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A. Appendix
A.1. Trajectory Distribution Induced by Logistic Stochastic Best Response Equilibrium

Let {w? ;(a? ,;|s*)}L_, denote other agents’ marginal LSBRE policies, and {#f(at|a? ;, s*)}Z_, denote agent i’s conditional

policy. With chain rule, the induced trajectory distribution is given by:
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Suppose the desired distribution is given by:
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Now we will shown that the optimal solution to the following optimization problem correspond to the LSBRE conditional

policies:

min Dy, (5(7)[p(7)) (16)
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The optimization problem in Equation (16) is equivalent to (the partition function of the desired distribution is a constant
with respect to optimized policies):
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To maximize this objective, we can use a dynamic programming procedure. Let us first consider the base case of optimizing
ﬁ?(a?|aziv ST):
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where exp(V;(s”,a”,)) is the partition function and V;(s,a”,) = log}", / exp(rl( ,al,a’,)). The optimal policy is
given by:
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With the optimal policy in Equation (19), Equation (18) is equivalent to (with the KL divergence being zero):

E(s7 ar)p(s,am)ri(s”,a") —log ] (af |al,)] = Egr wpsry.ar mnt 57y Vil(sT, al))] (20)
Then recursively, for a given time step ¢, 7¢(at|a’ ;, s') must maximize:
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where we define:
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The optimal policy to Equation (22) is given by:
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which is exactly the set of conditional distributions used to produce LSBRE (Definition 2).

A.2. Maximum Pseudolikelihood Estimation for LSBRE

Theorem 2 strictly follows the asymptotic consistency property of maximum pseudolikelihood estimation (Lehmann &
Casella, 2006; Dawid & Musio, 2014). For simplicity, we will show the proof for normal form games and similar to
Appendix A.l, the extension to Markov games can be proved by induction.

Consider a normal form game with N players and reward functions {r;(a;w;)}X¥ ;. Suppose the expert demonstrations D =
{(a,...,an)™}M_, are generated by m(a;w*), where w* denotes the true value of the parameters. The pseudolikelihood
objective we want to maximize is given by:
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where pp is the empirical data distribution and Z(a_;; w;) is the partition function.

Take derivatives of {pr,(w):
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When the sample size m — oo, Equation (31) is equivalent to:
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When w = w?*, the gradients in Equation (33) will be zero.



