
Defending Against Saddle Point Attack in
Byzantine-Robust Distributed Learning

Supplementary Material

Dong Yin ∗1, Yudong Chen †3, Kannan Ramchandran ‡1, and Peter Bartlett §1,2

1Department of Electrical Engineering and Computer Sciences, UC Berkeley
2Department of Statistics, UC Berkeley

3School of Operations Research and Information Engineering, Cornell University

A Additional Related Work
Outlier-robust estimation is a classical topic in statistics [8]. The coordinate-wise median aggre-
gation subroutine that we consider is related to the median-of-means estimator [17, 9], which has
been applied to various robust inference problems [15, 14, 16]. A recent line of work develops
efficient robust estimation algorithms in high-dimensional settings [2, 5, 11, 3, 18, 12, 1, 10, 13].
In the centralized setting, the recent work [7] proposes a scheme, similar to the iterative filtering
procedure, that iteratively removes outliers for gradient-based optimization.

B Challenges of Escaping Saddle Points in the Adversarial
Setting

We provide two examples showing that in non-convex setting with saddle points, inexact oracle can
lead to much worse sub-optimal solutions than in the convex setting, and that in the adversarial
setting, escaping saddle points can be inherently harder than the adversary-free case.

Consider standard gradient descent using exact or ∆-inexact gradients. Our first example shows
that Byzantine machines have a more severe impact in the non-convex case than in the convex
case.

Example 1. Let d = 1 and consider the functions F (1)(w) = (w−1)2 and F (2)(w) = (w2−1)2/4.
Here F (1) is strongly convex with a unique local minimizer w∗ = 1, whereas F (2) has two local (in
fact, global) minimizers w∗ = ±1 and a saddle point (in fact, a local maximum) w = 0. Claim 1
below shows the following: for the convex F (1), gradient descent (GD) finds a near-optimal solution
with sub-optimality proportional to ∆, regardless of initialization; for the nonconvex F (2), GD
initialized near the saddle point w = 0 suffers from an Ω(1) sub-optimality gap.

Claim 1. Suppose that ∆ ≤ 1/2. Under the setting above, the following holds.
(i) For F (1), starting from any w0, GD using a ∆-inexact gradient oracle finds w with F (1)(w)−
F (1)(w∗) ≤ O(∆).
(ii) For F (2), there exists an adversarial strategy such that starting from a w0 sampled uniformly
from [−r, r], GD with a ∆-inexact gradient oracle outputs w with F (2)(w)−F (2)(w∗) ≥ 9

64 ,∀w
∗ =

±1, with probability min{1, ∆
r }.

∗dongyin@berkeley.edu
†yudong.chen@cornell.edu
‡kannanr@berkeley.edu
§peter@berkeley.edu

1

Proof. Since F (2)(w) = 1
4 (w2 − 1)2, we have ∇F (2)(w) = w3 − w. For any w ∈ [−∆,∆],

|∇F (2)(w)| ≤ ∆ (since ∆ ≤ 1/2). Thus, the adversarial oracle can always output ĝ(w) = 0 when
w ∈ [−∆,∆], and we have |ĝ(w)−∇F (2)(w)| ≤ ∆. Thus, if w ∈ [−∆,∆], the iterate can no longer
move with this adversarial strategy. Then, we have F (2)(w)− F (2)(w∗) ≥ F (2)(∆)− 0 ≥ 9

64 (since
∆ ≤ 1/2). The result for the convex function F (1) is a direct corollary of Theorem 1 in [21].

Our second example shows that escaping saddle points is much harder in the Byzantine setting
than in the non-Byzantine setting.

Example 2. Let d = 2, and assume that in the neighborhood B0(b) of the origin, F takes the
quadratic form F (w) ≡ 1

2w
2
1 − λ

2w
2
2, with λ > εH .1 The origin w0 = 0 is not an (εg, εH)-second-

order stationary point, but rather a saddle point. Claim 2 below shows that exact GD escapes the
saddle point almost surely, while GD with an inexact oracle fails to do so.

Claim 2. Under the setting above, if one chooses r < b and sample w from B0(r) uniformly at
random, then:
(i) Using exact gradient descent, with probability 1, the iterate w eventually leaves B0(r).
(ii) There exists an adversarial strategy such that, when we update w using ∆-inexact gradient
oracle, if ∆ ≥ λr, with probability 1, the iterate w cannot leave B0(r); otherwise with probability
2
π

(
arcsin

(
∆
λr

)
+ ∆

λr

√
1− (∆

λr)2
)
the iterate w cannot leave B0(r).

Proof. Since F (w) = 1
2w

2
1 − 1

2λw
2
2, ∀ w ∈ B0(r), we have ∇F (w) = [w1, −λw2]>. Sample w0

uniformly at random from B0(r), and we know that with probability 1, w0,2 6= 0. Then, by
running exact gradient descent wt+1 = wt − η∇F (wt), we can see that the second coordinate of
wt is wt,2 = (1 + ηλ)tw0,2. When w0,2, we know that as t gets large, we eventually have wt,2 > r,
which implies that the iterate leaves B0(r).

On the other hand, suppose that we run ∆-inexact gradient descent, i.e., wt+1 = wt − ηĝ(wt)
with ‖ĝ(wt) − ∇F (wt)‖2 ≤ ∆. In the first step, if |w0,2| ≤ ∆

λ , the adversary can simply replace
∇F (w0) with ĝ(w0) = [w0,1, 0]> (one can check that here we have ‖ĝ(w0)−∇F (w0)‖2 ≤ ∆), and
then the second coordinate of w1 does not change, i.e., w1,2 = w0,2. In the following iterations, the
adversary can keep using the same strategy and the second coordinate of w never changes, and then
the iterates cannot escape B0(r), since F (w) is a strongly convex function in its first coordinate.
To compute the probability of getting stuck at the saddle point, we only need to compute the area
of the region {w ∈ B0(r) : |w2| ≤ ∆

λ }, which can be done via simple geometry.

Remark. Even if we choose the largest possible perturbation in B0(r), i.e., sample w from
the circle {w ∈ R2 : ‖w‖2 = r}, the stuck region still exists. We can compute the length of
the arc {‖w‖2 = r : |w2| ≤ ∆

λ } and find the probability of stuck. One can find that when
∆ ≥ λr, the probability of being stuck in B0(r) is still 1, otherwise, the probability of being stuck
is 2

π (arcsin(∆
λr)).

The above examples show that the adversary can significantly alter the landscape of the function
near a saddle point. We counter this by exerting a large perturbation on the iterate so that it
escapes this bad region. The amount of perturbation is carefully calibrated to ensure that the
algorithm finds a descent direction “steep” enough to be preserved under ∆-corruption, while not
compromising the accuracy. Multiple rounds of perturbation are performed, boosting the escape
probability exponentially.

C Proof of Theorem 3
We first analyze the gradient descent step with ∆-inexact gradient oracle.

Lemma 1. Suppose that η = 1/LF . For any w ∈ W, if we run the following inexact gradient
descent step:

w′ = w − ηĝ(w), (1)

with ‖ĝ(w)−∇F (w)‖2 ≤ ∆. Then, we have

F (w′) ≤ F (w)− 1

2LF
‖∇F (w)‖22 +

1

2LF
∆2.

1F (w) ≡ 1
2
w2

1 − λ
2
w2

2 holds locally around the origin, not globally; otherwise F (w) has no minimum.

2

Proof. Since F (w) is LF smooth, we know that

F (w′) ≤F (w) + 〈∇F (w),w′ −w〉+
LF
2
‖w′ −w‖22

=F (w)− 〈∇F (w),
1

LF
(ĝ(w)−∇F (w))〉 − 〈∇F (w),

1

LF
∇F (w)〉

+
1

2LF
‖ĝ(w)−∇F (w) +∇F (w)‖22

≤F (w)− 1

2LF
‖∇F (w)‖22 +

1

2LF
∆2.

Let ε be the threshold on ‖ĝ(w̃)‖2 that the algorithm uses to determine whether or not to add
perturbation. Choose ε = 3∆. Suppose that at a particular iterate w̃, we observe ‖ĝ(w̃)‖2 > ε.
Then, we know that

‖∇F (w̃)‖2 ≥ ‖ĝ(w̃)‖2 −∆ ≥ 2∆.

According to Lemma 1, by running one iteration of the inexact gradient descent step, the decrease
in function value is at least

1

2LF
‖∇F (w̃)‖22 −

1

2LF
∆2 ≥ 3∆2

2LF
. (2)

We proceed to analyze the perturbation step, which happens when the algorithm arrives at
an iterate w̃ with ‖ĝ(w̃)‖2 ≤ ε. In this proof, we slightly abuse the notation. Recall that in
equation (2) in Section 3.1 , we use w′t (0 ≤ t ≤ Tth) to denote the iterates of the algorithm in the
saddle point escaping process. Here, we simply use wt to denote these iterates. We start with the
definition of stuck region at w̃ ∈ W.

Definition (stuck region). Given w̃ ∈ W, and parameters r, R, and Tth, the stuck region
WS(w̃, r, R, Tth) ⊆ Bw̃(r) is a set of w0 ∈ Bw̃(r) which satisfies the following property: there
exists an adversarial strategy such that when we start with w0 and run Tth gradient descent steps
with ∆-inexact gradient oracle ĝ(w):

wt = wt−1 − ηĝ(wt−1), t = 1, 2, . . . , Tth, (3)

we observe ‖wt −w0‖2 < R, ∀ t ≤ Tth.

When it is clear from the context, we may simply use the terminology stuck region WS at w̃.
The following lemma shows that if ∇2F (w̃) has a large negative eigenvalue, then the stuck region
has a small width along the direction of the eigenvector associated with this negative eigenvalue.

Lemma 2. Assume that the smallest eigenvalue of H := ∇2F (w̃) satisfies λmin(H) ≤ −γ < 0,
and let the unit vector e be the eigenvector associated with λmin(H). Let u0,y0 ∈ Bw̃(r) be two
points such that y0 = u0 + µ0e with some µ0 ≥ µ ∈ (0, r). Choose step size η = 1

LF
, and consider

the stuck region WS(w̃, r, R, Tth). Suppose that r, R, Tth, and µ satisfy 2

Tth =
2

ηγ
log9/4(

2(R+ r)

µ
), (4)

R ≥ µ, (5)
ρF (R+ r)µ ≥ ∆, (6)

γ ≥ 24ρF (R+ r) log9/4(
2(R+ r)

µ
). (7)

Then, there must be either u0 /∈WS or y0 /∈WS.

We prove Lemma 2 in Appendix C.1. With this lemma, we proceed to analyze the probability
that the algorithm escapes the saddle points. In particular, we bound the probability that w0 ∈
WS(w̃, r, R, Tth) when λmin(∇2F (w̃)) ≤ −γ and w0 is drawn from Bw̃(r) uniform at random.

2Without loss of generality, here we assume that 2
ηγ

log9/4(
2(R+r)

µ
) is an integer, so that Tth is an integer.

3

Lemma 3. Assume that λmin(∇2F (w̃)) ≤ −γ < 0, and let the unit vector e be the eigenvector
associated with λmin(∇2F (w̃)). Consider the stuck region WS(w̃, r, R, Tth) at w̃, and suppose that
r, R, Tth, and µ satisfy the conditions in (4)-(7). Then, when we sample w0 from Bw̃(r) uniformly
at random, the probability that w0 ∈WS(w̃, r, R, Tth) is at most 2µ

√
d

r .

Proof. Since the starting point w0 is uniformly distributed in Bw̃(r), to bound the probability of
getting stuck, it suffices to bound the volume of WS . Let 1WS

(w) be the indicator function of the
set WS . For any w ∈ Rd, let w(1) be the projection of w onto the e direction, and w(−1) ∈ Rd−1

be the remaining component of w. Then, we have

Vol(WS) =

∫
B(d)

w̃
(r)

1WS
(w)dw

=

∫
B(d−1)

w̃
(r)

dw(−1)

∫ w̃(1)+
√
r2−‖w̃(−1)−w(−1)‖22

w̃(1)−
√
r2−‖w̃(−1)−w(−1)‖22

1WS
(w)dw̃(1)

≤2µ

∫
B(d−1)

w̃
(r)

dw(−1)

=2µVol(B(d−1)
0 (r)),

where the inequality is due to Lemma 2. Then, we know that the probability of getting stuck is

Vol(WS)

Vol(B(d)
0 (r))

≤2µ
Vol(B(d−1)

0 (r))

Vol(B(d)
0 (r))

=
2µ√
πr

Γ(d2 + 1)

Γ(d2 + 1
2)
≤ 2µ√

πr

√
d

2
+

1

2
≤ 2µ

√
d

r
,

where we use the fact that Γ(x+1)

Γ(x+ 1
2)
<
√
x+ 1

2 for any x ≥ 0.

We then analyze the decrease of value of the population loss function F (·) when we conduct the
perturbation step. Assume that we successfully escape the saddle point, i.e., there exists t ≤ Tth

such that ‖wt −w0‖2 ≥ R. The following lemma provides the decrease of F (·).

Lemma 4. Suppose that λmin(∇2F (w̃)) ≤ −γ < 0, and at w̃, we observe ‖ĝ(w̃)‖2 ≤ ε = 3∆.
Assume that w0 ∈ Bw̃(r) and that w0 /∈ WS(w̃, r, R, Tth). Let t ≤ Tth be the step such that
‖wt −w0‖2 ≥ R. Then, we have

F (w̃)− F (wt) ≥
LF
4Tth

R2 − ∆2Tth

LF
− 4∆r − LF

2
r2. (8)

We prove Lemma 4 in Appendix C.2.
Next, we choose the quantities µ, r, R, and γ such that (i) the conditions (4)-(7) in Lemma 2

are satisfied, (ii) the probability of escaping saddle point in Lemma 3 is at least a constant, and
(iii) the decrease in function value in (8) is large enough. We first choose

µ = ∆3/5d−1/5ρ
−1/2
F , (9)

r = 4∆3/5d3/10ρ
−1/2
F , (10)

R = ∆2/5d1/5ρ
−1/2
F . (11)

One can simply check that, according to Lemma 3, when we drawn w0 from Bw̃(r) uniformly
at random, the probability that w0 ∈ WS(w̃, r, R, Tth) is at most 1/2. Since we assume that
∆ ≤ 1, one can also check that the condition (5) is satisfied. In addition, since ρFRµ = ∆, the
condition (6) is also satisfied. According to (4), we have

Tth =
2LF
γ

log9/4(
2d2/5

∆1/5
+ 8d1/2). (12)

In the following, we choose

γ = 768(ρ
1/2
F + LF)(∆2/5d1/5 + ∆3/5d3/10) log9/4(

2d2/5

∆1/5
+ 8d1/2), (13)

4

which implies

Tth =
LF

384(ρ
1/2
F + LF)(∆2/5d1/5 + ∆3/5d3/10)

(14)

Then we check condition (7) holds. We have

24ρF (R+ r) log9/4(
2(R+ r)

µ
) = 24ρ

1/2
F (∆2/5d1/5 + 4∆3/5d3/10) log9/4(

2d2/5

∆1/5
+ 8d1/2) ≤ γ.

Next, we consider the decrease in function value in (8). Using the equations (12) and (13), we
can show the following three inequalities by direct algebra manipulation.

LF
4Tth

R2 ≥ 6
∆2Tth

LF
, (15)

LF
4Tth

R2 ≥ 24∆r, (16)

LF
4Tth

R2 ≥ 3LF r
2. (17)

By adding up (15), (16), and (17), we obtain

LF
4Tth

R2 ≥ 2
∆2Tth

LF
+ 8∆r + LF r

2,

which implies that when we successfully escape the saddle point, we have

F (w̃)− F (wt) ≥
LF
8Tth

R2 = 48(ρ
−1/2
F + LF ρ

−1
F)(∆6/5d3/5 + ∆7/5d7/10). (18)

Then, one can simply check that, the average decrease in function value during the successful round
of the Escape process is

F (w̃)− F (wt)

t
≥ F (w̃)− F (wt)

Tth
≥ 2(∆8/5d4/5 + ∆2d)

LF
>

3∆2

2LF
. (19)

Recall that according to (2), when the algorithm is not in the Escape process, the function value
is decreased by at least 3∆2

2LF
in each iteration. Therefore, if the algorithm successfully escapes the

saddle point, during the Escape process, the average decrease in function value is larger than the
iterations which are not in this process.

So far, we have chosen the algorithm parameters r, R, Tth, as well as the final second-order
convergence guarantee γ. Now we proceed to analyze the total number of iterations and the failure
probability of the algorithm. According to Lemma 3 and the choice of µ and r, we know that
at each point with ‖ĝ(w̃)‖2 ≤ ε, the algorithm can successfully escape this saddle point with
probability at least 1/2. To boost the probability of escaping saddle points, we need to repeat the
process Q rounds in Escape, independently. Since for each successful round, the function value
decrease is at least

48(ρ
−1/2
F + LF ρ

−1
F)(∆6/5d3/5 + ∆7/5d7/10) ≥ 48LF ρ

−1
F (∆6/5d3/5 + ∆7/5d7/10),

and the function value can decrease at most F0−F ∗. Therefore, the total number of saddle points
that we need to escape is at most

ρF (F0 − F ∗)
48LF (∆6/5d3/5 + ∆7/5d7/10)

. (20)

Therefore, by union bound, the failure probability of the algorithm is at most

ρF (F0 − F ∗)
48LF (∆6/5d3/5 + ∆7/5d7/10)

(
1

2
)Q,

and to make the failure probability at most δ, one can choose

Q ≥ 2 log

(
ρF (F0 − F ∗)

48LF δ(∆6/5d3/5 + ∆7/5d7/10)

)
. (21)

5

Again, due to the fact that the function value decrease is at most F0 − F ∗, and in each effective
iteration, the function value is decreased by at least 3∆2

2LF
. (Here, the effective iterations are the

iterations when the algorithm is not in the Escape process and the iterations when the algorithm
successfully escapes the saddle points.) The total number of effective iterations is at most

2(F0 − F ∗)LF
3∆2

. (22)

Combing with (21), we know that the total number of parallel iterations is at most

4(F0 − F ∗)LF
3∆2

log

(
ρF (F0 − F ∗)

48LF δ(∆6/5d3/5 + ∆7/5d7/10)

)
.

When all the algorithm terminates, and the saddle point escaping process is successful, the output
of the algorithm w̃ satisfies ‖ĝ(w̃)‖2 ≤ ε, which implies that ‖∇F (w̃)‖2 ≤ 4∆, and

λmin(∇2F (w̃)) ≥ −γ = −768(ρ
1/2
F + LF)(∆2/5d1/5 + ∆3/5d3/10) log9/4(

2d2/5

∆1/5
+ 8d1/2)

≥ −950(ρ
1/2
F + LF)(∆2/5d1/5 + ∆3/5d3/10) log(

2d2/5

∆1/5
+ 8d1/2).

(23)

We next show that we can simplify the guarantee as

λmin(∇2F (w̃)) ≥ −1900(ρ
1/2
F + LF)∆2/5d1/5 log(

10

∆
). (24)

We can see that if ∆ ≤ 1√
d
, then ∆3/5d3/10 ≤ ∆2/5d1/5 and 2d2/5

∆1/5 + 8d1/2 ≤ 10
∆ . Thus, the

bound (24) holds. On the other hand, when ∆ > 1√
d
, we have ∆2/5d1/5 > 1 and thus

1900(ρ
1/2
F + LF)∆2/5d1/5 log(

10

∆
) > LF .

By the smoothness of F (·), we know that λmin(∇2F (w̃)) ≥ −LF . Therefore, the bound (24) still
holds, and this completes the proof.

C.1 Proof of Lemma 2
We prove by contradiction. Suppose that u0,y0 ∈ WS . Let {ut} and {yt} be two sequences
generated by the following two iterations:

ut = ut−1 − ηĝ(ut−1), (25)
yt = yt−1 − ηĝ(yt−1), (26)

respectively, where ‖ĝ(w)−∇F (w)‖2 ≤ ∆ for any w ∈ W. According to our assumption, we have
∀ t ≤ Tth, ‖ut − u0‖2 < R and ‖yt − y0‖2 < R.

Define vt := yt − ut, δt := ĝ(ut)−∇F (ut), and δ′t := ĝ(yt)−∇F (yt). Then we have

yt+1 = yt − η(∇F (yt) + δ′t)

= ut + vt − η(∇F (ut + vt) + δ′t)

= ut + vt − η∇F (ut)− η
[∫ 1

0

∇2F (ut + θvt)

]
vt − ηδ′t

= ut+1 + ηδt + vt − η
[∫ 1

0

∇2F (ut + θvt)dθ

]
vt − ηδ′t,

which yields
vt+1 = (I− ηH)vt − ηQtvt + η(δt − δ′t), (27)

where

Qt :=

∫ 1

0

∇2F (ut + θvt)dθ −H. (28)

6

By the Hessian Lipschitz property, we know that

‖Qt‖2 ≤ρF (‖ut − w̃‖2 + ‖yt − w̃‖2)

≤ρF (‖ut − u0‖2 + ‖u0 − w̃‖2 + ‖yt − y0‖2 + ‖y0 − w̃‖2)

≤2ρF (R+ r).

(29)

We let ψt be the norm of the projection of vt onto the e direction, and φt be the norm of the
projection of vt onto the remaining subspace. By definition, we have ψ0 = µ0 ≥ µ > 0 and φ0 = 0.
According to (27) and (29), we have

ψt+1 ≥ (1 + ηγ)ψt − 2ηρF (R+ r)
√
ψ2
t + φ2

t − 2η∆, (30)

φt+1 ≤ (1 + ηγ)φt + 2ηρF (R+ r)
√
ψ2
t + φ2

t + 2η∆. (31)

In the following, we use induction to prove that ∀ t ≤ Tth,

ψt ≥ (1 +
1

2
ηγ)ψt−1 and φt ≤

t

Tth
ψt (32)

We know that (32) holds when t = 0 since we have φ0 = 0. Then, assume that for some t < Tth,
we have ∀ τ ≤ t, ψτ ≥ (1 + 1

2ηγ)ψτ−1 and φτ ≤ τ
Tth
ψτ . We show that (32) holds for t+ 1.

First, we show that ψt+1 ≥ (1 + 1
2ηγ)ψt. Since ∀ τ ≤ t, ψτ ≥ ψτ−1, we know that ψt ≥ ψ0 ≥ µ.

Therefore, according to (6), we have

∆ ≤ ρF (R+ r)µ ≤ ρF (R+ r)ψt. (33)

In addition, since t < Tth, we have
φt ≤ ψt. (34)

Combining (33), (34) and (30), (31), we get

ψt+1 ≥ (1 + ηγ)ψt − 2ηρF (R+ r)
√

2ψ2
t − 2ηρF (R+ r)ψt > (1 + ηγ)ψt − 6ηρF (R+ r)ψt, (35)

φt+1 ≤ (1 + ηγ)φt + 2ηρF (R+ r)
√

2ψ2
t + 2ηρF (R+ r)ψt < (1 + ηγ)φt + 6ηρF (R+ r)ψt. (36)

According to (7), we have γ ≥ 24ρF (R + r) log9/4(2(R+r)
µ) > 12ρF (R + r). Combining with (35),

we know that ψt+1 ≥ (1 + 1
2ηγ)ψt.

Next, we show that φt+1 ≤ t+1
Tth

ψt+1. Combining with (35) and (36), we know that to show
φt+1 ≤ t+1

Tth
ψt+1, it suffices to show

(1 + ηγ)φt + 6ηρF (R+ r)ψt ≤
t+ 1

Tth
[1 + ηγ − 6ηρF (R+ r)]ψt. (37)

According to the induction assumption, we have φt ≤ t
Tth
ψt. Then, to show (37), it suffices to

show that
(1 + ηγ)t+ 6ηρF (R+ r)Tth ≤ (t+ 1)[1 + ηγ − 6ηρF (R+ r)] (38)

Since t+ 1 ≤ Tth, we know that to show (38), it suffices to show

12ηρF (R+ r)Tth ≤ 1. (39)

Then, according to (4) and (7), we know that (39) holds, which completes the induction.
Next, according to (32), we know that

‖uTth
− yTth

‖2 ≥ φTth
≥ (1 +

1

2
ηγ)Tthµ0

≥ (1 +
1

2
ηγ)

2
ηγ log9/4(

2(R+r)
µ)µ0

≥ 2(R+ r)

µ
· µ0 = 2(R+ r),

where the last inequality is due to the fact that η = 1
LF

and thus ηγ ≤ 1. On the other hand, since
we assume that u0,y0 ∈WS , we know that

‖uTth
− yTth

‖2 ≤ ‖uTth
− u0‖2 + ‖yTth

− y0‖2 + ‖u0 − y0‖2 < 2(R+ r),

which leads to contradiction and thus completes the proof.

7

C.2 Proof of Lemma 4
Recall that we have the iterations wτ+1 = wτ − ηĝ(wτ) for all τ < t. Let δτ = ∇F (wτ)− ĝ(wτ),
and then ‖δτ‖2 ≤ ∆. By the smoothness of F (·) and the fact that η = 1

LF
, we have

F (wτ)− F (wτ+1) ≥〈∇F (wτ),wτ −wτ+1〉 −
LF
2
‖wτ −wτ+1‖22

=

〈
wτ −wτ+1

η
+ δτ ,wτ −wτ+1

〉
− LF

2
‖wτ −wτ+1‖22

=
LF
2
‖wτ −wτ+1‖22 + 〈δτ ,wτ −wτ+1〉

≥LF
4
‖wτ −wτ+1‖22 −

‖δτ‖22
LF

≥LF
4
‖wτ −wτ+1‖22 −

∆2

LF
.

(40)

By summing up (40) for τ = 0, 1, . . . , t− 1, we get

F (w0)− F (wt) ≥
LF
4

t−1∑
τ=0

‖wτ −wτ+1‖22 −
∆2t

LF
. (41)

Consider the k-th coordinate of wτ and wτ+1, by Cauchy-Schwarz inequality, we have

t−1∑
τ=0

(wτ,k − wτ+1,k)2 ≥ 1

t
(w0,k − wt,k)2,

which implies
t−1∑
τ=0

‖wτ −wτ+1‖22 ≥
1

t
‖w0 −wt‖22. (42)

Combining (41) and (42), we obtain

F (w0)− F (wt) ≥
LF
4t
‖w0 −wt‖22 −

∆2t

LF
≥ LF

4Tth
R2 − ∆2Tth

LF
. (43)

On the other hand, by the smoothness of F (·), we have

F (w̃)− F (w0) ≥ 〈∇F (w̃), w̃ −w0〉 −
LF
2
‖w0 − w̃‖22 ≥ −(ε+ ∆)r − LF

2
r2. (44)

Adding up (43) and (44), we obtain

F (w̃)− F (wt) ≥
LF
4Tth

R2 − ∆2Tth

LF
− (ε+ ∆)r − LF

2
r2, (45)

which completes the proof.

D Proof of Theorem 4
First, when we run gradient descent iterations w′ = w−η∇F (w), according to Lemma 1, we have

F (w′) ≤ F (w)− 1

2LF
‖∇F (w)‖22. (46)

Suppose at w̃, we observe that ‖∇F (w̃)‖2 ≤ ε, and then we start the Escape process. When
we have exact gradient oracle, we can still define the stuck region WS at w̃ as in the definition
of stuck region in Appendix C, by simply replacing the inexact gradient oracle with the exact
oracle. Then, we can analyze the size of the stuck region according to Lemma 2. Assume that the
smallest eigenvalue of H := ∇2F (w̃) satisfies λmin(H) ≤ −γ < 0, and let the unit vector e be the
eigenvector associated with λmin(H). Let u0,y0 ∈ Bw̃(r) be two points such that y0 = u0 + µ0e

8

with some µ0 ≥ µ ∈ (0, r). Consider the stuck region WS(w̃, r, R, Tth). Suppose that r, R, Tth,
and µ satisfy

Tth =
2

ηγ
log9/4(

2(R+ r)

µ
), (47)

R ≥ µ, (48)

γ ≥ 24ρF (R+ r) log9/4(
2(R+ r)

µ
). (49)

Then, there must be either u0 /∈ WS or y0 /∈ WS . In addition, according to Lemma 3, if con-
ditions (47)-(49) are satisfied, then, when we sample w0 from Bw̃(r) uniformly at random, the
probability that w0 ∈WS(w̃, r, R, Tth) is at most 2µ

√
d

r . In addition, according to (45) in the proof
of Lemma 4, assume that w0 ∈ Bw̃(r) and that w0 /∈ WS(w̃, r, R, Tth). Let t ≤ Tth be the step
such that ‖wt −w0‖2 ≥ R. Then, we have

F (w̃)− F (wt) ≥
LF
4Tth

R2 − εr − LF
2
r2. (50)

Combining (47) and (49), we know that the first term on the right hand side of (50) satisfies

LF
4Tth

R2 ≥ 3ρFR
3. (51)

Choose R =
√
ε/ρF and r = ε. Then, we know that when ε ≤ min{ 1

ρF
, 4
L2
F ρF
}, we have εr ≤ ρFR3

and 1
2LF r

2 ≤ ρFR3. Combining these facts with (50) and (51), we know that, when the algorithm
successfully escapes the saddle point, the decrease in function value satisfies

F (w̃)− F (wt) ≥ ρFR3. (52)

Therefore, the average function value decrease during the Escape process is at least

F (w̃)− F (wt)

Tth
≥ 12

LF
ε2. (53)

When we have exact gradient oracle, we choose Q = 1. According to (46) and (53), for the
iterations that are not in the Escape process, the function value decrease in each iteration is at
least 1

2LF
ε2; for the iterations in the Escape process, the function value decrease on average is

12
LF
ε2. Since the function value can decrease at most F0−F ∗, the algorithm must terminate within

2LF (F0−F∗)
ε2 iterations.

The we proceed to analyze the failure probability. We can see that the number of saddle points
that the algorithm may need to escape is at most F0−F∗

ρFR3 . Then, by union bound the probability
that the algorithm fails to escape one of the saddle points is at most

2µ
√
d

r
· F0 − F ∗

ρFR3

By letting the above probability to be δ, we obtain

µ =
δε5/2

2
√
ρF d(F0 − F ∗)

,

which completes the proof.

E Proof of Proposition 1
We consider the following class of one-dimensional functions indexed by s ∈ R:

F = {fs(·) : fs(w) = ∆3/2 sin(∆−1/2w + s), s ∈ R}.

Then, for each function fs(·) ∈ F , we have

∇fs(w) = ∆ cos(∆−1/2w + s),

9

and
∇2fs(w) = −∆1/2 sin(∆−1/2w + s).

Thus, we always have |∇fs(w)| ≤ ∆,∀w. Therefore, the ∆-inexact gradient oracle can simply
output 0 all the time. In addition, we verify that for all s and w, |∇2fs(w)| ≤ ∆1/2 ≤ 1 and
|∇3fs(w)| = | − cos(∆−1/2w + s)| ≤ 1 under the assumption that ∆ ≤ 1, so all the functions in F
are 1-smooth and 1-Hessian Lipschitz as claimed.

In this case, the output of the algorithm does not depend on s, that is, the actual function that
we aim to minimize. Consequently, for any output w̃ of the algorithm, there exists s ∈ R such that
∆−1/2w̃ + s = π/4, and thus |∇fs(w̃)| = ∆/

√
2 and λmin(∇2fs(w̃)) = −∆1/2/

√
2.

F Proof of Proposition 2
Suppose that during all the iterations, the Escape process is called E + 1 times. In the first E
times, the algorithm escapes the saddle points, and in the last Escape process, the algorithm does
not escape and outputs w̃. For the first E processes, there might be up to Q rounds of perturb-
and-descent operations, and we only consider the successful descent round. We can then partition
the algorithm into E+ 1 segments. We denote the starting and ending iterates of the t-th segment
by wt and w̃t, respectively, and denote the length (number of inexact gradient descent iterations)
by Tt. When the algorithm reaches w̃t, we randomly perturb w̃t to wt+1, and thus we have
‖w̃t −wt+1‖2 ≤ r for every t = 0, 1, . . . , E − 1. According to (22), we know that

E∑
t=0

Tt ≤
2(F0 − F ∗)LF

3∆2
:= T̃ ,

and according to (20), we have

E ≤ ρF (F0 − F ∗)
48LF (∆6/5d3/5 + ∆7/5d7/10)

.

According to (43), we know that

F (wt)− F (w̃t) ≥
LF
4Tt
‖wt − w̃t‖22 −

∆2Tt
LF

,

which implies

‖wt − w̃t‖2 ≤
2√
LF

√
Tt(F (wt)− F (w̃t)) +

2∆Tt
LF

.

Then, by Cauchy-Schwarz inequality, we have

E∑
t=0

‖wt − w̃t‖2 ≤ 2

√√√√ T̃

LF

E∑
t=0

(F (wt)− F (w̃t)) +
2∆T̃

LF
. (54)

On the other hand, we have

E∑
t=0

(F (wt)− F (w̃t)) +

E−1∑
t=0

(F (w̃t)− F (wt+1)) = F (w0)− F (w̃E) ≤ F (w0)− F ∗.

According to (44), we have

F (w̃t)− F (wt+1) ≥ −4∆r − LF
2
r2,

and thus
E∑
t=0

(F (wt)− F (w̃t)) ≤ F (w0)− F ∗ + E(4∆r +
LF
2
r2) (55)

Combining (54) and (56), and using the bounds for T̃ and E, we obtain that

E∑
t=0

‖wt − w̃t‖2 ≤ C1
F (w0)− F ∗

∆
, (56)

10

where C1 > 0 is a quantity that only depends on LF and ρF . In addition, we have
E−1∑
t=0

‖w̃t −wt+1‖2 ≤ Er ≤ C2
F (w0)− F ∗

∆3/5d3/10 + ∆4/5d2/5
, (57)

where C2 > 0 is a quantity that only depends on LF and ρF . Combining (56) and (57), and using
triangle inequality, we know that

‖w̃E −w0‖2 ≤ C1
F (w0)− F ∗

∆
+ C2

F (w0)− F ∗

∆3/5d3/10 + ∆4/5d2/5
≤ CF (w0)− F ∗

∆
.

Here, the last inequality is due to the fact that we consider the regime where ∆ → 0, and C is a
quantity that only depends on LF and ρF . As a final note, the analysis above also applies to any
iterate prior to the final output, and thus, all the iterates during the algorithm stays in the `2 ball
centered at w0 with radius C F (w0)−F∗

∆ .

G Robust Estimation of Gradients

G.1 Iterative Filtering Algorithm
We describe an iterative filtering algorithm for robust mean estimation. The algorithm is originally
proposed for robust mean estimation for Gaussian distribution in [5], and extended to sub-Gaussian
distribution in [6]; then algorithm is reinterpreted in [18]. Here, we present the algorithm using
the interpretation in [18]. Suppose that m random vectors x1,x2, . . . ,xm ∈ Rd are drawn i.i.d.
from some distribution with mean µ. An adversary observes all these vectors and changes an
α fraction of them in an arbitrary fashion, and we only have access to the corrupted data points
x̂1, x̂2, . . . , x̂m. The goal of the iterative filtering algorithm is to output an accurate estimate of the
true mean µ even when the dimension d is large. We provide the detailed procedure in Algorithm 1.
Here, we note that the algorithm parameter σ needs to be chosen properly in order to achieve the
best possible statistical error rate.

Algorithm 1 Iterative Filtering [5, 6, 18]

Require: corrupted data x̂1, x̂2, . . . , x̂m ∈ Rd, α ∈ [0, 1
4), and algorithm parameter σ > 0.

A ← [m], ci ← 1, and τi ← 0, ∀ i ∈ A.
while true do
Let W ∈ R|A|×|A| be a minimizer of the convex optimization problem:

min
0≤Wji≤ 3+α

(1−α)(3−α)m∑
j∈AWji=1

max
U�0

tr(U)≤1

∑
i∈A

ci(x̂i −
∑
j∈A

x̂jWji)
>U(x̂i −

∑
j∈A

x̂jWji),

and U ∈ Rd×d be a maximizer of the convex optimization problem:

max
U�0

tr(U)≤1

min
0≤Wji≤ 3+α

(1−α)(3−α)m∑
j∈AWji=1

∑
i∈A

ci(x̂i −
∑
j∈A

x̂jWji)
>U(x̂i −

∑
j∈A

x̂jWji).

∀ i ∈ A, τi ← (x̂i −
∑
j∈A x̂jWji)

>U(x̂i −
∑
j∈A x̂jWji).

if
∑
i∈A ciτi > 8mσ2 then

∀ i ∈ A, ci ← (1− τi
τmax

)ci, where τmax = maxi∈A τi.
A ← A \ {i : ci ≤ 1

2}.
else
return µ̂ = 1

|A|
∑
i∈A x̂i

end if
end while

G.2 Proof of Theorem 5
To prove Theorem 5, we first state a result that bounds the error of the iterative filtering algorithm
when the original data points {xi} are deterministic. The following lemma is proved in [6, 18];

11

also see [19] for additional discussion.

Lemma 5. [6, 18] Let S := {x1,x2, . . . ,xm} be the set of original data points and µS := 1
m

∑m
i=1 xi

be their sample mean. Let x̂1, x̂2, . . . , x̂m be the corrupted data. If α ≤ 1
4 , and the algorithm

parameter σ is chosen such that∥∥∥∥∥ 1

m

m∑
i=1

(xi − µS)(x− µS)>

∥∥∥∥∥
2

≤ σ2, (58)

then the output of the iterative filtering algorithm satisfies ‖µ̂− µS‖2 ≤ O(σ
√
α).

By triangle inequality, we have

‖µ̂− µ‖2 ≤ ‖µ̂− µS‖2 + ‖µS − µ‖2, (59)

and ∥∥∥∥∥ 1

m

m∑
i=1

(xi − µS)(x− µS)>

∥∥∥∥∥
2

=
1

m

∥∥([x1, · · · ,xm]− µS1
>)([x1, · · · ,xm]− µS1

>)>
∥∥

2

=
1

m

∥∥[x1, · · · ,xm]− µS1
>∥∥2

2

≤ 1

m

(
‖[x1, · · · ,xm]− µ1>‖2 +

√
m‖µ− µS‖2

)2

, (60)

where 1 denotes the all-one vector.3 By choosing

σ = Θ(
1√
m
‖[x1, · · · ,xm]− µ1>‖2 + ‖µ− µS‖2)

in Lemma 5 and combining with the bounds (59) and (60), we obtain that

‖µ̂− µ‖2 .

√
α√
m
‖[x1, · · · ,xm]− µ1>‖2 + ‖µ− µS‖2. (61)

With the above bound in hand, we now turn to the robust gradient estimation problem, where
the data points are drawn i.i.d. from some unknown distribution. Let ĝ(w) := filter{ĝi(w)}mi=1,
where filter represents the iterative filtering algorithm. In light of (61), we know that in order to
bound the gradient estimation error supw∈W ‖ĝ(w)−∇F (w)‖2, it suffices to bound the quantities

sup
w∈W

‖[∇F1(w), · · · ,∇Fm(w)]−∇F (w)1>‖2

and

sup
w∈W

‖ 1

m

m∑
i=1

∇Fi(w)−∇F (w)‖2.

Here, we recall that ∇Fi(w) is the true gradient of the empirical loss function on the i-th machine,
and ĝi(w) is the (possibly) corrupted gradient.

We first bound supw∈W ‖ 1
m

∑m
i=1∇Fi(w) −∇F (w)‖2. Note that we have 1

m

∑m
i=1∇Fi(w) =

1
nm

∑m
i=1

∑n
j=1∇f(w; zi,j). Using the same method as in the proof of Lemma 6 in [4], we can

show that for each fixed w, with probability at least 1− δ,

‖ 1

m

m∑
i=1

∇Fi(w)−∇F (w)‖2 ≤
2
√

2ζ√
nm

√
d log 6 + log

(1

δ

)
.

For some δ0 > 0 to be chosen later, let Wδ0 = {w1,w2, . . . ,wNδ0 } be a finite subset of W such
that for any w ∈ W, there exists some w` ∈ Wδ0 such that ‖w`−w‖2 ≤ δ0. Standard ε-net results
from [20] ensure that Nδ0 ≤ (1 + D

δ0
)d. Then, by the union bound, we have with probability 1− δ,

for all w` ∈ Wδ0 ,

‖ 1

m

m∑
i=1

∇Fi(w`)−∇F (w`)‖2 ≤
2
√

2ζ√
nm

√
d log 6 + log

(Nδ0
δ

)
. (62)

3We note that similar derivation also appears in [19].

12

When (62) holds, by the smoothness of f(·; z) we know that for all w ∈ W,

‖ 1

m

m∑
i=1

∇Fi(w)−∇F (w)‖2 ≤
2
√

2ζ√
nm

√
d log 6 + log

(Nδ0
δ

)
+ 2Lδ0.

By choosing δ0 = 1
nmL and δ = 1

(1+mnDL)d
, we obtain that with probability at least 1− 1

(1+mnDL)d
,

for all w ∈ W,

‖ 1

m

m∑
i=1

∇Fi(w)−∇F (w)‖2 .
ζ√
nm

√
d log(1 + nmDL). (63)

We next bound supw∈W ‖[∇F1(w), · · · ,∇Fm(w)]−∇F (w)1>‖2. We note that when the gra-
dients are sub-Gaussian distributed, similar results for the centralized setting have been estab-
lished in [3]. One can check that for every i, ∇Fi(w) − ∇F (w) is ζ√

n
-sub-Gaussian. Define

G(w) := [∇F1(w), · · · ,∇Fm(w)]−∇F (w)1>. Using a standard concentration inequality for the
norm of a matrix with independent sub-Gaussian columns [20], we obtain that for each fixed w,
with probability at least 1− δ,

‖ 1

m
G(w)G(w)> − 1

n
Σ(w)‖2 .

ζ2

n

(√
d

m
+
d

m
+

1

m
log
(1

δ

)
+

√
1

m
log
(1

δ

))
,

which implies that

1√
m
‖G(w)‖2 .

σ√
n

+
ζ√
n

(√
d

m
+
d

m
+

1

m
log
(1

δ

)
+

√
1

m
log
(1

δ

))1/2

.

Recall the δ0-net Wδ0 = {w1,w2, . . . ,wNδ0} as defined above. Then, we have with probability at
least 1− δ, for all w` ∈ Wδ0

1√
m
‖G(w`)‖2 .

σ√
n

+
ζ√
n

(√
d

m
+
d

m
+

1

m
log
(Nδ0
δ

)
+

√
1

m
log
(Nδ0
δ

))1/2

. (64)

For each w with ‖w` −w‖2 ≤ δ0, we have

‖G(w`)−G(w)‖2 ≤‖G(w`)−G(w)‖F

≤

(
m∑
i=1

‖(∇Fi(w`)−∇F (w`))− (∇Fi(w)−∇F (w))‖22

)1/2

≤2Lδ0
√
m.

This implies that when the bound (64) holds, we have for all w ∈ W,

1√
m
‖G(w)‖2 .

σ√
n

+
ζ√
n

(√
d

m
+
d

m
+

1

m
log
(Nδ0
δ

)
+

√
1

m
log
(Nδ0
δ

))1/2

+ 2Lδ0. (65)

Choose δ0 = 1
nmL , in which case the last term above is a high order term. In this case, choosing

δ = 1
(1+mnDL)d

, we have with probability at least 1− 1
(1+mnDL)d

, for all w ∈ W,

1√
m
‖G(w)‖2 .

σ√
n

+
ζ√
n

((d
m

+

√
d

m

)
log(1 + nmDL)

)1/2

.
σ√
n

+
ζ√
n

(
1 +

√
d

m

)√
log(1 + nmDL). (66)

Combining the bounds (61), (63), and (66), we obtain that with probability at least 1− 2
(1+mnDL)d

,

sup
w∈W

‖ĝ(w)−∇F (w)‖2 .

(
(σ + ζ)

√
α

n
+ ζ

√
d

nm

)√
log(1 + nmDL),

which completes the proof.

13

G.3 Lower Bound for First-Order Guarantee
In this section we prove Observation 2. We consider the simple mean estimation problem with
random vector z drawn from a distribution D with mean µ. The loss function associated with
z is f(w; z) = 1

2‖w − z‖22. The population loss is F (w) = 1
2 (‖w‖22 − 2µ>w + E[‖z‖22]), and

∇F (w) = w−µ. We first provide a lower bound for distributed mean estimation in the Byzantine
setting, which is proved in [21].

Lemma 6. [21] Suppose that z is Gaussian distributed with mean µ and covariance σ2I. Then,
any algorithm that outputs an estimate w̃ of µ has a constant probability such that

‖w̃ − µ‖2 = Ω(
α√
n

+

√
d

nm
).

Since ∇F (w̃) = w̃ − µ, the above bound directly implies the lower bound on ‖∇F (w̃)‖2 in
Observation 2.

G.4 Median and Trimmed Mean
In this section, we present the error bounds of median and trimmed mean operations in the
Byzantine setting in [21] for completeness.

Condition 1. For any z ∈ Z, the k-th partial derivative ∂kf(·; z) is Lk-Lipschitz for each k ∈ [d].
Let L̂ := (

∑d
k=1 L

2
k)1/2.

For the median-based algorithm, one needs to use the notion of the absolute skewness of a
one-dimensional random variable X, defined as S(X) := E[|X − E[X]|3]/Var(X)3/2. Define the
following upper bounds on the standard deviation and absolute skewness of the gradients:

v := sup
w∈W

(
E[‖∇f(w; z)−∇F (w)‖22]

)1/2
, s := sup

w∈W
max
k∈[d]

S
(
∂fk(w; z)

)
.

Then one has the following guarantee for the median-based algorithm.

Claim 3 (median). [21] Suppose that Condition 1 holds. Assume that

α+

(
d log(1 + nmDL̂)

m(1− α)

)1/2

+ c1
s√
n
≤ 1

2
− c2

for some constant c1, c2 > 0. Then, with probability 1 − o(1), GradAGG ≡ med provides a ∆med-
inexact gradient oracle with

∆med ≤
c3√
n
v
(
α+ (

d log(nmDL̂)

m
)1/2 +

s√
n

)
+O(

1

nm
),

where c3 is an absolute constant.

Therefore, the median operation provides a Õ(v(α√
n

+
√

d
nm + s

n))-inexact gradient oracle. If

each partial derivative is of size O(1), the quantity v is of the order O(
√
d) and thus one has

∆med . α
√
d√
n

+ d√
nm

+
√
d
n .

For the trimmed mean algorithm, one needs to assume that the gradients of the loss functions
are sub-exponential.

Condition 2. For any w ∈ W, ∇f(w; z) is ξ-sub-exponential.

In this setting, there is the following guarantee.

Claim 4 (trimmed mean). [21] Suppose that Conditions 1 and 2 hold. Choose β = c4α ≤ 1
2 − c5

with some constant c4 ≥ 1, c5 > 0. Then, with probability 1− o(1), GradAGG ≡ trmeanβ provides
a ∆tm-inexact gradient oracle with

∆tm ≤ c6ξd
(α√

n
+

1√
nm

)√
log(nmDL̂),

where c6 is an absolute constant.

Therefore, the trimmed mean operation provides a Õ(ξd(α√
n

+ 1√
nm

))-inexact gradient oracle.

14

References
[1] K. Bhatia, P. Jain, P. Kamalaruban, and P. Kar. Consistent robust regression. In Advances

in Neural Information Processing Systems, pages 2107–2116, 2017.

[2] K. Bhatia, P. Jain, and P. Kar. Robust regression via hard thresholding. In Advances in
Neural Information Processing Systems, pages 721–729, 2015.

[3] M. Charikar, J. Steinhardt, and G. Valiant. Learning from untrusted data. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 47–60. ACM,
2017.

[4] Y. Chen, L. Su, and J. Xu. Distributed statistical machine learning in adversarial settings:
Byzantine gradient descent. arXiv preprint arXiv:1705.05491, 2017.

[5] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Robust estimators
in high dimensions without the computational intractability. In Foundations of Computer
Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 655–664. IEEE, 2016.

[6] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Being robust (in
high dimensions) can be practical. arXiv preprint arXiv:1703.00893, 2017.

[7] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, J. Steinhardt, and A. Stewart. Sever: A
robust meta-algorithm for stochastic optimization. arXiv preprint arXiv:1803.02815, 2018.

[8] P. J. Huber. Robust statistics. In International Encyclopedia of Statistical Science, pages
1248–1251. Springer, 2011.

[9] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial struc-
tures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

[10] A. Klivans, P. K. Kothari, and R. Meka. Efficient algorithms for outlier-robust regression.
arXiv preprint arXiv:1803.03241, 2018.

[11] K. A. Lai, A. B. Rao, and S. Vempala. Agnostic estimation of mean and covariance. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
665–674. IEEE, 2016.

[12] J. Li. Robust sparse estimation tasks in high dimensions. arXiv preprint arXiv:1702.05860,
2017.

[13] L. Liu, Y. Shen, T. Li, and C. Caramanis. High dimensional robust sparse regression. arXiv
preprint arXiv:1805.11643, 2018.

[14] G. Lugosi and S. Mendelson. Risk minimization by median-of-means tournaments. arXiv
preprint arXiv:1608.00757, 2016.

[15] S. Minsker et al. Geometric median and robust estimation in banach spaces. Bernoulli,
21(4):2308–2335, 2015.

[16] S. Minsker and N. Strawn. Distributed statistical estimation and rates of convergence in
normal approximation. arXiv preprint arXiv:1704.02658, 2017.

[17] A. Nemirovskii, D. B. Yudin, and E. R. Dawson. Problem complexity and method efficiency
in optimization. Wiley, 1983.

[18] J. Steinhardt, M. Charikar, and G. Valiant. Resilience: A criterion for learning in the presence
of arbitrary outliers. arXiv preprint arXiv:1703.04940, 2017.

[19] L. Su and J. Xu. Securing distributed machine learning in high dimensions. arXiv preprint
arXiv:1804.10140, 2018.

[20] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

[21] D. Yin, Y. Chen, R. Kannan, and P. Bartlett. Byzantine-robust distributed learning: Towards
optimal statistical rates. In Proceedings of the 35th International Conference on Machine
Learning, pages 5650–5659, 2018.

15

	Additional Related Work
	Challenges of Escaping Saddle Points in the Adversarial Setting
	Proof of Theorem 3
	Proof of Lemma 2
	Proof of Lemma 4

	Proof of Theorem 4
	Proof of Proposition 1
	Proof of Proposition 2
	Robust Estimation of Gradients
	Iterative Filtering Algorithm
	Proof of Theorem 5
	Lower Bound for First-Order Guarantee
	Median and Trimmed Mean

