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A Additional Related Work
A recent line of work analyzes the convergence and generalization problems in distributional robust
optimization (DRO) [5, 14, 19]. The notion of DRO differs from ours, since DRO considers the set-
ting where the distribution of the input data is being perturbed, while we consider the perturbation
in the feature space. Farnia et al. [6] study the generalization problem when the attack algorithm
of the adversary is provided to the learner, which is also a weaker notion than our problem.

A few other lines of work have been trying to conduct theoretical analysis of adversarial exam-
ples. Wang et al. [21] analyze the adversarial robustness of nearest neighbors estimator. Papernot
et al. [17] try to demonstrate the unavoidable trade-offs between accuracy in the natural setting
and the resilience to adversarial attacks, and this trade-off is further studied by Tsipras et al. [20]
through some constructive examples of distributions. Fawzi et al. [7] analyze adversarial robustness
of fixed classifiers, in contrast to our generalization analysis. Fawzi et al. [8] construct examples of
distributions with large latent variable space such that adversarially robust classifiers do not exist;
here we argue that these examples may not explain the fact that adversarially perturbed images
can usually be recognized by humans. Bubeck et al. [3] try to explain the hardness of learning an
adversarially robust model from the computational constraints under the statistical query model.
Another recent line of work explains the existence of adversarial examples via high dimensional
geometry and concentration of measure [9, 4, 15]. These works provide examples where adversarial
examples provably exist as long as the test error of a classifier is non-zero.

Our results show that adding `1 constraints on the weights of neural networks can improve the
generalization gap in the adversarial setting. This is consistent with some recent works which show
that sparsified neural networks may improve adversarial robustness [11, 10].

In earlier work, Bagnell proposed a concept of robust supervised learning [1]; robust optimiza-
tion has been studied in Lasso [23] and SVM [24] problems. Xu and Mannor [22] make the connec-
tion between algorithmic robustness and generalization property in the natural setting, whereas
our work focus on generalization in the adversarial setting.

B Proof of Theorem 2
First, we have

RS(F) :=
1

n
Eσ

[
sup

‖w‖p≤W

n∑
i=1

σi〈w,xi〉

]
=
W

n
Eσ

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
q

 . (1)
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We then analyze RS(F̃). Define f̃w(x, y) := minx′∈B∞
x (ε) y〈w,x′〉. Then, we have

f̃w(x, y) =

{
minx′∈B∞

x (ε)〈w,x′〉 y = 1,

−maxx′∈B∞
x (ε)〈w,x′〉 y = −1.

When y = 1, we have

f̃w(x, y) = f̃w(x, 1) = min
x′∈B∞

x (ε)
〈w,x′〉 = min

x′∈B∞
x (ε)

d∑
i=1

wix
′
i

=

d∑
i=1

wi [1(wi ≥ 0)(xi − ε) + 1(wi < 0)(xi + ε)] =

d∑
i=1

wi(xi − sgn(wi)ε)

= 〈w,x〉 − ε‖w‖1.

Similarly, when y = −1, we have

f̃w(x, y) = f̃w(x,−1) = − max
x′∈B∞

x (ε)
〈w,x′〉 = − max

x′∈B∞
x (ε)

d∑
i=1

wix
′
i

= −
d∑
i=1

wi [1(wi ≥ 0)(xi + ε) + 1(wi < 0)(xi − ε)] = −
d∑
i=1

wi(xi + sgn(wi)ε)

= −〈w,x〉 − ε‖w‖1.

Thus, we conclude that f̃w(x, y) = y〈w,x〉 − ε‖w‖1, and therefore

RS(F̃) =
1

n
Eσ

[
sup

‖w‖2≤W

n∑
i=1

σi(yi〈w,xi〉 − ε‖w‖1)

]
.

Define u :=
∑n
i=1 σiyixi and v := ε

∑n
i=1 σi. Then we have

RS(F̃) =
1

n
Eσ

[
sup

‖w‖p≤W
〈w,u〉 − v‖w‖1

]
Since the supremum of 〈w,u〉 − v‖w‖1 over w can only be achieved when sgn(wi) = sgn(ui), we
know that

RS(F̃) =
1

n
Eσ

[
sup

‖w‖p≤W
〈w,u〉 − v〈w, sgn(w)〉

]

=
1

n
Eσ

[
sup

‖w‖p≤W
〈w,u〉 − v〈w, sgn(u)〉

]

=
1

n
Eσ

[
sup

‖w‖p≤W
〈w,u− v sgn(u)〉

]

=
W

n
Eσ [‖u− v sgn(u)‖q]

=
W

n
Eσ

∥∥∥∥∥
n∑
i=1

σiyixi −
(
ε

n∑
i=1

σi
)

sgn(

n∑
i=1

σiyixi)

∥∥∥∥∥
q

 . (2)

Now we prove an upper bound for RS(F̃). By triangle inequality, we have

RS(F̃) ≤W
n
Eσ

∥∥∥∥∥
n∑
i=1

σiyixi

∥∥∥∥∥
q

+
εW

n
Eσ

∥∥∥∥∥(

n∑
i=1

σi) sgn(

n∑
i=1

σiyixi)

∥∥∥∥∥
q


=RS(F) + εW

d
1
q

n
Eσ

[∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣
]

≤RS(F) + εW
d

1
q

√
n
,

2



where the last step is due to Khintchine’s inequality.
We then proceed to prove a lower bound for RS(F̃). According to (2) and by symmetry, we

know that

RS(F̃) =
W

n
Eσ

∥∥∥∥∥
n∑
i=1

(−σi)yixi −
(
ε

n∑
i=1

(−σi)
)

sgn(

n∑
i=1

(−σi)yixi)

∥∥∥∥∥
q


=
W

n
Eσ

∥∥∥∥∥
n∑
i=1

σiyixi +
(
ε

n∑
i=1

σi
)

sgn(

n∑
i=1

σiyixi)

∥∥∥∥∥
q

 . (3)

Then, combining (2) and (3) and using triangle inequality, we have

RS(F̃) =
W

2n
Eσ

[∥∥∥∥∥
n∑
i=1

σiyixi −
(
ε

n∑
i=1

σi
)

sgn(

n∑
i=1

σiyixi)

∥∥∥∥∥
q

+

∥∥∥∥∥
n∑
i=1

σiyixi +
(
ε

n∑
i=1

σi
)

sgn(

n∑
i=1

σiyixi)

∥∥∥∥∥
q

]

≥W
n
Eσ

∥∥∥∥∥
n∑
i=1

σiyixi

∥∥∥∥∥
q

 = RS(F). (4)

Similarly, we have

RS(F̃) ≥W
n
Eσ

∥∥∥∥∥(ε
n∑
i=1

σi
)

sgn(

n∑
i=1

σiyixi)

∥∥∥∥∥
q


=
W

n
Eσ

ε ∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣
∥∥∥∥∥sgn(

n∑
i=1

σiyixi)

∥∥∥∥∥
q


=εW

d
1
q

n
Eσ

[∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣
]
.

By Khintchine’s inequality, we know that there exists a universal constant c > 0 such that

Eσ[|
∑n
i=1 σi|] ≥ c

√
n. Therefore, we have RS(F̃) ≥ cεW d

1
q√
n
. Combining with (4), we complete

the proof.

C Multi-class Linear Classifiers

C.1 Proof of Theorem 3
According to the multi-class margin bound in [12], for any fixed γ, with probability at least 1− δ,
we have

P(x,y)∼D

{
y 6= arg max

y′∈[K]
[f(x)]y′

}
≤ 1

n

n∑
i=1

1([f(xi)]yi ≤ γ + max
y′ 6=y

[f(xi)]y′)

+
4K

γ
RS(Π1(F)) + 3

√
log 2

δ

2n
,

where Π1(F) ⊆ RX is defined as

Π1(F) := {x 7→ [f(x)]k : f ∈ F , k ∈ [K]}.

In the special case of linear classifiers F = {fW(x) : ‖W>‖p,∞ ≤W}, we can see that

Π1(F) = {x 7→ 〈w,x〉 : ‖w‖p ≤W}.
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Thus, we have

RS(Π1(F)) =
1

n
Eσ

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
q

 ,
which completes the proof.

C.2 Proof of Theorem 4
Since the loss function in the adversarial setting is

˜̀(fW(x), y) = max
x′∈B∞

x (ε)
φγ(M(fW(x), y)) = φγ( min

x′∈B∞
x (ε)

M(fW(x), y)).

Since we consider linear classifiers, we have

min
x′∈B∞

x (ε)
M(fW(x), y) = min

x′∈B∞
x (ε)

min
y′ 6=y

(wy −wy′)
>x′

= min
y′ 6=y

min
x′∈B∞

x (ε)
(wy −wy′)

>x′

= min
y′ 6=y

(wy −wy′)
>x− ε‖wy −wy′‖1 (5)

Define
h
(k)
W (x, y) := (wy −wk)>x− ε‖wy −wk‖1 + γ1(y = k).

We now show that ˜̀(fW(x), y) = max
k∈[K]

φγ(h
(k)
W (x, y)). (6)

To see this, we can see that according to (5),

min
x′∈B∞

x (ε)
M(fW(x), y) = min

k 6=y
h
(k)
W (x, y).

If mink 6=y h
(k)
W (x, y) ≤ γ, we have mink 6=y h

(k)
W (x, y) = mink∈[K] h

(k)
W (x, y), since h(y)W (x, y) = γ.

On the other hand, if mink 6=y h
(k)
W (x, y) > γ, then mink∈[K] h

(k)
W (x, y) = γ. In this case, we have

φγ(mink 6=y h
(k)
W (x, y)) = φγ(mink∈[K] h

(k)
W (x, y)) = 0. Therefore, we can see that (6) holds.

Define the K function classes Fk := {h(k)W (x, y) : ‖W>‖p,∞ ≤W} ⊆ RX×Y . Since φγ(·) is 1/γ-
Lipschitz, according to the Ledoux-Talagrand contraction inequality [13] and Lemma 8.1 in [16],
we have

RS(˜̀F ) ≤ 1

γ

K∑
k=1

RS(Fk). (7)

We proceed to analyze RS(Fk). The basic idea is similar to the proof of Theorem 2. We define
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uy =
∑n
i=1 σixi1(yi = y) and vy =

∑n
i=1 σi1(yi = y). Then, we have

RS(Fk) =
1

n
Eσ

[
sup

‖W>‖p,∞≤W

n∑
i=1

σi((wyi −wk)>xi − ε‖wyi −wk‖1 + γ1(yi = k))
]

=
1

n
Eσ

[
sup

‖W>‖p,∞≤W

n∑
i=1

K∑
y=1

σi((wyi −wk)>xi − ε‖wyi −wk‖1 + γ1(yi = k))1(yi = y)
]

=
1

n
Eσ

[
sup

‖W>‖p,∞≤W

K∑
y=1

n∑
i=1

σi((wy −wk)>xi1(yi = y)− ε‖wy −wk‖11(yi = y)

+ γ1(yi = k)1(yi = y))
]

=
1

n
Eσ

[
γ

n∑
i=1

σi1(yi = k) + sup
‖W>‖p,∞≤W

∑
y 6=k

(〈wy −wk,uy〉 − εvy‖wy −wk‖1)
]

≤ 1

n
Eσ

[∑
y 6=k

sup
‖wk‖p,‖wy‖p≤W

(〈wy −wk,uy〉 − εvy‖wy −wk‖1)
]

=
1

n
Eσ

[∑
y 6=k

sup
‖w‖p≤2W

(〈w,uy〉 − εvy‖w‖1)
]

=
2W

n
Eσ

[∑
y 6=k

‖uy − εvy sgn(uy)‖q
]
,

where the last equality is due to the same derivation as in the proof of Theorem 2. Let ny =∑n
i=1 1(yi = y). Then, we apply triangle inequality and Khintchine’s inequality and obtain

RS(Fk) ≤ 2W

n

∑
y 6=k

Eσ[‖uy‖2] + εd
1
q
√
ny.

Combining with (7), we obtain

RS(˜̀F ) ≤ 2WK

γn
(

K∑
y=1

Eσ[‖uy‖2] + εd
1
q
√
ny) ≤ 2WK

γ

[
ε
√
Kd

1
q

√
n

+
1

n

K∑
y=1

Eσ[‖uy‖2]

]
,

where the last step is due to Cauchy-Schwarz inequality.

D Neural Network

D.1 Proof of Theorem 6
We first review a Rademacher complexity lower bound in [2].

Lemma 1. [2] Define the function class

F̂ = {x 7→ fW(x) : W = (W1,W2, . . . ,WL),

L∏
h=1

‖Wh‖σ ≤ r},

and F̂ ′ = {x 7→ 〈w,x〉 : ‖w‖2 ≤ r
2}. Then we have F̂ ′ ⊆ F̂ , and thus there exists a universal

constant c > 0 such that
RS(F̂) ≥ cr

n
‖X‖F .

According to Lemma 1, in the adversarial setting, by defining

F̃ ′ = {x 7→ min
x′∈B∞

x (ε)
y〈w,x′〉 : ‖w‖2 ≤

r

2
} ⊆ RX×{−1,+1},

we have F̃ ′ ⊆ F̃ . Therefore, there exists a universal constant c > 0 such that

RS(F̃) ≥ RS(F̃ ′) ≥ cr

(
1

n
‖X‖F + ε

√
d

n

)
,

where the last inequality is due to Theorem 2.
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D.2 Proof of Lemma 1
Since Q(·, ·) is a linear function in its first argument, we have for any y, y′ ∈ [K],

max
P�0,diag(P)≤1

〈Q(w2,y′ −w2,y,W1),P〉

≤ max
P�0,diag(P)≤1

〈Q(w2,y′ ,W1),P〉+ max
P�0,diag(P)≤1

〈−Q(w2,y,W1),P〉

≤2 max
k∈[K],z=±1

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉. (8)

Then, for any (x, y), we have

max
x′∈B∞

x (ε)
1(y 6= arg max

y′∈[K]
[fW(x′)]y′)

≤φγ( min
x′∈B∞

x (ε)
M(fW(x′), y))

≤φγ(min
y′ 6=y

min
x′∈B∞

x (ε)
[fW(x′)]y − [fW(x′)]y′)

≤φγ
(

min
y′ 6=y

[fW(x)]y − [fW(x)]y′ −
ε

4
max
y′ 6=y

max
P�0,diag(P)≤1

〈Q(w2,y′ −w2,y,W1),P〉
)

≤φγ
(

min
y′ 6=y

[fW(x)]y − [fW(x)]y′ −
ε

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉

)
≤φγ

(
M(fW(x), y)− ε

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉

)
:= ̂̀(fW(x), y)

≤1
(
M(fW(x), y)− ε

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉 ≤ γ

)
,

where the first inequality is due to the property of ramp loss, the second inequality is by the
definition of the margin, the third inequality is due to Theorem 7, the fourth inequality is due
to (8), the fifth inequality is by the definition of the margin and the last inequality is due to the
property of ramp loss.

D.3 Proof of Theorem 8
We study the Rademacher complexity of the function class

̂̀F := {(x, y) 7→ ̂̀(fW(x), y) : fW ∈ F}.

Define MF := {(x, y) 7→M(fW(x), y) : fW ∈ F}. Then we have

RS(̂̀F ) ≤ 1

γ

(
RS(MF ) +

ε

2n
Eσ

[
sup
fW∈F

n∑
i=1

σi max
k∈[K],z=±1

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉
])
, (9)

where we use the Ledoux-Talagrand contraction inequality and the convexity of the supreme oper-
ation. For the first term, since we have ‖W1‖1 ≤ b1, we have ‖W>

1 ‖2,1 ≤ b1. Then, we can apply
the Rademacher complexity bound in [2] and obtain

RS(MF ) ≤ 4

n3/2
+

60 log(n) log(2dmax)

n
s1s2

(
(
b1
s1

)2/3 + (
b2
s2

)2/3
)3/2

‖X‖F . (10)

Now consider the second term in (9). According to [18], we always have

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉 ≥ 0. (11)

In addition, we know that when P � 0 and diag(P) ≤ 1, we have

‖P‖∞ ≤ 1. (12)

Moreover, we have
‖W2‖∞ ≤ ‖W>

2 ‖2,1 ≤ b2. (13)
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Then, we obtain

ε

2n
Eσ

[
sup
fW∈F

n∑
i=1

σi max
k∈[K],z=±1

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉
]

≤ ε

2n

(
sup
fW∈F

max
k∈[K],z=±1

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉
)
Eσ

[
|
n∑
i=1

σi|
]

≤ ε

2
√
n

sup
fW∈F

max
k∈[K],z=±1

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉

≤ ε

2
√
n

sup
fW∈F

max
k∈[K],z=±1

max
P�0,diag(P)≤1

‖zQ(w2,k,W1)‖1‖P‖∞

≤ 2ε√
n

sup
fW∈F

max
k∈[K]

‖ diag(w2,k)>W1‖1

≤ 2ε√
n

sup
fW∈F

‖W1‖1‖W2‖∞

≤2εb1b2√
n

, (14)

where the first inequality is due to (11), the second inequality is due to Khintchine’s inequality, the
third inequality is due to Hölder’s inequality, and the fourth inequality is due to the definition of
Q(·, ·) and (12), the fifth inequality is a direct upper bound, and the last inequality is due to (13).

Now we can combine (10) and (14) and get an upper bound for RS(̂̀F ) in (9). Then, Theorem 8
is a direct consequence of Theorem 1 and Lemma 1.
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