exists a randomized algorithm B that has the above guarantee. By Yao’s minimax
principle [Yao77], there then exists a deterministic algorithm B′ with the same guarantee and the same
expected cost over the input distribution. Then, B′ can be used to construct a hypothesis test to decide
whether x ∼ Unif(S1) or x ∼ Unif(S2) which succeeds with probability at least 2/3. Now let S denote
the random variable indicating the list of inner product queries made and their corresponding values, let
L1 denote the distribution of S conditioned on x ∼ Unif(S1), and L2 the distribution of S conditioned on
x ∼ Unif(S2). Then by Proposition 2.58 of [BYP02], we have that

1 +DTV (L1, L2)

2
≥ 2

3
(3.1)

and thus rearranging gives DTV (L1, L2) ≥ 1/3. Now suppose for contradiction that B′ makes at most
q ≤ J/100 queries on any input. Since B′ is deterministic, it makes the same sequence of inner product
queries x · ej1 ,x · ej2 , . . . ,x · ejq , if it reads a sequence of q zeros. Now fix these queries j1, j2, . . . , jq. We
then have that for each ` ∈ [q],

Pr
x∼Unif(S1)

(x = ej`) =
1

J
, Pr

x∼Unif(S2)
(x = ej`) =

2

J
(3.2)
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and thus by the union bound,

Pr
x∼Unif(S1)

(x ∈ {ej` : ` ∈ [q]}) ≤ q

J
, Pr

x∼Unif(S2)
(x ∈ {ej` : ` ∈ [q]}) ≤ 2q

J
. (3.3)

Now let Ω denote the support of S and let s0 ∈ Ω denote the value of S when B′ reads all zeros. Then,

DTV (L1, L2) =
∑
s∈Ω

∣∣∣∣ Pr
x∼Unif(S1)

(S = s)− Pr
x∼Unif(S2)

(S = s)

∣∣∣∣
=

∣∣∣∣ Pr
x∼Unif(S1)

(S = s0)− Pr
x∼Unif(S2)

(S = s0)

∣∣∣∣+
∑

s∈Ω\{s0}

∣∣∣∣ Pr
x∼Unif(S1)

(S = s)− Pr
x∼Unif(S2)

(S = s)

∣∣∣∣
≤ 2q

J
+

∑
s∈Ω\{s0}

Pr
x∼Unif(S1)

(S = s) + Pr
x∼Unif(S2)

(S = s)

=
2q

J
+ Pr

x∼Unif(S1)
(S 6= s0) + Pr

x∼Unif(S2)
(S 6= s0) ≤ 2q

J
+
q

J
+

2q

J
=

5q

J
≤ 1

20
(3.4)

which contradicts DTV (L1, L2) ≥ 1/3. Thus, we conclude that q > J/100.
We now prove the full claim via a reduction to the above problem of deciding whether some x ∼ νKRR(J)

is either drawn from S1 or S2. Suppose for contradiction that there exists a randomized algorithm A with
the guarantees of the lemma which reads r = o(nJ). We then design an algorithm B using A as follows. We
independently sample a uniformly random index i∗ ∼ Unif([n]) and n−1 points {xi}n−1

i=1 with xi ∼ νKRR(J)
for each i ∈ [n − 1]. We then run A on the kernel matrix instance K corresponding to setting the i∗th
standard basis vector to x and the other n−1 vectors according to {xi}n−1

i=1 . Note then that we can generate
any entry of K on row i∗ or column i∗ by an inner product query to x, and otherwise we can simulate the
kernel query without making any inner product queries to x. If A ever reads more than J/100 entries of x,
we output failure. Since r = o(nJ), by averaging, for at least a 199/200 fraction of the n rows of K, A reads
at most J/200 entries of the row e>i K. Similarly, for at least a 199/200 fraction of the n columns of K, A
reads at most J/200 entries of the column Kei. Thus, for at least a 99/100 fraction of the input points, A
makes at most J/100 inner product queries. It follows by symmetry that with probability 99/100, A makes
at most J/100 inner product queries on x. Then by a union bound over the random choice of i∗ over the
n input points, A correctly decides whether x ∼ Unif(S1) or x ∼ Unif(S2) and attempts to read at most
J/100 entries of x with probability at least 1/10 + 1/100 = 11/100. Thus, B succeeds with probability at
least 1− 11/100 ≥ 2/3, contradicting the above result.

With Lemma 3.4 in hand, we finally get to the proof of Theorem 3.3.

Proof of Theorem 3.3. Assume that nJ = o(n2), since otherwise the lower bound is Ω(n2), which is best
possible. Note that for x ∼ νKRR(J), x = ej with probability 1

2
1
J/2 = 1

J if ej ∈ S1 and 1
2

1
J/4 = 2

J if ej ∈ S2.

For a fixed j ∈ [3J/4], let nj be the number of ej sampled in K and µj := EK∼µKRR(n,J)(nj). Note that
µj = n/J for j ∈ [J/2] and µj = 2n/J for j ∈ [J/4] + J/2. Then by Chernoff bounds,

Pr
K∼µKRR(n,J)

({
|nj − µj | ≥

1

100
µj

})
≤ 2 exp

(
− 1

100

µj
3

)
≤ 2 exp

(
− 1

100

n/J

3

)
(3.5)

so by a union bound, we have that

Pr
K∼µKRR(n,J)

 ⋃
j∈[3J/4]

{
|nj − µj | ≥

1

100
µj

} ≤ 2
3J

4
exp

(
− 1

100

n/J

3

)
. (3.6)

Since nJ = o(n2), we have that n/J = ω(1). Furthermore, since J2 = O(n), we have that J = O(n/J).
Thus, the above happens with probability at most 1/100 by taking n/J large enough. Dismiss this event as
a failure and assume that |nj − µj | ≤ 1

100µj for all j ∈ [3J/4].
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Now let K = UΣU> be the full SVD of K. Note that the first 3J/4 singular values are nj with
corresponding singular vectors Uej = 1√

nj
Kej , and the rest are all 0s. Then, the target vector z = 1n can

be written as
z =

∑
j∈[3J/4]

Kej =
∑

j∈[3J/4]

√
njUej , (3.7)

since each coordinate i ∈ [n] belongs to exactly one of the 3J/4 input points drawn from νKRR(n, J). The
optimal solution can then be written as

αopt = (K + λIn)−1z = U(Σ + λIn)−1U>z

=
∑

j∈[3J/4]

√
njU(Σ + λIn)−1U>Uej =

∑
j∈[3J/4]

1

nj + λ

(√
njUej

)
. (3.8)

Thus, for i ∈ [n], the optimal solution takes the value (αopt)i = (nji + λ)−1 where ji ∈ [3J/4] is the index
of the standard basis vector that the ith input point corresponds to.

Now by multiplying the (1 + ε/100)-approximation guarantee by n/k and squaring, we have that∥∥∥n
k
α̂− n

k
αopt

∥∥∥2

2
≤ ε2

1002

∥∥∥n
k
αopt

∥∥∥2

2
=

ε2

1002

∑
j∈[3J/4]

∥∥∥∥ n/k

nj + λ

(√
njUej

)∥∥∥∥2

2

≤ ε2

1002
‖z‖22 =

ε2

1002
n (3.9)

so by averaging, we have that
(
n
k (α̂)i − n

k (αopt)i
)2 ≤ ε2/100 for at least a 99/100 fraction of the n coordi-

nates of i. Then on these coordinates,
∣∣n
k (α̂)i − n

k (αopt)i
∣∣ ≤ ε/10. Now note that on these coordinates, we

have that∣∣∣∣nk (α̂)i −
n

k

1

µj + λ

∣∣∣∣ ≤ ∣∣∣nk (α̂)i −
n

k
(αopt)i

∣∣∣+

∣∣∣∣nk (αopt)i −
n

k

1

µj + λ

∣∣∣∣
≤ ε

10
+
n

k

∣∣∣∣ 1

nj + n/k
− 1

µj + n/k

∣∣∣∣ ≤ ε

10
+
n

k

|nj − µj |
(nj + n/k)(µj + n/k)

≤ ε

10
+
µj/100

n/k
≤ ε

10
+

2nε/(100k)

n/k
=

6

50
ε.

(3.10)

Since
n

k

1

nε/k + n/k
− n

k

1

2nε/k + n/k
=

1

1 + ε
− 1

1 + 2ε
=

ε

(1 + ε)(1 + 2ε)
>
ε

3
> 2

6

50
ε (3.11)

for ε ∈ (0, 1/2), we can distinguish whether the ith input point has µj = nε/k or µj = 2nε/k on these
coordinates and thus we can solve the hard computational problem of Lemma 3.4 without reading anymore
entries of K after solving the kernel ridge regression instance. Thus, we have that A reads Ω(nk/ε) kernel
entries by a reduction to Lemma 3.4.

Finally, to obtain the statement of the theorem, it remains to show that dλeff = Θ(k). Indeed,

dλeff =
∑

j∈[3J/4]

nj
nj + λ

= Θ

 ∑
j∈[3J/4]

nε/k

nε/k + n/k

 = Θ(k) (3.12)

as desired.

We now obtain Theorem 3.1 by scaling parameters by constant factors.

Remark 3.5. The setting of the regularization parameter in the above construction is a bit unnatural as the
top dλeff = Θ(k) singular values of the kernel matrix are of order nε/k while the regularization is of order
n/k, which is 1/ε times larger. One can easily fix this as follows. We add (n/k)ei to the end of our data set
for i = k/ε+ 1, k/ε+ 2, . . . , k/ε+ k. This only increases our effective statistical dimension to

dλeff =
∑

j∈[3J/4]

nj
nj + λ

+

k∑
i=1

n/k

n/k + λ
= Θ

 ∑
j∈[3J/4]

nε/k

nε/k + n/k
+
k

2

 = Θ(k) (3.13)

and our hardness argument is clearly unaffected. Now the setting of the regularization is such that it scales
as the top dλeff singular values, so that it reduces the effects of the next k/ε noisy directions, which is natural.
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3.2 Extensions to other kernels

The above lower bound was proven just for the dot product kernel, but we note that essentially the same
proof applies to more general kernels as well. To this end, we introduce the notion of indicator kernels:

Definition 3.6 (Indicator kernels). We say that k : Rd×Rd → R is an indicator kernel if there exist c1 > 0
and c0 < c1 such that

k(ei, ej) =

{
c1 if i = j

c0 otherwise
(3.14)

for all standard basis vectors ei, ej for i, j ∈ [d].

Examples of such kernels include generalized dot product kernels and distance kernels, i.e. kernels of the
form k(x,x′) = f(x · x′) and k(x,x′) = f(‖x− x′‖2) for an appropriate function f : R → R, which in turn
include important kernels such as the polynomial kernel, the Gaussian kernel, etc.

Note that if c0 = 0, the kernel matrix is just c1 times the kernel matrix from before, so it is easy to see
that the exact same proof works after scaling λ by c1. When c0 is nonzero, then every entry of the kernel
matrix is offset by c0. However we will see that even in this case, the same proof still applies.

Theorem 3.7 (Query lower bound for kernel ridge regression for indicator kernels). The lower bound of
Theorem 3.1 continues to hold for any algorithm computing a (1+ε) relative error solution to a KRR instance
with an indicator kernel (Definition 3.6) instead of the dot product kernel.

Proof. Suppose we draw our kernel K as in Definition 3.2, with the dot product kernel being replaced by
any indicator kernel. Let G be the inner product matrix of the point set with SVD G = UΣU> as before.
Then, we may write the kernel matrix as

K = c01n×n + (c1 − c0)G. (3.15)

Now define
C := c01n((c1 − c0)G + λIn)−11n. (3.16)

Then, by the Sherman-Morrison formula, C 6= −1 since (K + λIn) is invertible, and so we have that

αopt = (K + λIn)−1z

= (c01n1>n + (c1 − c0)G + λIn)−1z

= ((c1 − c0)G + λIn)−1z− ((c1 − c0)G + λIn)−1(c01n1>n )((c1 − c0)G + λIn)−1

1 + c01>n ((c1 − c0)G + λIn)−11n
1n

= ((c1 − c0)G + λIn)−1z− ((c1 − c0)G + λIn)−11n
c01
>
n ((c1 − c0)G + λIn)−11n

1 + c01>n ((c1 − c0)G + λIn)−11n

=

(
1− C

1 + C

)
((c1 − c0)G + λIn)−1z

=
1

(c1 − c0)(1 + C)
(G + (λ/(c1 − c0))In)−1z

(3.17)

Thus, we find that the exact same proof as before works by setting λ = (c1 − c0)n/k.

4 Lower bound for kernel k-means clustering

4.1 Finding the cost vs. assigning points

Recall that [MM17] present an algorithm for solving KKMC with a kernel querying complexity ofO
(
nk
ε log k

ε

)
.

We now briefly present some intuition on how we would like to match this up to log k
ε . We first note that

the hardness cannot come from finding the centers of an approximately optimal clustering or approximating
the cost of the optimal clustering up to (1 ± ε), since there is an algorithm for finding these in O(nk +
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poly(k, 1/ε, log n)) kernel queries: indeed, Theorem 15.5 of [FL11] shows how to find a strong ε-coreset of
size poly(k log n/ε) in O(nk + poly(k, 1/ε, log n)) kernel queries, which can then be used to compute both
approximate centers and the cost. Thus, intuitively, in order to achieve a lower bound of Ω(nk/ε) which
nearly matches the dominant term in the upper bound of [MM17], we must design a hard point set in which
the hardness is not in computing the cost nor the centers, but rather in assigning the n input points to their
appropriate clusters.

We take this opportunity to prove a lower bound of Ω(nk) kernel queries for the problem of computing a
(1 + ε) relative error approximation to the cost of KKMC. In practical applications, the nk term dominates
the poly(k, 1/ε, log n) term and thus we obtain a fairly tight characterization of this subproblem of KKMC.
To prove this result, we make use of the hardness of deciding whether a binary PSD matrix has rank k or
k + 1.

Definition 4.1 (Hard input distribution – rank). Consider the distribution µrank(n, k) on binary PSD
matrices K ∈ Rn×n defined as follows. We first draw n i.i.d. samples {xi}ni=1 drawn from Unif({ej : j ∈ [k]}).
Then, with probability 1/2, select a uniformly random index i∗ ∈ [n] and set xi := ek+1. Finally, generate
K as the inner product matrix of {xi}ni=1, that is, e>i Kej := xi · xj.

Lemma 4.2. Suppose there exists an algorithm which, with probability at least 5/8, over its random coin
tosses and random inner product matrix K ∼ µrank(n, k), correctly decides whether K has rank k + 1 or at
most k. Furthermore, suppose that the algorithm reads at most r positions of K, possibly adaptively. Then,
r = Ω(nk).

Proof. Suppose for contradiction that r = o(nk). Let Sk := {ej : j ∈ [k]}. We consider the following
hypothesis test: decide whether some x is drawn from x ∼ Unif(Sk) or from x = ek+1 using inner product
queries of the form x·e` for ` ∈ [k]. By Yao’s minimax principle [Yao77], there exists a deterministic algorithm
A′ with the same guarantee as A and the same expected cost over the input distribution. We then design
an algorithm B using A′ as follows. We independently sample a uniformly random index i∗ ∼ Unif([n]) and
n− 1 points {xi}n−1

i=1 with xi ∼ Unif(Sk) for each i ∈ [n− 1]. We then run A′ on the kernel matrix instance
K corresponding to setting the i∗th standard basis vector to x and the other n − 1 vectors according to
{xi}n−1

i=1 . Note then that we can generate any entry of K on row i∗ or column i∗ by an inner product query
to x, and otherwise we can simulate the kernel query without making any inner product queries to x. If A′
ever reads more than k/100 entries of x, we output failure.

Note that with probability at least 99/100 over {xi}n−1
i=1 , each ej for j ∈ [k] is drawn at least once for

n large enough. Thus, in this event, K has rank k only if x ∼ Unif(Sk) and k + 1 otherwise. Since A′ is
correct with probability 5/8, by a union bound, B is correct with probability at least 1− ( 1

100 + 3
8 ) ≥ 5/9.

Let S denote the random variable indicating the list of positions of K read by A′ and its corresponding
values,let L1 denote the distribution of S conditioned on x ∼ Unif(Sk), and L2 the distribution of S
conditioned on x = ek+1. Then by Proposition 2.58 of [BYP02], we have that

1 +DTV (L1, L2)

2
≥ 5

9
(4.1)

so DTV (L1, L2) ≥ 1/9.
Since r = o(nk), by averaging, for at least a 199/200 fraction of the n rows of K, A′ reads at most k/200

entries of the row e>i K. Similarly, for at least a 199/200 fraction of the n columns of K, A′ reads at most
k/200 entries of the column Kei. Thus, for at least a 99/100 fraction of the input points, A′ makes at most
k/100 inner product queries.

If we condition on the event that x ∼ Unif(Sk), we have that A′ makes at most k/100 inner product
queries with x with probability at least 99/100 over the randomness of i∗ by symmetry. That is, if E is the
event that A′ makes at most k/100 inner product queries on row and column i∗, then

Pr
i∗∼Unif([n])

{xi}n−1
i=1 ∼Unif(Sk)n−1

x∼Unif(Sk)

(E) ≥ 99

100
.

(4.2)
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Now letting E ′ be the event that A′ sees 0s on all of its queries on row and column i∗, we have that

Pr
i∗∼Unif([n])

{xi}n−1
i=1 ∼Unif(Sk)n−1

x∼Unif(Sk)

(E ′ | E) =
∑
w∈Ω

Pr
i∗∼Unif([n])
x∼Unif(Sk)

(
E ′ | E , {xi}n−1

i=1 = w
)

Pr
i∗∼Unif([n])
x∼Unif(Sk)

(
E ′ | E , {xi}n−1

i=1 = w
)
.

(4.3)

Once we fix {xi}n−1
i=1 , there is a 1 − 1/k probability over x that any fixed query x · e` returns a 0, so the

probability that E ′ happens is at least(
1− 1

k

)k/100

≥ 1− 1

k

k

100
=

99

100
. (4.4)

Thus, by the chain rule,

Pr
i∗∼Unif([n])

{xi}n−1
i=1 ∼Unif(Sk)n−1

x∼Unif(Sk)

(E ′ ∩ E) = Pr
i∗∼Unif([n])

{xi}n−1
i=1 ∼Unif(Sk)n−1

x∼Unif(Sk)

(E ′ | E) Pr
i∗∼Unif([n])

{xi}n−1
i=1 ∼Unif(Sk)n−1

x∼Unif(Sk)

(E)

≥ 99

100

99

100
≥ 49

50
.

(4.5)

Bounding the event E ′ ∪ E by E ′ as sets, we have that

Pr
i∗∼Unif([n])

{xi}n−1
i=1 ∼Unif(Sk)n−1

x∼Unif(Sk)

(E ′) ≥ 49

50
.

(4.6)

Also let W ⊆ supp(S) denote the set of s ∈ supp(S) such that A′ reads all zeros on row and column i∗.
Then,

DTV (L1, L2) =
∑

s∈supp(S)

∣∣∣∣∣∣∣ Pr
i∗,{xi}n−1

i=1

x∼Unif(Sk)

(S = s)− Pr
i∗,{xi}n−1

i=1
x=ek+1

(S = s)

∣∣∣∣∣∣∣
=

∑
s∈supp(S)

∣∣∣∣∣∣∣
 Pr
i∗,{xi}n−1

i=1

x∼Unif(Sk)

(S = s | E ′) Pr
i∗,{xi}n−1

i=1

x∼Unif(Sk)

(E ′)− Pr
i∗,{xi}n−1

i=1
x=ek+1

(S = s)


∣∣∣∣∣∣∣

=
∑

s∈supp(S)

Pr
i∗,{xi}n−1

i=1
x=ek+1

(S = s)

∣∣∣∣∣∣∣ Pr
i∗,{xi}n−1

i=1

x∼Unif(Sk)

(E ′)− 1

∣∣∣∣∣∣∣ ≤
1

50
.

(4.7)

This contradicts the conclusion that DTV (L1, L2) ≥ 1/9 so we conclude as desired.

With the lemma in hand, we prove the Ω(nk) lower bound for approximating the cost of KKMC.

Proposition 4.3. Let k2 = O(n). Suppose there exists an algorithm which, with probability at least 2/3 over
its random coin tosses and random inner product matrix K ∼ µrank(n, k), correctly computes the optimal
cost of the kernel k-means clustering instance up to a (1±1/2) relative error. Furthermore, suppose that the
algorithm reads at most r positions of K, possibly adaptively. Then, r = Ω(nk).

Proof. Assume that nk = o(n2), since otherwise the lower bound is best possible. As in the proof of
Theorem 3.1, we have by Chernoff bounds that the number of ej drawn is (1 ± 1

100 )n/k with probability
at least 99/100 for n/k large enough for all j ∈ [k] simultaneously. Note then that the optimal cost when
x ∼ Unif({ej : j ∈ [k]}) is 0, since we can just take the centers to each be ej for j ∈ [k]. On the other hand,
when x = ek+1, then there are more than k types of vectors and thus the cost cannot be 0.

Thus, with probability 99/100, the algorithm must correctly distinguish the two cases whenever the
algorithm correctly approximates the optimal cost up to (1 ± 1/2) relative error. Since the algorithm does
this with probability 2/3, by the union bound, the overall algorithm succeeds with probability at least
1− ( 1

100 + 1
3 ) ≥ 5/8. Thus, the algorithm reads Ω(nk) kernel entries by Lemma 4.2.
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4.2 Main lower bound

4.2.1 The construction

We describe our hard input distribution µKKMC(n, k, ε), formed as an inner product matrix of points drawn
from the ambient space Rk/ε.

Definition 4.4 (Hard input distribution – kernel k-means clustering). Let ε > 0, k, n be such that k
(
ε−1

2

)
=

o(n) and k/ε = ω(1). We first define a distribution νKKMC(k, ε) over vectors in Rk/ε as follows. First divide
the k/ε coordinates into k blocks of 1/ε dimensions. Then, we sample our point set as follows: first uniformly

select some block j ∈ [k], and then uniformly select one of the
(

1/ε
2

)
pairs (j1, j2) where j1, j2 ∈ [1/ε] with

j1 6= j2, and then output vj,j1,j2 := (e`1 + e`2)/
√

2, where `1 = j/ε+ j1, `2 = j/ε+ j2. We then generate an
i.i.d. sample {xi}ni=1 of n points drawn from νKKMC(k, ε) and then generate K ∼ µKKMC(n, k, ε) by setting
it to be the inner product matrix of {xi}ni=1, i.e. e>i Kej := xi · xj. For x in the support of νKKMC(k, ε), we
let block(x) denote the j ∈ [k] such that x = vj,j1,j2 .

Intuitively, we are adding “edges” between pairs of coordinates in the same block of 1/ε coordinates, so
that clusterings that associate points in the same block together have lower cost.

In this section, we will prove the following main theorem:

Theorem 4.5 (Query lower bound for kernel k-means clustering). Let ε, k, n be such that k
(
ε−1

2

)
= o(n).

Suppose an algorithm A finds a (1± ε)-approximate solution to a kernel k-means clustering instance drawn
from µKKMC(n, k, ε) with probability at least 2/3 over its random coin tosses and the input distribution.
Then, A makes at least Ω(nk/ε) kernel queries.

This lower bound is tight up to logarithmic factors, nearly matching for example the ridge leverage score
algorithm of Theorem 16 in [MM17] which reads O

(
nk
ε log k

ε

)
kernel entries.

4.2.2 Proof overview

In our proof, we will think of any clustering as being divided into two groups: the points S, which are
clustered to “dense” clusters, and the points S, which are clustered to “sparse” clusters. Roughly, if we fix
a point in a dense cluster and sample points randomly from that cluster, then we have a high probability
(at least Ω(ε)) of finding a point that has nonzero inner product with it. We then argue that if there are
not enough points in dense clusters, then the cost of the clustering is too large, so the clustering cannot be a
(1 + ε)-approximate solution to the optimal kernel k-means clustering solution. Then, we show that finding
a lot of points in dense clusters can solve a computational problem that requires Ω(nk/ε) kernel queries,
which then yields Theorem 4.5.

The main work that needs to be done is lower bounding the cost of clustering the points that belong to
dense clusters, since it is easy to see that sparse clusters have high cost. Among the dense clusters, if the
size of the cluster is at least n/k, which we call the “large” clusters, then the cost is easy to bound. The
worrisome part is the “small” clusters, which have the potential of having very small cost per point. We will
show that if we carefully bound the cost of small clusters as a function of their size, then if we don’t have
too many points total that belong to small clusters, then the cost is still high enough to achieve the desired
result.

4.3 Cost computations

4.3.1 The cost of a good clustering

Consider the clustering that assigns all points supported in the same block with each other. We first do
our cost computations for the average case, where every vector vj,j1,j2 is drawn the same number of times.
Then, the first block has center

1(
ε−1

2

) ∑
(i,j)∈([ε−1]

2 )

ei + ej√
2

=
(ε−1 − 1)
√

2
(
ε−1

2

) ∑
i∈[ε−1]

ei =
√

2ε
∑

i∈[ε−1]

ei (4.8)

13



and the center for the rest of the blocks is similar. Then, the cost of a single point (ei∗ + ej∗)/
√

2 is∥∥∥∥∥∥ei∗ + ej∗√
2

−
√

2ε
∑

i∈[ε−1]

ei

∥∥∥∥∥∥
2

2

= 2

(
1√
2
−
√

2ε

)2

+
(
ε−1 − 2

)(√
2ε
)2

= 1− 4ε+ ε−12ε2 − 4ε2 = 1− 2ε− 4ε2.

(4.9)
Thus, the cost of this clustering is like n(1− 2ε). Note that this computation also gives a lower bound on

the cost of a cluster containing n/k points, since for any cluster of size n/k, we can clearly improve its cost
while we can swap points to be supported on the same block.

Now by Chernoff bounds, with probability tending to 1 as n/k
(
ε−1

2

)
tends to infinity, the cost of this

clustering is bounded above by

n

(
1−

(
1− 1

40

)
2ε

)
= n

(
1− 79

40
ε

)
. (4.10)

and the cost of any cluster of size n/k is bounded below by

n

k

(
1−

(
1 +

1

40

)
2ε

)
=
n

k

(
1− 81

40
ε

)
. (4.11)

This proves the following lemmas.

Lemma 4.6 (Cost bound for an optimal clustering). With probability at least 99/100, the cost of an optimal
clustering is at most n(1− (79/40)ε).

Lemma 4.7 (Cost bound for a large cluster). Let C be a cluster of size at least n/k. Then with probability
at least 99/100, the cost per point of C is bounded below by 1− (81/40)ε.

4.3.2 The cost of a small cluster

We will first prove a lower bound on the cost of a fixed cluster C. In this section, we will parameterize our
lower bound only by the size of the cluster, and then later use this result to lower bound the cost of any
clustering. When we prove our lower bound result, it will be useful to introduce the quantities

α :=
n

k
(
ε−1

2

) , τ :=
|C|
α
. (4.12)

Intuitively, α is the number of copies of a vector vj,j1,j2 we expect to draw, and τ is the minimal number of
different types of vectors vj,j1,j2 we can have in our cluster C. Note that by the union and Chernoff bounds,

there are (1 ± γ)α copies of each vector with probability k
(
ε−1

2

)
exp
(
−γ2α/3

)
, where γ is a small constant

to be chosen. The lower bound we prove then is the following.

Lemma 4.8 (Cost bound for a small cluster). Let γ be a constant small enough so that

(1 + γ)2 (1 + 2
√
γ)2

(1− 2
√
γ)3
≤ 1 +

1

20
. (4.13)

Let α and τ be defined as above, with respect to a cluster C of points drawn from νKKMC(k, ε) with size
bounded by

α

γ
= Θ(α) ≤ |C| ≤ n

k
(4.14)

Additionally, define the quantity

κ := (ε−1 − 1/2)−
√

(ε−1 − 1/2)2 − 2τ . (4.15)

Then, the cost on this cluster is bounded below by

cost(C) ≥ |C| −
(

1 +
1

20

)
α

2

κ(ε−1 − 1)2 + κ2(ε−1 − κ)

τ
. (4.16)
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Remark 4.9. Note that if a cluster has size at most α, then its cost can be 0 by taking them all to be the
same vector, and here, we only require the cluster to have size a constant times α to get the lower bound.

Proof. To prove this lemma, we will first reduce to the case of considering clusters which have all copies of
all of its vectors, and then conclude the lower bound by optimizing the cost of clusters of this form.

Reduction to maximizing a sum of squares. Since we wish to lower bound the cost of this cluster, we
assume that it is supported on ε−1 coordinates since using more than ε−1 coordinates is clearly suboptimal,
and we make take the entire cluster to be drawn from one block by the upper bound on the size of C. Then
for i ∈ [ε−1], let ni denote the number of vectors supported on the ith coordinate, so

∑
i∈[ε−1] ni = 2|C|.

Let µ denote the center of C. Then, it’s easy to see that

µ =
1

|C|
∑

i∈[ε−1]

ni√
2
ei. (4.17)

Thus, for each point vi,j := (ei + ej)/
√

2 in C, its cost contribution is(
1√
2
− µi

)2

+

(
1√
2
− µj

)2

+
∑

`∈[ε−1]\{i,j}

(0− µ`)
2

= 1 + ‖µ‖22 −
√

2(µi + µj). (4.18)

Then, the total cost for the cluster is∑
vi,j∈C

1 + ‖µ‖22 −
√

2(µi + µj) =
∑

vi,j∈C
1 + ‖µ‖22 −

√
2

(
ni√
2|C|

+
nj√
2|C|

)
= |C|(1 + ‖µ‖22)− 1

|C|
∑

vi,j∈C
ni + nj

= |C|

1 +
∑

i∈[ε−1]

n2
i

2|C|2

− 1

|C|
∑

i∈[ε−1]

n2
i

= |C| − 1

2|C|
∑

i∈[ε−1]

n2
i .

(4.19)

Thus, going forward, we will forget about the |C| and focus only on the sum of squared counts. In the
following arguments, we may give the impression of adding vectors to the cluster to bound this quantity
above, but we will do this without touching this |C| term.

Discretization. Consider two vectors vi1,i2 ,vj1,j2 where ni1 + ni2 ≥ nj1 + nj2 . Then, we have that

(ni1 + 1)2 + (ni2 + 1)2 + (nj1 − 1)2 + (nj2 − 1)2 = n2
i1 + n2

i2 + n2
j1 + n2

j2 + 4 + 2(ni1 + ni2 − nj1 − nj2)

> n2
i1 + n2

i2 + n2
j1 + n2

j2

(4.20)
so we can strictly improve the cost of any clustering by changing a vector with low total count of coordinates
to one with higher total count of coordinates. Thus, we may reduce our lower bound proof to the case where
every vector type vi,j has every copy of itself, except for possibly one “leftover” vector type. By adding in
all copies of this leftover vector type, which only makes the sum of squared counts larger, we assume that
every vector type has every copy of itself.

Filling up coordinates. We do a similar argument as in the above to further constrain the form of the
clusters we consider. Note that

(ni + 1)2 + (nj − 1)2 = n2
i + n2

j + 2 + 2(ni − nj) > n2
i + n2

j (4.21)
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for ni ≥ nj , so we improve the clustering by iteratively swapping vectors vi,j to vi∗,j where i∗ is the
coordinate with the largest count ni∗ that still hasn’t exhausted the (ε−1 − 1) different types of vectors
vi∗,j for j ∈ [ε−1] \ {j} that is supported on the i∗th coordinate. By relabeling the coordinates if necessary,
WLOG assume that we fill up the coordinates i = 1, 2, . . . , ε−1 in order.

On the first coordinate, we can use (ε−1 − 1) types of vectors to fill it all the way up to

n1 = (ε−1 − 1)(1± γ)α = (1± γ)(ε−1 − 1)
n

k
(
ε−1

2

) = (1± γ)
2nε

k (4.22)

vectors, where the (ε−1 − 1) types of vectors are (e1 + ej)/
√

2 for j ∈ [ε−1] \ {1}. Note that at this point,
every other coordinate will have (1± γ)α vectors. Then we need to maximize the second coordinate, which
already has 1 type and (1± γ)α vectors, so we can use (ε−1 − 2) additional types of vectors to fill it all the
way up, at which point all the other coordinates will have 2(1± γ)α vectors. We can do this until we fill up
K coordinates at which point we have used T types of vectors. Note that we can solve for K by solving

T =

K∑
i=1

ε−1 − i = Kε−1 − K(K + 1)

2
⇐⇒ 1

2
K2 +

(
1

2
− ε−1

)
K + T = 0

⇐⇒ K = (ε−1 − 1/2)±
√

(ε−1 − 1/2)2 − 2T .

(4.23)

Since we can only have ε−1 coordinates, we need to take the solution

K = (ε−1 − 1/2)−
√

(ε−1 − 1/2)2 − 2T . (4.24)

Bounding. Note that from filling up the last leftover vector type, we have that T ≤ d|C|/(1 − γ)αe and
T ≥ b|C|/(1 + γ)αc. Thus, |C| = (1 ± γ)α(T ± 1). Now note that we require that α/γ ≤ |C| in equation
(4.14), which means that

τ =
|C|
α
≥ α/γ

α
=

1

γ
=⇒ τγ ≥ 1 (4.25)

and thus T = (1± γ)τ ± 1 = (1± 2γ)τ . It then follows that for κ defined as in (4.15),

K = (ε−1 − 1/2)−
√

(ε−1 − 1/2)2 − 2(1± 2γ)τ

=
[
(ε−1 − 1/2)−

√
(ε−1 − 1/2)2 − 2τ

]
±
√

4γτ

= κ±

√
4γ

(
κ

2

)
= (1± 2

√
γ)κ

(4.26)

For K coordinates we fill the coordinates all the way up to (ε−1−1)(1±γ)α and otherwise we have K(1±γ)α
vectors. Then, the sum of squared counts is bounded by∑

i∈[ε−1]

n2
i ≤ K

(
(ε−1 − 1)(1 + γ)α

)2
+ (ε−1 −K)(K(1 + γ)α)

2

= ((1 + γ)α)2
[
K(ε−1 − 1)2 +K2(ε−1 −K)

] (4.27)

so the cost on this cluster is at least

|C| − 1

2|C|
∑

i∈[ε−1]

n2
i ≥ |C| −

1

2|C|
((1 + γ)α)2

[
K(ε−1 − 1)2 +K2(ε−1 −K)

]
= |C| −

(
1 +

1

20

)
α

2

κ(ε−1 − 1)2 + κ2(ε−1 − κ)

τ

(4.28)

since we chose γ to be small enough in equation (4.13).
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4.3.3 Optimizing over k clusters

In Lemma 4.8, we have found a lower bound on the cost of a fixed cluster that only makes reference to the
size of the cluster. All that is left to do is to optimize the sum of these functions under the constraint of
the total number of points to cluster. Recall from the proof overview that we are in the context of lower
bounding the cost of a subset of the points S, which we wish to show must be large. Thus, we will assume
that |S| ≤ 2n/5 in this lower bound. The formal statement of the lemma we prove here is the following:

Lemma 4.10 (Cost bound for ` clusters). Suppose S is a set of at most |S| ≤ 2n/5 points drawn from
νKKMC(k, ε). Then, for any clustering CS of S into ` ≤ k clusters,

cost(CS) ≥ |S| − 77

40
nε. (4.29)

Proof. Note that we only decrease the cost of a clustering if we allow a single cluster to be split up into
multiple clusters. Then for any “large” cluster C with size at least |C| > n/k, we can treat every n/k points
as a separate cluster and lower bound its cost at 1− 2ε per point. Then, let S = S ∪ T , where S is the set
of clusters that now belong to clusters of size at most n/k and T is the set of points whose cost we have
bounded below by 1− (81/40)ε by Lemma 4.7.

Recall that our lower bound for a single cluster, Lemma 4.8, only applies to clusters of size at least α/γ.
Let L ⊆ [`] be the set of indices of clusters such that the lower bound applies and let M ⊆ S be the set of
all points in such a cluster. Now applying this lower bound for these clusters and lower bounding by 0 for
the others, we arrive at the lower bound

cost(CS) ≥ |T |
(

1− 81

40
ε

)
+
∑
i∈L
|Ci| −

(
1 +

1

20

)
α

2

κi(ε
−1 − 1)2 + κ2

i (ε
−1 − κi)

τi
. (4.30)

Together with the constraint that there are |M| points for which we can apply the lower bound of Lemma
4.8, we now focus on the optimization problem

minimize |M| −
(

1 +
1

20

)
α

2

∑
i∈L

κi(ε
−1 − 1)2 + κ2

i (ε
−1 − κi)

τi

subject to α
∑
i∈L

τi = |M|, 0 ≤ τi ≤
(
ε−1

2

)
=

(ε−1 − 1/2)2

2
− 1

8

(4.31)

where

κi = (ε−1 − 1/2)−
√

(ε−1 − 1/2)2 − 2τi. (4.32)

We now introduce less cumbersome notation to get our bound. Let

R := (ε−1 − 1/2), ui := R2 − 2τi. (4.33)

Then by plugging in definitions, the optimization problem is now

minimize |M| −
(

1 +
1

20

)
α
∑
i∈L

(R−√ui)(R− 1/2)2 + (R−√ui)2(
√
ui + 1/2)

R2 − ui

subject to
∑
i∈L

ui = |L|R2 − 2|M|/α, 1

4
≤ ui ≤ R2

(4.34)

Now note (WolframAlpha link) that

(R−√ui)(R− 1/2)2 + (R−√ui)2(
√
ui + 1/2)

R2 − ui
= 2R− 1

2
−
(

4R2 − 1

4(R+
√
ui)

+
√
ui

)
≤ 2R− 1

2
−
(

4R2 − 1

8R
+
√
ui

)
=

3

2
R− 1

2
+

1

8R
−
√
ui.

(4.35)

17

http://www.wolframalpha.com/input/?i=((R-u)(R-1%2F2)%5E2+%2B+(R-u)%5E2(u%2B1%2F2))%2F(R%5E2-u%5E2)


Then, by noting that
√
a+ b ≤

√
a+
√
b, we can optimize

maximize
∑
i∈L
−
√
ui

subject to
∑
i∈L

ui = |L|R2 − 2|M|/α, 1

4
≤ ui ≤ R2

(4.36)

by setting ui = R2 for (|L|R2− 2|M|/α)/R2 of the i and the rest to 0 (the minimum ui is 1/4, but allowing
it to be 0 is a relaxation since we optimize over a larger domain). Thus, the value of optimization problem
(4.36) is at most

|L|R2 − 2|M|/α
R2

(−R) = −
(
|L|R− 2|M|

αR

)
. (4.37)

Thus, we have that

α

(∑
i∈L

3

2
R− 1

2
+

1

8R
−
√
ui

)
≤ α|L|

(
3

2
R− 1

2
+

1

8R

)
− α

(
|L|R− 2|M|

αR

)
. (4.38)

Now recall that we set |M|+ |T | ≤ |S| ≤ 2n/5 and |L| ≤ k so the above is bounded above by

α|L|
(

3

2
R− 1

2
+

1

8R

)
− α

(
|L|R− 2|M|

αR

)
=

1

2
α|L|R− α|L|

(
1

2
− 1

8R

)
+ α

2|M|
αR

≤ 1

2
αkR− α|L|

(
1

2
− 1

8R

)
+

2

5
αkR− 2|T |

R

=
9

10
αkR− α|L|

(
1

2
− 1

8R

)
− 2|T |

R

≤ 9

10
αkR− 2ε|T |.

(4.39)

Thus, we may lower bound the value of the optimization problem of (4.31) by

|M| −
(

1 +
1

20

)(
9

10
αkR− 2ε|T |

)
. (4.40)

Now finally, note that there are at most k clusters where the lower bound of Lemma 4.8 doesn’t apply,
so there are at most

|S \M| ≤ k · α
γ

= Θ(nε2) ≤ 1

100
nε (4.41)

points that we have ignored the cost for, for ε smaller than some constant. Collecting our bounds of (4.40)
and (4.41) and plugging our definitions of α and R back in, we obtain a lower bound of

cost(CS) ≥ |T |
(

1− 81

40
ε

)
+ |M| −

(
1 +

1

20

)
9

10
αkR+

(
1 +

1

20

)
2ε|T |

= (|T |+ |M|) +

(
42

20
− 81

40

)
ε|T | −

(
1 +

1

20

)
9

10
αkR

≥ (|S| − |S \M|)−
(

1 +
1

20

)
9

10
αkR

≥ |S| − 1

100
nε−

(
1 +

1

20

)
9

5
nε > |S| − 77

40
nε

(4.42)

on the cost of the clustering, as desired.
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4.4 Hardness

4.4.1 Cost lemma

We now prove a lemma that translates our cost computations from the above section into a statement about
the probability of sampling nonzero inner products. Intuitively, we will prove that an approximately optimal
solution to the kernel k-means clustering instance must output a clustering such that at least 2n/5 of the
points belong to a cluster with lots of points that share a coordinate with the point, i.e. “neighbors”.

Lemma 4.11 (Sampling probability of an approximate solution). Suppose that C is a (1+ε/40)-approximate
solution to a kernel k-means clustering instance drawn as K ∼ µKKMC(n, k, ε). Then for at least 2n/5 of
the points, if we uniformly sample dot products between the point and other points in its cluster, then there
is at least an ε/80 probability of sampling a point that has nonzero inner product with the point.

Proof. Suppose for contradiction that there are at most 2n/5 points belonging to a cluster such that sampling
uniformly from the cluster yields at least an ε/80 probability of sampling a point that has nonzero inner
product with that point, which we refer to as a neighbor. Let S be the set of points that belong to such a
cluster with at least probability ε/80 of sampling a neighbor, and let S be the complement. We first compute
the cost of a point (ei + ej)/

√
2 in S. Let C be the point’s cluster and let ni, nj be the number of points in

the cluster that has support on the ith coordinate. Then, ni/|C| and nj/|C| are both at most ε/80. Now
note that the i and jth coordinates of the center are ni/(

√
2|C|) and nj/(

√
2|C|), so the cost of that point

is at least (
1√
2
− 1√

2

ni
|C|

)2

+

(
1√
2
− 1√

2

nj
|C|

)2

≥ 1− 1

40
ε. (4.43)

Then |S| ≤ 2n/5, so we may use the bounds from Lemma 4.10 to bound the cost from below by

∣∣S∣∣(1− 1

40
ε

)
+ |S| − 77

40
nε ≥ n

(
1− 78

40
ε

)
. (4.44)

Now recall that by Lemma 4.6, the optimal solution has cost at most n(1 − (79/40)ε), so a (1 + ε/40)-
approximate solution needs to have cost at most

n

(
1− 79

40
ε

)(
1 +

1

40
ε

)
= n

(
1− 78

40
ε− 79

1600
ε2

)
< n

(
1− 78

40
ε

)
(4.45)

which the above solution does not.

4.4.2 Hardness reduction

Finally, we give the hardness result. Consider the following computational problem LabelKKMC. Recall
the definition of νKKMC and block from Definition 4.4.

Definition 4.12 (LabelKKMC). We first sample n points {xi}ni=1 from our hard point set νKKMC(k, ε),
label the identity of the first n/2 points, and then ask an algorithm to correctly give block(xi) for 1/6 of the
remaining n/2 points.

We will show that this problem requires reading Ω(nk/ε) kernel entries and that an algorithm solving
the KKMC problem on this instance can solve this problem. We first prove the following lemma:

Definition 4.13 (LabelSingleKKMC). Given as input x ∼ νKKMC(k, ε), determine block(x).

Lemma 4.14 (Hardness of LabelSingleKKMC). Let log2 k ≥ 12. Suppose there exists an algorithm
A, possibly randomized, that correctly solves LabelSingleKKMC with probability at least 1/100 over x ∼
νKKMC(k, ε) and its random coin tosses. Furthermore, suppose that A makes at most q inner product queries
of the form x · v`,`1,`2 , possibly adaptively, on any input. Then, q ≥ (k/ε)/100.

Proof. By way of Yao’s minimax principle [Yao77], assume that the algorithm is deterministic. Note first
that for a single vj,j1,j2 , its inner product with any vector drawn from a different block is 0. Within the
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same block, its inner product with another vj,j′1,j′2 is 0 as well, unless j1 = j′1 or j2 = j′2. This happens with
probability

1−
(
ε−1−2

2

)(
ε−1

2

) =
ε−1(ε−1 − 1)− (ε−1 − 2)(ε−1 − 3)

ε−1(ε−1 − 1)
=

4ε−1 − 6

ε−1(ε−1 − 1)
=

4ε− 6ε2

1− ε
≤ 8ε (4.46)

for ε ≤ 1/2 and thus for a fixed v`,`1,`2 , we have that

Pr
x∼νKKMC(k,ε)

(x · v`,`1,`2 6= 0) ≤ 8ε

k
. (4.47)

We now use the above to first show a lower bound of q = Ω(k/ε) on the number of adaptive inner product
queries x · v`,`1,`2 required to find block(x) for a single draw x ∼ νKKMC(k, ε).

Assume for simplicity that k is a power of 2, and for each m ∈ [log2 k], consider the hypothesis test Hm
of deciding whether the mth bit of block(x) ∈ [k] is 0 or 1. Note that since we choose j ∈ [k] uniformly, each
of the log2 k hypothesis tests are independent and identical and thus the error probability of the hypothesis
test of the optimal success probability is the same for each hypothesis test. Note that an algorithm succeeds
in correctly outputting block(x) if and only if it succeeds on all log2 k of the hypothesis tests. If the optimal
success probability is at most 2/3, then for log2 k ≥ 12, we have that the success probability on all log2 k of
the hypothesis tests is at most (

2

3

)log2 k

≤
(

2

3

)12

<
1

100
(4.48)

which means it does not have the required guarantees. Thus, A must solve each hypothesis test Hm with
probability at least 2/3.

Now fix a hypothesis test Hm from the above, let E0 be the event that the mth bit of block(x) is 0, and
let E1 be the event that the mth bit of block(x) is 1. Let S be the random variable indicating the list of
positions of K read by A and its corresponding values, let L0 denote the distribution of S conditioned on E0,
and let L1 denote the distribution of S conditioned on E1. Then by Proposition 2.58 of [BYP02], we have
that

1 +DTV (L0, L1)

2
≥ 2

3
(4.49)

so DTV (L0, L1) ≥ 1/3.
Now suppose for contradiction that Amakes q ≤ (k/ε)/100 queries on any input. Since A is deterministic,

it makes the same sequence of inner product queries if it reads a sequence of q zeros. For a fixed query v`,`1,`2 ,
the probability that x · v`,`1,`2 6= 0 is at most 8ε/k by equation (4.47). Then by a union bound over the
q queries, the probability that the algorithm seems any zeros is at most 8(ε/k)q ≤ 8/100. Then, letting Ω
denote the support of S and s0 the value of S when A reads all zeros, we have that

DTV (L0, L1) = |Pr(S = s0 | E0)−Pr(S = s0 | E1)|+
∑

s∈Ω\{s0}

|Pr(S = s | E0)−Pr(S = s | E1)|

≤ 8

100
+ Pr(S 6= s0 | E0) + Pr(S 6= s0 | E1) ≤ 24

100
<

1

4

(4.50)

which is a contradiction. Thus, we conclude that q > (k/ε)/100, as desired.

Using the above lemma, we may prove the full hardness of LabelKKMC.

Lemma 4.15 (Hardness of LabelKKMC). Suppose an algorithm A, possibly randomized, solves La-
belKKMC with probability at least 2/3 over the input distribution νKKMC(k, ε) and the algorithm’s random
coin tosses. Then, A makes Ω(nk/ε) kernel queries.

Proof. Given such an algorithm, we given an algorithm B solving LabelSingleKKMC (see definition 4.13)
as follows. We first generate n− 1 points {xi}n−1

i=1 drawn i.i.d. from νKKMC . We then draw a random index
i∗ ∼ Unif([n/2]), set the i∗ + n/2th point to x, and the rest of the points according to {xi}n−1

i=1 . We then
run A on this input instance as follows. We can clearly give A the labels of the first n/2 elements of{xi}n−1

i=1
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without making inner product queries to x. Whenever we need to read a kernel entry that doesn’t involve the
i∗th element, we generate the inner product without making queries to x. Otherwise, we make the required
inner product query x · v`,`1,`2 requested by A. With probability at least 2/3, A succeeds in outputting
block(xi) for at least a 1/6 fraction of the last n/2 input points. By symmetry, x has a correct label with
probability at least 1/6 in this event. Then by independence, the algorithm succeeds with probability at
least (2/3)(1/6) = 1/9 > 1/100. Thus, B indeed solves LabelSingleKKMC.

We now bound the number of inner product queries made by B. Suppose for contradiction that A makes
at most o(nk/ε) total kernel queries. Then by averaging, A makes at most (k/ε)/200 kernel queries for a
199/200 fraction of the n/2 last rows. Similarly, A makes at most (k/ε)/200 kernel queries for a 199/200
fraction of the last n/2 columns. Thus, by a union bound, A makes at most (k/ε)/100 inner product queries
for a 99/100 fraction of the last n/2 input points. By symmetry, A makes at most (k/ε)/100 inner product
queries on x with probability at least 99/100. This contradicts Lemma 4.14. Thus, we conclude that A
makes at least Ω(nk/ε) kernel queries, as desired.

Finally, we use the above lemma to show the hardness of kernel k-means clustering.

Corollary 4.16. Suppose an algorithm A gives a (1+ε/40)-approximate kernel k-means clustering solution
with probability at least 2/3 over the input distribution K ∼ µKKMC(n, k, ε) and the algorithm’s random coin
tosses. Then, A makes Ω(nk/ε) kernel queries.

Proof. Using a (1 + ε/40)-approximate algorithm for k-means clustering, we can solve the computational
problem described above as follows. We first cluster all the points using A. Then, note that by Lemma 4.11,
at least 2/5 of the points must belong to a cluster such that sampling O(1/ε) points within its cluster allows
us to find a point such that at least one coordinate matches a labeled point’s coordinate. Then, on average,
we will get 1/5 of these correct and thus 1/6 of these with very high probability by Chernoff bounds. Note
that this used Q+ O(n/ε) kernel queries, where Q is the number of kernel queries that the kernel k-means
step used. Then, since Q+O(n/ε) = Ω(nk/ε), we have that Q = Ω(nk/ε), as desired.

Finally, we obtain Theorem 4.5 by rescaling ε by a constant factor.

5 Clustering mixtures of Gaussians

In this section, we show that our worst case kernel query complexity lower bounds for the kernel k-means
clustering problem are pessimistic by a factor of k when our input instance is mixture of k Gaussians. More
specifically, we prove the following theorem:

Theorem 5.1 (Clustering mixtures of Gaussians). Let m = Ω(ε−1 log n) as specified by Corollary 5.3.
Suppose we have a mixture of k Gaussians with isotropic covariance σ2Id and means (µ`)

k
`=1 in Rd. Fur-

thermore, suppose that the Gaussian means µ` are all separated by at least
∥∥µ`1 − µ`2

∥∥
2
≥ Ω(σ

√
log k) as

specified by Theorem 5.1 of [RV17] and
∥∥µ`1 − µ`2

∥∥
2
≥ Ω(σ

√
log log n+ log ε−1) as specified by Lemma 5.2

with δ = (2m+k)−3. Finally, suppose that we are in the parameter regime of poly(k, 1/ε, d, log n) = O(
√
n),

dε ≥ 1, and k/ε ≤ d ≤ n/10. Then, there exists an algorithm outputting a (1 +O(ε))-approximate k-means
clustering solution with probability at least 2/3.

5.1 Proof overview

By Theorem 5.1 of [RV17], we can in s = poly(k, 1/ε, d) samples compute approximations (µ̂`)
k
`=1 to the

true Gaussian means (µ`)
k
`=1 up to

‖µ̂` − µ`‖
2
2 ≤ σ

2 (5.1)

by setting δ = 1 in their paper. Set t := max{s, 2m + k, d}. Then, we may extract the t underlying
points in t2 = O(n) kernel queries by reading a t × t submatrix of the kernel matrix and retrieving the
underlying Gaussian points themselves from the inner product matrix up to a rotation, for instance by
Cholesky decomposition. Since we have a sample of size at least s, we may approximate the Gaussian
means. Now, of the t Gaussian points sampled, we show that we can exactly assign which points belong to
which Gaussians for 2m+ k input points using Lemma 5.2.
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Now let x1 and x2 be two input points with the same mean. Then note that x1 − x2 ∼ N (0, 2σ2Id) and
that we may compute its inner product with another input point x′ in two kernel queries, i.e. by computing
x1 ·x′ and x2 ·x′ individually and subtracting them. Now let S ∈ Rm×d be the matrix formed by placing m
pairs of the above difference of pairs of Gaussians drawn from the same mean, scaled by (2σ2)−1. Then S is
a m× d matrix of i.i.d. Gaussians, and for n− 2m input points xi, we may compute Sxi with O(nm) kernel
queries total. We then prove that for well-separated Gaussian means, Sxi can be used to identify which true
Gaussian mean xi came from in corollary 5.3.

Finally, we show that clustering points to their Gaussian means results in an approximately optimal
k-means clustering. By the above, we can do this assigning for Gaussian means that are separated by
more than εσ2d, and otherwise, assigning to a wrong mean only εσ2d away still results in a (1 + ε)-optimal
clustering.

5.2 Assigning input points to Gaussian means

We first present the following lemma, which allows us to distinguish whether a point is drawn from a Gaussian
with one mean or another with probability at least 1− δ.

Lemma 5.2 (Distinguishing Gaussian means). Let θ1,θ2 ∈ Rd be two Gaussian means separated by

‖θ1 − θ2‖22 ≥ Cσ2 log δ−1 for a constant C large enough and δ ∈ (0, 1/2). Furthermore, let θ̂1, θ̂2 be

approximations to the Gaussian means with
∥∥∥θ̂b − θb

∥∥∥
2
≤ σ for b ∈ {1, 2}. Let ĉ := (θ̂1 + θ̂2)/2. Then{

(x− ĉ) · (θ̂1 − ĉ) > 0 if x ∼ N (θ1, σ
2Id) w.p. at least 1− δ

(x− ĉ) · (θ̂1 − ĉ) < 0 if x ∼ N (θ2, σ
2Id) w.p. at least 1− δ

. (5.2)

Proof. Let x = θ + η with θ ∈ {θ1,θ2} and η ∼ N (0, σ2Id). Then if θ = θ1, then

(x− ĉ) · (θ̂1 − ĉ) = (θ1 − ĉ) · (θ̂1 − ĉ) + η · (θ̂1 − ĉ)

=
∥∥∥θ̂1 − ĉ

∥∥∥2

2
+ (θ1 − θ̂1) · (θ̂1 − ĉ) + η · (θ̂1 − ĉ)

(5.3)

and similarly if θ = θ2, then

(x− ĉ) · (θ̂1 − ĉ) = (θ2 − ĉ) · (θ̂1 − ĉ) + η · (θ̂1 − ĉ)

= (θ̂2 − ĉ) · (θ̂1 − ĉ) + (θ2 − θ̂2) · (θ̂1 − ĉ) + η · (θ̂1 − ĉ).
(5.4)

Note that ∥∥∥∥∥ θ̂1 − θ̂2

2
− θ1 − θ2

2

∥∥∥∥∥
2

≤ 1

2

(∥∥∥θ1 − θ̂1

∥∥∥
2

+
∥∥∥θ2 − θ̂2

∥∥∥
2

)
≤ σ (5.5)

and thus we have the following estimates:∥∥∥θ̂1 − ĉ
∥∥∥2

2
≥ ‖θ1 − c‖22 − 2σ‖θ1 − c‖2

(θ̂1 − ĉ) · (θ̂2 − ĉ) ≤ −‖θ1 − c‖22 + σ2 + 2σ‖θ1 − c‖2∣∣∣(θ1 − θ̂1) · (θ̂1 − ĉ)
∣∣∣ ≤ σ2 + σ‖θ1 − c‖2∣∣∣(θ2 − θ̂2) · (θ̂1 − ĉ)
∣∣∣ ≤ σ2 + σ‖θ1 − c‖2.

(5.6)

These bound all but the last terms in equations (5.3) and (5.4). To bound the last term, note also that we

may take σ ≤ ‖θ1 − θ2‖2/12 for C ≥ 144/ log 2. Furthermore, η · (θ̂1 − ĉ) ∼ N (0, σ2
∥∥∥θ̂1 − ĉ

∥∥∥2

2
) and thus

with probability at least 1− δ, we have that∣∣∣η · (θ̂1 − ĉ)
∣∣∣ ≤ σ√log

1

δ

∥∥∥θ̂1 − ĉ
∥∥∥

2
≤ 1

6
‖θ1 − c‖(‖θ1 − c‖2 + σ) ≤ 1

3
‖θ1 − c‖22 (5.7)
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by taking C ≥ 6. We also have the bounds

σ2 ≤
‖θ1 − θ2‖22

144

2σ‖θ1 − c‖2 ≤ 2σ
‖θ1 − c‖2

6
‖θ1 − c‖2 ≤

1

3
‖θ1 − c‖22.

(5.8)

Then, with probability at least 1− δ, if θ = θ1, then

(x− ĉ) · (θ̂1 − ĉ) ≥ ‖θ1 − c‖22 −
1

3
‖θ1 − c‖22 > 0 (5.9)

and if θ = θ2, then

(x− ĉ) · (θ̂1 − ĉ) ≤ −‖θ1 − c‖22 +
‖θ1 − c‖22

36
+

1

3
‖θ1 − c‖22 < 0 (5.10)

and thus we conclude as desired.

Using Lemma 5.2, we may identify the true Gaussian mean of a point with probability at least 1− (2m+
k)−3 with squared separation only O(σ2(log log n+log ε−1 +log k)). Then by a union bound, we may indeed
identify the true Gaussian means of 2m+ k points simultaneously with high probability. We may thus form
the matrix S of i.i.d. standard Gaussians as described previously and apply it to the n−2m remaining points.

As a corollary of Lemma 5.2, we show that for Gaussian means that are separated more, with squared
distance at least εσ2d, we may distinguish the means with a Gaussian sketch of dimension m = O(ε−1 log δ−1)
with probability at least 1− δ. In particular, we may choose the failure probability to be δ = (nk)−3 so that
with a sketch dimension of m = O(ε−1 log(nk)3) = O(ε−1 log n), we can identify the correct Gaussian mean
for all n− 2m remaining input points simultaneously by the union bound, as claimed. That is, using Sx, we
can find the correct mean of x for Gaussians with large enough separation.

Corollary 5.3. Let µ1,µ2 ∈ Rd be two Gaussian means separated by ‖µ1 − µ2‖
2
2 ≥ εσ2d, and let δ ∈

(0, 1/2). Let S ∈ Rm×d be a matrix of i.i.d. standard Gaussians. If m ≥ Cε−1 log(δ−1), for some constant
C large enough, then there exists an algorithm that can decide whether x ∼ N (µ1, σ

2Id) or x ∼ N (µ2, σ
2Id)

given only S, Sx, and the approximate means µ̂j, with probability at least 1− δ.

Proof. Let S = UΣV> be the truncated SVD of S>. Note that the algorithm can compute this decompo-
sition and thus can retrieve V>x = (UΣ)−1Sx and that V> is a random projection. Then as discussed in
the proof of Theorem 2.1 in [DG03], we have

E
S

(∥∥V>(µ1 − µ2)
∥∥2

2

)
=
m

d
‖µ1 − µ2‖

2
2, (5.11)

and by Lemma 2.2 of [DG03],

Pr
S

(∥∥V>(µ1 − µ2)
∥∥2

2
≤ 1

2

m

d
‖µ1 − µ2‖

2
2

)
< exp(−Ω(m)) ≤ δ

2
(5.12)

for C chosen large enough. Now suppose that the above event does not happen, which happens with
probability at least 1 − δ/2. Write x = µ + η, where µ ∈ {µ1,µ2} and η ∼ N (0, σ2Id). Note then that
V>x = V>µ + V>η ∼ N (V>µ, σ2Im) by the rotational invariance of Gaussians, and∥∥V>µ1 −V>µ2

∥∥2

2
≥ 1

2

m

d
‖µ1 − µ2‖

2
2 ≥

1

2

m

d
εσ2d ≥ C

2
log δ−1. (5.13)

Furthermore, we have an approximation of the means V>µ1 and V>µ2 via V>µ̂1 and V>µ̂2 with∥∥V>(µb − µ̂b)
∥∥

2
≤ ‖µb − µ̂b‖2 = σ2. (5.14)

We then take our C here to be big enough to use Lemma 5.2 and conclude.
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We now put corollary 5.3 to algorithmic use by using it to assign to each point a center withing εσ2d.

Lemma 5.4. With probability at least 99/100, we may simultaneously assign for each xi for i ∈ [n] a center

µ`i with
∥∥∥µ`i − µ`∗i

∥∥∥2

2
≤ εσ2d, where µ`∗i is the true Gaussian mean that generated xi. Furthermore, the

assignment algorithm that we describe only depends on S, Sxi, and approximate means µ̂j.

Proof. We claim that we can assign a center within squared distance εσ2d as follows. Let x = µ + η with
η ∼ N (0, σ2Id). We then iterate through guesses µj for j ∈ [k] and assign µj to x if we run the hypothesis
test between x ∼ N (µj , σ

2Id) and x ∼ N (µ`, σ
2Id) and x chooses µj for every ` ∈ [k] \ {j}. Recall that we

set the failure rate δ in corollary 5.3 to (nk)−3, so the hypothesis test is accurate for all nk(k−1) hypothesis
tests ranging over n data points, j ∈ [k], and ` ∈ [k] \ {`}. Clearly, guessing µj = µ results in passing all
the hypothesis tests in this case. Note that our hypothesis test is run using corollary 5.3 and only depends
on S, Sxi, and approximate means µ̂j .

Now suppose that µj is a center that is more than εσ2d squared distance away from µ. Then when we
guess µj , µj fails at least one hypothesis test, namely the one testing N (µj , σ

2Id) against N (µ, σ2Id) when
µ` = µ. Thus, this algorithm correctly assigns every Gaussian input point to a center that is at most εσ2d
square distance away from the true mean µ.

5.3 Clustering the points

Now that we have approximately assigned input points to Gaussian means in O(nm) = Õ(n/ε) kernel queries,
it remains to show that this information suffices to give a (1+ε)-approximate solution to the KKMC problem.

Theorem 5.5. Let dε ≥ 1 and k/ε ≤ d ≤ n/10 and let our data set {xi}ni=1 be distributed as a mixture
of k Gaussians as described before. Then assigning the xi to approximate means as in Lemma 5.4 gives a
(1 + 8ε)-approximate k-means clustering solution with probability at least 98/100.

Proof. Let X ∈ Rn×d be the design matrix of points with our dataset drawn from a mixture of Gaussians
in the rows. Now write X = M + G, where M is the matrix with the Gaussian mean of each point in the
rows and G is a matrix with rows all distributed as N (0, σ2Id).

Lower bounds on the cost. We first bound below the cost of any k-means clustering solution, i.e. an
assignment of k centers to each of the n points. We may then place these centers in the rows of a matrix
C, so that the input data point xi = e>i X is assigned the k-means center e>i C for i ∈ [n]. The cost of this
k-means solution is then

‖X−C‖2F = ‖G + M−C‖2F . (5.15)

Now note that M−C has rank at most 2k, so the above cost is bounded below by the cost of the best rank
2k approximation of G in Frobenius norm. Furthermore, by the Eckart-Young-Mirky theorem, the cost of
the optimal low rank approximation is the sum of the smallest d− 2k squared singular values of G.

Let s1(G) ≥ s2(G) ≥ · · · ≥ sd(G) denote the singular values of G. Note that G/σ is a matrix with
i.i.d. standard Gaussians, so by results summarized in [RV09], we have that (1/2)σ

√
n ≤ sn(G) ≤ s1(G) ≤

(3/2)σ
√
n with probability 99/100 for n large enough and d ≤ n/10. Then,

2k∑
i=1

si(G)2 ≤ (2k)s1(G)2 ≤ 3(2k)sn(G)2 ≤ 6k

d

d∑
i=1

si(G)2 (5.16)

and thus

‖X−C‖2F ≥
d−2k∑
i=1

si(G)2 ≥
(

1− 6k

d

) d∑
i=1

si(G)2 =

(
1− 6k

d

)
‖G‖2F ≥ (1− 6ε)‖G‖2F . (5.17)
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The cost of clustering by the Gaussian means. We now give an algorithm using the approximate
Gaussian means and our Gaussian mean assignment algorithms. Note that if we can correctly cluster every
input point to its Gaussian center, then the resulting clustering has cost at most ‖G‖2F since using the
empirical center of the Gaussians will have lower cost than the true means. Then for d ≥ k/ε, we have that
this clustering has cost at most 1/(1− 4ε) ≤ 1 + 5ε times the optimal clustering by equation (5.17).

However, with our kernel query budget, we can only do this assignment for Gaussian means that are sep-
arated by squared distance εσ2d using Lemma 5.2; for separation smaller than this, we cannot disambiguate.
The fix here is that we in fact do not need to, since assigning to a Gaussian mean that is less than εσ2d does
not change the cost by more than a (1 + ε) for that point.

Now consider an input point x = µ∗ + η with η ∼ N (0, σ2Id), let µ be the true mean assigned to x in
Lemma 5.4, and let µ̂ be the approximation that approximates µ. We then have that

‖x− µ̂‖22 = ‖η + (µ∗ − µ̂)‖22 = ‖η‖22 + ‖µ∗ − µ̂‖22 + 2〈η,µ∗ − µ̂〉. (5.18)

Note that ‖µ∗ − µ̂‖22 ≤ ‖(µ∗ − µ) + (µ− µ̂)‖22 ≤ 2εσ2d+ 2σ2 and that 〈η,µ∗ − µ̂〉 ∼ N (0, σ2‖µ∗ − µ̂‖22).
Thus, we have that

‖x− µ̂‖22 = ‖η‖22 + 2εσ2d+ 2σ2 + 2〈η,µ∗ − µ̂〉 ≤ ‖η‖22 + 4εσ2d+ 2〈η,µ∗ − µ̂〉. (5.19)

Note that summing the 2〈η,µ∗ − µ̂〉 term over n input points gives a zero mean Gaussian with variance at
most 2nσ2(2εσ2d + 2σ2) ≤ 4nσ4εd. With probability 99/100, this is bounded by 4σ2

√
nεd ≤ εnσ2d for n

large enough.
Thus, we then have that

n∑
i=1

‖xi − µ̂‖22 ≤ ‖G‖
2
F + 5ε(nσ2d). (5.20)

Now note that ‖G‖2F /σ2 is a chi-squared variable with nd degrees of freedom, so by concentration bounds
found in [LM00], we have that

Pr
(
‖G‖2F /σ

2 − nd ≤ 2nd
)
≤ exp(−nd) (5.21)

and thus with probability at least 99/100 for nd large enough,

5ε(nσ2d) ≤ 5

3
ε‖G‖2F . (5.22)

We thus conclude that with probability at least 98/100, the above algorithm gives an approximation ratio
of at most

1 + 5ε/3

1− 6ε
≤ 1 + 8ε (5.23)

as claimed.
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