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Abstract
Recent advances in neural architecture search
(NAS) demand tremendous computational re-
sources, which makes it difficult to reproduce
experiments and imposes a barrier-to-entry to re-
searchers without access to large-scale computa-
tion. We aim to ameliorate these problems by in-
troducing NAS-Bench-101, the first public archi-
tecture dataset for NAS research. To build NAS-
Bench-101, we carefully constructed a compact,
yet expressive, search space, exploiting graph iso-
morphisms to identify 423k unique convolutional
architectures. We trained and evaluated all of
these architectures multiple times on CIFAR-10
and compiled the results into a large dataset of
over 5 million trained models. This allows re-
searchers to evaluate the quality of a diverse range
of models in milliseconds by querying the pre-
computed dataset. We demonstrate its utility by
analyzing the dataset as a whole and by bench-
marking a range of architecture optimization al-
gorithms.

1. Introduction
Many successes in deep learning (Krizhevsky et al., 2012;
Goodfellow et al., 2014; Sutskever et al., 2014) have re-
sulted from novel neural network architecture designs. For
example, in the field of image classification, research has
produced numerous ways of combining neural network lay-
ers into unique architectures, such as Inception modules
(Szegedy et al., 2015), residual connections (He et al., 2016),
or dense connections (Huang et al., 2017). This prolifera-
tion of choices has fueled research into neural architecture
search (NAS), which casts the discovery of new architec-
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tures as an optimization problem (Baker et al., 2017; Zoph
& Le, 2016; Real et al., 2017; Elsken et al., 2019). This
has resulted in state of the art performance in the domain
of image classification (Zoph et al., 2018; Real et al., 2018;
Huang et al., 2018), and has shown promising results in
other domains, such as sequence modeling (Zoph & Le,
2016; So et al., 2019).

Unfortunately, NAS research is notoriously hard to repro-
duce (Li & Talwalkar, 2019; Sciuto et al., 2019). First,
some methods require months of compute time (e.g., Zoph
et al., 2018), making these methods inaccessible to most
researchers. Second, while recent improvements (Liu et al.,
2018a; Pham et al., 2018; Liu et al., 2018b) have yielded
more efficient methods, different methods are not compa-
rable to each other due to different training procedures and
different search spaces, which make it difficult to attribute
the success of each method to the search algorithm itself.

To address the issues above, this paper introduces NAS-
Bench-101, the first architecture-dataset for NAS. To build
it, we trained and evaluated a large number of different con-
volutional neural network (CNN) architectures on CIFAR-
10 (Krizhevsky & Hinton, 2009), utilizing over 100 TPU
years of computation time. We compiled the results into a
large table which maps 423k unique architectures to metrics
including run time and accuracy. This enables NAS experi-
ments to be run via querying a table instead of performing
the usual costly train and evaluate procedure. Moreover, the
data, search space, and training code is fully public 1, to
foster reproducibility in the NAS community.

Because NAS-Bench-101 exhaustively evaluates a search
space, it permits, for the first time, a comprehensive analysis
of a NAS search space as a whole. We illustrate such po-
tential by measuring search space properties relevant to
architecture search. Finally, we demonstrate its application
to the analysis of algorithms by benchmarking a wide range
of open source architecture/hyperparameter search meth-
ods, including evolutionary approaches, random search, and
Bayesian optimization.

In summary, our contributions are the following:
• We introduce NAS-Bench-101, the first large-scale, open-

1 Data and code for NAS-Bench-101 available at https://
github.com/google-research/nasbench.

https://github.com/google-research/nasbench
https://github.com/google-research/nasbench
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source architecture dataset for NAS (Section 2);
• We illustrate how to use the dataset to analyze the nature

of the search space, revealing insights which may guide
the design of NAS algorithms (Section 3);

• We illustrate how to use the dataset to perform fast bench-
marking of various open-source NAS optimization algo-
rithms (Section 4).

2. The NASBench Dataset
The NAS-Bench-101 dataset is a table which maps neural
network architectures to their training and evaluation met-
rics. Most NAS approaches to date have trained models on
the CIFAR-10 classification set because its small images
allow relatively fast neural network training. Furthermore,
models which perform well on CIFAR-10 tend to perform
well on harder benchmarks, such as ImageNet (Krizhevsky
et al., 2012) when scaled up (Zoph et al., 2018)). For these
reasons, we also use CNN training on CIFAR-10 as the basis
of NAS-Bench-101.

2.1. Architectures

Similar to other NAS approaches, we restrict our search
for neural net topologies to the space of small feedforward
structures, usually called cells, which we describe below.
We stack each cell 3 times, followed by a downsampling
layer, in which the image height and width are halved via
max-pooling and the channel count is doubled. We repeat
this pattern 3 times, followed by global average pooling and
a final dense softmax layer. The initial layer of the model
is a stem consisting of one 3 × 3 convolution with 128
output channels. See Figure 1, top-left, for an illustration
of the overall network structure. Note that having a stem
followed by stacks of cells is a common pattern both in
hand-designed image classifiers (He et al., 2016; Huang
et al., 2017; Hu et al., 2018) and in NAS search spaces for
image classification. Thus, the variation in the architectures
arises from variation in the cells.

The space of cell architectures consists of all possible di-
rected acyclic graphs on V nodes, where each possible node
has one of L labels, representing the corresponding opera-
tion. Two of the vertices are specially labeled as operation
IN and OUT, representing the input and output tensors to
the cell, respectively. Unfortunately, this space of labeled
DAGs grows exponentially in both V and L. In order to
limit the size of the space to allow exhaustive enumeration,
we impose the following constraints:
• We set L = 3, using only the following operations:

– 3× 3 convolution
– 1× 1 convolution
– 3× 3 max-pool

• We limit V ≤ 7.
• We limit the maximum number of edges to 9.

conv stem

stack 1

stack 2

stack 3

downsample

downsample

global avg pool
dense

cell 
2-3

cell 
2-2

cell 
2-1

in

1x1 3x3 3x3 

3x3 

MP 

out

in

1x1 

3x3 

3x3 

MP 

3x3 

out

in

out

F= 
64

F= 
64

F= 
64

+
&

F= 
64

1x1 proj 1x1 proj

1x1 proj +

1x1 proj

F=128

F=128

Figure 1: (top-left) The outer skeleton of each model. (top-
right) An Inception-like cell with the original 5x5 convolu-
tion approximated by two 3x3 convolutions (concatenation
and projection operations omitted). (bottom-left) The cell
that attained the lowest mean test error (projection layers
omitted). (bottom-right) An example cell that demonstrates
how channel counts are automatically determined (“+” de-
notes addition and “&” denotes concatenation; 1× 1 projec-
tions are used to scale channel counts).

All convolutions utilize batch normalization followed by
ReLU. These constraints were chosen to ensure that the
search space still contains ResNet-like and Inception-like
cells (He et al., 2016; Szegedy et al., 2016). An example of
an Inception-like cell is illustrated in Figure 1, top-right. We
intentionally use convolutions instead of separable convolu-
tions to match the original designs of ResNet and Inception,
although this comes as the cost of being more parameter-
heavy than some of the more recent state-of-the-art archi-
tectures like AmoebaNet (Real et al., 2018).

2.2. Cell encoding

There are multiple ways to encode a cell and different en-
codings may favor certain algorithms by biasing the search
space. For most of our experiments, we chose to use a very
general encoding: a 7-vertex directed acyclic graph, rep-
resented by a 7 × 7 upper-triangular binary matrix, and a
list of 5 labels, one for each of the 5 intermediate vertices
(recall that the input and output vertices are fixed) Since
there are 21 possible edges in the matrix and 3 possible
operations for each label, there are 221 ∗ 35 ≈ 510M total
unique models in this encoding. In Supplement S3, we also
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discuss an alternative encoding.

However, a large number of models in this space are invalid
(i.e., there is no path from the input vertex, or the number of
total edges exceeds 9). Furthermore, different graphs in this
encoding may not be computationally unique. The method
which we used to identify and enumerate unique graphs is
described in Supplement S1. After de-duplication, there are
approximately 423k unique graphs in the search space.

2.3. Combine semantics

Translating from the graph to the corresponding neural net-
work is straightforward, with one exception. When multiple
edges point to the same vertex, the incoming tensors must
be combined. Adding them or concatenating them are both
standard techniques. To support both ResNet and Inception-
like cells and to keep the space tractable, we adopted the
following fixed rule: tensors going to the output vertex
are concatenated and those going into other vertices are
summed. The output tensors from the input vertex are pro-
jected in order to match the expected input channel counts
of the subsequent operations. This is illustrated in Figure 1,
bottom-right.

2.4. Training

The training procedure forms an important part of an ar-
chitecture search benchmark, since different training proce-
dures can lead to very substantial performance differences.
To counter this issue and allow comparisons of NAS algo-
rithms on equal grounds, we designed and open-sourced a
single general training pipeline for all models in the dataset.

Choice of hyperparameters. We utilize a single, fixed set
of hyperparameters for all NAS-Bench-101 models. This set
of hyperparameters was chosen to be robust across different
architectures by performing a coarse grid search optimiz-
ing the average accuracy of a set of 50 randomly-sampled
architectures from the space. This is similar to standard
practice in the literature (Zoph et al., 2018; Liu et al., 2018a;
Real et al., 2018) and is further justified by our experimental
analysis in Section 5.1.

Implementation details. All models are trained and evalu-
ated on CIFAR-10 (40k training examples, 10k validation
examples, 10k testing examples), using standard data aug-
mentation techniques (He et al., 2016). The learning rate
is annealed via cosine decay (Loshchilov & Hutter, 2017)
to 0 in order to reduce the variance between multiple inde-
pendent training runs. Training is performed via RMSProp
(Tieleman & Hinton, 2012) on the cross-entropy loss with
L2 weight decay. All models were trained on the TPU v2 ac-
celerator. The code, implemented in TensorFlow, along with
all chosen hyperparameters, is publicly available at https:
//github.com/google-research/nasbench.

3 repeats and 4 epoch budgets. We repeat the train-
ing and evaluation of all architectures 3 times to ob-
tain a measure of variance. Also, in order to allow the
evaluation of multi-fidelity optimization methods, e.g.,
Hyperband (Li et al., 2018)), we trained all our archi-
tectures with four increasing epoch budgets: Estop ∈
{Emax/3

3, Emax/3
2, Emax/3, Emax} = {4, 12, 36, 108}

epochs. In each case, the learning rate is annealed to 0 by
epoch Estop.2 We thus trained 3× 423k ∼ 1.27M models
for each value of Estop, and thus 4× 1.27M ∼ 5M models
overall.

2.5. Metrics

We evaluated each architecture A after training three times
with different random initializations, and did this for each
of the 4 budgets Estop above. As a result, the dataset is
a mapping from the (A,Estop, trial#) to the following
quantities:
• training accuracy;
• validation accuracy;
• testing accuracy;
• training time in seconds; and
• number of trainable model parameters.

Only metrics on the training and validation set should be
used to search models within a single NAS algorithm, and
testing accuracy should only be used for an offline evalu-
ation. The training time metric allows benchmarking al-
gorithms that optimize for accuracy while operating under
a time limit (Section 4) and also allows the evaluation of
multi-objective optimization methods. Other metrics that do
not require retraining can be computed using the released
code.

2.6. Benchmarking methods

One of the central purposes of the dataset is to facilitate
benchmarking of NAS algorithms. This section establishes
recommended best practices for using NAS-Bench-101
which we followed in our subsequent analysis; we also
refer to Supplement S6 for a full set of best practices in
benchmarking with NAS-Bench-101.

The goal of NAS algorithms is to find architectures that
have high testing accuracy at epoch Emax. To do this, we
repeatedly query the dataset at (A,Estop) pairs, where A is
an architecture in the search space and Estop is an allowed
number of epochs (Estop ∈ {4, 12, 36, 108}). Each query
does a look-up using a random trial index, drawn uniformly

2 Instead of 4 epoch budgets, we could have trained single
long runs and used the performance at intermediate checkpoints
as benchmarking data for early stopping algorithms. However,
because of the learning rate schedule, such checkpoints would have
occurred when the learning rates are still high, leading to noisy
accuracies that do not correlate well with the final performance.

https://github.com/google-research/nasbench
https://github.com/google-research/nasbench
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at random from {1, 2, 3}, to simulate the stochasticity of
SGD training.

While searching, we keep track of the best architecture Âi

the algorithm has found after each function evaluation i, as
ranked by its validation accuracy. To best simulate real
world computational constratints, we stop the search run
when the total “training time” exceeds a fixed limit. After
each complete search rollout, we query the corresponding
mean test accuracy f(Âi) for that model (test accuracy
should never be used to guide the search itself). Then we
compute the immediate test regret: r(Âi) = f(Âi)−f(A∗),
where A∗ denotes the model with the highest mean test
accuracy in the entire dataset. This regret becomes the score
for the search run. To measure the robustness of different
search algorithms, a large number of independent search
rollouts should be conducted.

3. NASBench as a Dataset
In this section, we analyze the NAS-Bench-101 dataset
as a whole to gain some insight into the role of neural
network operations and cell topology in the performance
of convolutional neural networks. In doing so, we hope to
shed light on the loss landscape that is traversed by NAS
algorithms.

3.1. Dataset statistics

First we study the empirical cumulative distribution (ECDF)
of various metrics across all architectures in Figure 2. Most
of the architectures converge and reach 100% training ac-
curacy. The validation accuracy and test accuracy are both
above 90% for a majority of models. The best architec-
ture in our dataset (Figure 1) achieved a mean test ac-
curacy of 94.32%. For comparison, the ResNet-like and
Inception-like cells attained 93.12% and 92.95%, respec-
tively, which is roughly in-line with the performance of the
original ResNet-56 (93.03%) on CIFAR-10 (He et al., 2016).
We observed that the correlation between validation and test
accuracy is extremely high (r = 0.999) at 108 epochs which
suggests that strong optimizers are unlikely to overfit on the
validation error. Due to the stochastic nature of the training
process, training and evaluating the same architecture will
generally lead to a small amount of noise in the accuracy.
We also observe, as expected, that the noise between runs is
lower at longer training epochs.

Figure 3 investigates the relationship between the number
of parameters, training time, and validation accuracy of
models in the dataset. The left plot suggests that there is
positive correlation between all of these quantities. However
parameter count and training time are not the only factors
since the best cell in the dataset is not the most computa-
tionally intensive one. Hand-designed cells, such as ResNet
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Figure 2: The empirical cumulative distribution (ECDF)
of all valid configurations for: (left) the train/valid/test ac-
curacy after training for 108 epochs and (right) the noise,
defined as the standard deviation of the test accuracy be-
tween the three trials, after training for 12, 36 and 108
epochs.

Figure 3: (left) Training time vs. trainable parameters, color-
coded by validation accuracy. (right) Validation accuracy
vs. training time with select cell architectures highlighted.
Inception neighbors are the graphs which are 1-edit distance
away from the Inception cell.

and Inception, perform near the Pareto frontier of accuracy
over cost, which suggests that topology and operation selec-
tion are critical for finding both high-accuracy and low-cost
models.

3.2. Architectural design

NAS-Bench-101 presents us with the unique opportunity to
investigate the impact of various architectural choices on the
performance of the network. In Figure 4, we study the effect
of replacing each of the operations in a cell with a different
operation. Not surprisingly, replacing a 3× 3 convolution
with a 1 × 1 convolution or 3 × 3 max-pooling operation
generally leads to a drop in absolute final validation accuracy
by 1.16% and 1.99%, respectively. This is also reflected
in the relative change in training time, which decreases by
14.11% and 9.84%. Even though 3 × 3 max-pooling is
parameter-free, it appears to be on average 5.04% more
expensive in training time than 1× 1 convolution and also
has an average absolute validation accuracy 0.81% lower.
However, some of the top cells in the space (ranked by mean
test accuracy, i.e., Figure 1) contain max-pool operations, so
other factors must also be at play and replacing all 3×3 max-
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Figure 4: Measuring the aggregated impact of replacing one
operation with another on (left) absolute validation accuracy
and (right) relative training time.

Figure 5: Comparing mean validation accuracy and training
time for cells by (left) depth, measured by length of longest
path from inpu to output, and (right) width, measured by
maximum directed cut on the graph.

pooling operations with 1×1 convolutions is not necessarily
a globally optimal choice.

In Figure 5, we also investigate the role of depth vs. width.
In terms of average validation accuracy, it appears that a
depth of 3 is optimal whereas increasing width seems to in-
crease the validation accuracy up to 5, the maximum width
of networks in the dataset. The training time of networks
increases as networks get deeper and wider with one ex-
ception: width 1 networks are the most expensive. This
is a consequence of the combine semantics (see Section
2.3), which skews the training time distributions because all
width 1 networks are simple feed-forward networks with no
branching, and thus the activation maps are never split via
their channel dimension.

3.3. Locality

NASBench exhibits locality, a property by which architec-
tures that are “close by” tend to have similar performance
metrics. This property is exploited by many search algo-
rithms. We define “closeness” in terms of edit-distance: the
smallest number of changes required to turn one architecture
into another; one change entails flipping the operation at a
vertex or the presence/absence of an edge. A popular mea-

sure of locality is the random-walk autocorrelation (RWA),
defined as the autocorrelation of the accuracies of points vis-
ited as we perform a long walk of random changes through
the space (Weinberger, 1990; Stadler, 1996). The RWA
(Figure 6, left) shows high correlations for lower distances,
indicating locality. The correlations become indistinguish-
able from noise beyond a distance of about 6.

Figure 6: (left) RWA for the full space and the FDC relative
to the global maximum. To plot both curves on a common
horizontal axis, the autocorrelation curve is drawn as a func-
tion of the square root of the autocorrelation shift, to account
for the fact that a random walk reaches a mean distance

√
N

after N steps. (right) Fraction of the search space volume
that lies within a given distance to the closest high peak.

While the RWA aggregates across the whole space, we can
also consider regions of particular interest. For example,
Figure 3 (right) displays the neighbors of the Inception-
like cell, indicating a degree of locality too, especially in
terms of accuracy. Another interesting region is that around
a global accuracy maximum. To measure locality within
this neighborhood, we used the fitness-distance correlation
metric (FDC, Jones et al. (1995)). Figure 6 (left) shows that
there is locality around the global maximum as well and the
peak also has a coarse-grained width of about 6.

More broadly, we can consider how rare it is to be near a
global maximum. In the cell encoding described in Sec-
tion 2.2, the best architecture (i.e., the one with the highest
mean testing accuracy) has 4 graph isomorphisms, produc-
ing 4 distinct peaks in our encoded search space. Moreover
there are 11 other architectures whose mean test accuracy
is within 2 times standard error of the mean of the best
graph. Including the isomorphisms of these, too, there are
11 570 points in the 510M-point search space corresponding
to these top graphs, meaning that the chance of hitting one
of them with a random sample is about 1 to 50000. Figure 6
(right) shows how much volume of the search space lies
near these graphs; in particular, 35.4% of the search space is
within a distance of 6 from the closest top graph. Since the
basin of attraction for local search appears to have a width
of about 6, this suggests that locality-based search may be a
good choice for this space.
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4. NASBench as a Benchmark
4.1. Comparing NAS algorithms

In this section we establish baselines for future work by
using our dataset to compare some popular algorithms for
which open source code is available. Note that the intention
is not to answer the question “Which methods work best on
this benchmark?”, but rather to demonstrate the utility of a
reproducible baseline.

We benchmarked a small set of NAS and hyperparame-
ter optimization (HPO) algorithms with publicly available
implementations: random search (RS) (Bergstra & Ben-
gio, 2012), regularized evolution (RE) (Real et al., 2018),
SMAC (Hutter et al., 2011), TPE (Bergstra et al., 2011),
Hyperband (HB) (Li et al., 2018), and BOHB (Falkner et al.,
2018). We follow the guidelines established in Section 2.6.
Due to its recent success for NAS (Zoph & Le, 2016), we
also include our own implementation of reinforcement learn-
ing (RL) as an additional baseline, since an official imple-
mentation is not available. However, instead of using an
LSTM controller, which we found to perform worse, we
used a categorical distribution for each parameter and op-
timized the probability values directly with REINFORCE.
Supplement S2 has additional implementation details for all
methods.

NAS algorithms based on weight sharing (Pham et al.,
2018; Liu et al., 2018b) or network morphisms (Cai et al.,
2018; Elsken et al., 2018) cannot be directly evaluated
on the dataset, so we did not include them. We also do
not include Gaussian process–based HPO methods (Shahri-
ari et al., 2016), such as Spearmint (Snoek et al., 2012),
since they tend to have problems in high-dimensional dis-
crete optimization tasks (Eggensperger et al., 2013). While
Bayesian optimization methods based on Bayesian neural
networks (Snoek et al., 2015; Springenberg et al., 2016)
are generally applicable to this benchmark, we found their
computational overhead compared to the other methods
to be prohibitively expensive for an exhaustive empirical
evaluation. The benchmarking scripts we used are publicly
available3. For all optimizers we investigate their own main
meta-parameters in Supplement S2.2 (except for TPE where
the open-source implementation does not allow to change
the meta-parameters) and report here the performance based
on the best found settings.

Figure 7 (left) shows the mean performance of each of these
NAS/HPO algorithms across 500 independent trials. The
x-axis shows estimated wall-clock time, counting the evalua-
tion of each architecture with the time that the corresponding
training run took. Note that the evaluation of 500 trials of
each NAS algorithm (for up to 10M simulated TPU sec-
onds, i.e., 115 TPU days each) was only made possible by

3 https://github.com/automl/nas_benchmarks

virtue of our tabular benchmark; without it, they would have
amounted to over 900 TPU years of computation.

We make the following observations:
• RE, BOHB, and SMAC perform best and start to outper-

form RS after roughly 50 000 TPU seconds (the equiva-
lent of roughly 25 evaluated architectures); they achieved
the final performance of RS about 5 times faster and
continued to improve beyond this point.

• SMAC, as a Bayesian optimization method, performs
this well despite the issue of invalid architectures; we
believe that this is due to its robust random forest model.
SMAC is slightly slower in the beginning of the search;
we assume that this is due to its internal incumbent esti-
mation procedure (which evaluates the same architecture
multiple times).

• The other Bayesian optimization method, TPE, struggles
with this benchmark, with its performance falling back to
random search.

• The multi-fidelity optimization algorithms HB and BO-
HB do not yield the speedups frequently observed com-
pared to RS or Bayesian optimization. We attribute this
to the relatively low rank-correlation between the perfor-
mance obtained with different budgets (see Figure 7 in
Supplement S2).

• BOHB achieves the same test regret as SMAC and RE
after recovering from misleading early evaluations; we
attribute this to the fact, that, compared to TPE, it uses a
multivariate instead of a univariate kernel density estima-
tor.

• Even though RL starts outperforming RS at roughly the
same time as the other methods, it converges much slower
towards the global optimum.

Besides achieving good performance, we argue that robust-
ness, i.e., how sensitive an optimizer is to the randomness
in both the search algorithm and the training process, plays
an important role in practice for HPO and NAS methods.
This aspect has been neglected in the NAS literature due
to the extreme cost of performing many repeated runs of
NAS experiments, but with NAS-Bench-101 performing
many repeats becomes trivial. Figure 7 (right) shows the
empirical cumulative distribution of the regret after 10M
seconds across all 500 runs of each method. For all meth-
ods, the final test regrets ranged over roughly an order of
magnitude, with RE, BOHB, and SMAC showing the most
robust performance.

4.2. Generalization bootstrap

To test the generalization of our findings on the dataset, we
ideally would need to run the benchmarked algorithms on
a larger space of architectures. However, due to computa-
tional limitations, it is infeasible for us to run a large number
of NAS trials on a meaningfully larger space. Instead, to
provide some preliminary evidence of generalization, we

https://github.com/automl/nas_benchmarks
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Figure 7: (left) Comparison of the performance of various search algorithms. The plot shows the mean performance of 500
independent runs as a function of the estimated training time. (right) Robustness of different optimization methods with
respect to the seed for the random number generator. *HB and BO-HB are budget-aware algorithms which query the dataset
a shorter epoch lengths. The remaining methods only query the dataset at the longest length (108 epochs).

perform a bootstrapped experiment: we set aside a subset
of NAS-Bench-101, dubbed NAS-Bench-Mini, and com-
pare the outcomes of algorithms run on NAS-Bench-Mini
compared to the full NAS-Bench-101. NAS-Bench-Mini
contains all cells within the search space that utilize 6 or
fewer vertices (64.5k unique cells), compared to the full
NAS-Bench-101 that uses up to 7 vertices (423k unique
cells).

We compare two very similar algorithms (regularized evolu-
tion, RE, and non-regularized evolution, NRE) to a baseline
(random search, RS). RE and NRE are identical except that
RE removes the oldest individual in a population to main-
tain the population size whereas NRE removes the lowest
fitness individual. Figure 8 (top) shows the comparison
on NAS-Bench-Mini and NAS-Bench-101 on 100 trials of
each algorithm to a fixed time budget. The plots show that
the rankings of the three algorithms (RS < NRE < RE)
are consistent across the smaller dataset and the larger one.
Furthermore, we demonstrate that NAS-Bench-Mini can
generalize to NAS-Bench-101 for different hyperparame-
ter settings of a single algorithm (regularized evolution)
in Figure 8 (middle, bottom). This suggests that conclu-
sions drawn from NAS-Bench-101 may generalize to larger
search spaces.

5. Discussion
In this section, we discuss some of the choices we made
when designing NAS-Bench-101.

5.1. Relationship to hyperparameter optimization

All models in NAS-Bench-101 were trained with a fixed
set of hyperparameters. In this section, we justify that
choice. The problem of hyperparameter optimization (HPO)
is closely intertwined with NAS. NAS aims to discover good

neural network architectures while HPO involves finding
the best set of training hyperparameters for a given archi-
tecture. HPO operates by tuning various numerical neural
network training parameters (e.g., learning rate) as well as
categorical choices (e.g., optimizer type) to optimize the
training process. Formally, given an architecture A, the task
of HPO is to find its optimal hyperparameter configuration
H∗:

H∗(A) = argmax
H

f(A,H),

where f is a performance metric, such as validation accu-
racy and the argmax is over all possible hyperparameter
configurations. The “pure” NAS problem can be formu-
lated as finding an architecture A∗ when all architectures
are evaluated under optimal hyperparameter choices:

A∗ = argmax
A

f(A,H∗(A)),

In practice, this would involve running an inner HPO search
for each architecture, which is computationally intractable.
We therefore approximate A∗ with A†:

A∗ ≈ A† = argmax
A

f(A,H†),

where H† is a set of hyperparameters that has been es-
timated by maximizing the average accuracy on a small
subset S of the architectures:

H†(S) = argmax
H

{f(A,H) : A ∈ S}.

For example, in Section 2.4, S was a random sample of 50
architectures.

To justify the approximation above, we performed a study
on a different set of NAS-HPO-Bench (Klein & Hutter,
2019) datasets (described in detail in Supplement S5) These
are smaller datasets of architecture–hyperparameter pairs
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Figure 8: Generalization bootstrap experiments. Each line
marks the median of 100 runs and the shaded region is
the 25% to 75% interquartile range. (top) Comparing ran-
dom search (RS), non-regularized evolution (NRE), and
regularized evolution (RE) against NAS-Bench-Mini and
NAS-Bench-101. (middle) Comparing RE runs with dif-
ferent mutation rates. (bottom) Comparing RE runs with
different tournament sizes.

(A,H), where we computed f(A,H) for all settings of
A and H . This let us compute the exact hyperparameter-
optimized accuracy, f∗(A) = maxH f(A,H). We can also
measure how well this correlates with the approximation we
use in NAS-Bench-101. To do this, we chose a set of hyper-
parameters H† by optimizing the mean accuracy across all
of the architectures for a given dataset. This allows us to
map each architecture A to its approximate hyperparameter-
optimized accuracy, f†(A) = f(A,H†). (This approximate
accuracy is analogous to the one computed in the NAS-
Bench-101 metrics, except there the average was over 50
random architectures, not all of them.)

We find that f† and f∗ are quite strongly correlated across
models, with a Spearman rank correlation of 0.9155; Fig-
ure 9 provides a scatter plot of f∗ against f† for the archi-
tectures. The ranking is especially consistent for the best
architectures (points near the origin).
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Figure 9: Scatter plot between ranks of f∗ (vertical axis)
and f† (horizontal axis) on the NAS-HPO-Bench-Protein
dataset. Ideally, the points should be close to the diagonal.
The high correlation at low-rank means the best architec-
tures are ranked identically when using H∗ and H†.

5.2. Absolute accuracy of models

The choice of search space, hyperparameters, and training
techniques were designed to ensure that NAS-Bench-101
would be feasible to compute with our resources. Unfortu-
nately, this means that the models we evaluate do not reach
current state-of-the-art performance on CIFAR-10. This is
primarily because: (1) the search space is constrained in
both size and selection of operations and does not contain
more complex architectures, such as those used by NASNet
(Zoph et al., 2018); (2) We do not apply the expensive “aug-
mentation trick” (Zoph et al., 2018) by which models’ depth
and width are increased by a large amount and the train-
ing lengthened to hundreds of epochs; and (3) we do not
utilize more advanced regularization like Cutout (DeVries
& Taylor, 2017), ScheduledDropPath (Zoph et al., 2018)
and decoupled weight decay (Loshchilov & Hutter, 2019)
in order to keep our training pipeline similar to previous
standardized models like ResNet.

6. Conclusion
We introduced NAS-Bench-101, a new tabular benchmark
for neural architecture search that is inexpensive to evalu-
ate but still preserves the original NAS optimization prob-
lem, enabling us to rigorously compare various algorithms
quickly and without the enormous computational budgets
often used by projects in the field. Based on the data we gen-
erated for this dataset, we were able to analyze the properties
of an exhaustively evaluated set of convolutional neural ar-
chitectures at unprecedented scale. In open-sourcing the
NAS-Bench-101 data and generating code, we hope to make
NAS research more accessible and reproducible. We also
hope that NAS-Bench-101 will be the first of a continu-
ally improving sequence of rigorous benchmarks for the
emerging NAS field.
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