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A. Appendix
A.1. Trajectory Distribution Induced by Logistic Stochastic Best Response Equilibrium

Let {πt−i(at−i|st)}Tt=1 denote other agents’ marginal LSBRE policies, and {π̂ti(ati|at−i, st)}Tt=1 denote agent i’s conditional
policy. With chain rule, the induced trajectory distribution is given by:

p̂(τ) =

[
η(s1) ·

T∏
t=1

P (st+1|st,at) · πt−i(at−i|st))

]
·
T∏
t=1

π̂ti(a
t
i|at−i, st) (14)

Suppose the desired distribution is given by:

p(τ) ∝

[
η(s1) ·

T∏
t=1

P (st+1|st,at) · πt−i(at−i|st))

]
· exp

(
T∑
t=1

ri(s
t, ati,a

t
−i)

)
(15)

Now we will shown that the optimal solution to the following optimization problem correspond to the LSBRE conditional
policies:

min
π̂1:T
i

DKL(p̂(τ)||p(τ)) (16)

The optimization problem in Equation (16) is equivalent to (the partition function of the desired distribution is a constant
with respect to optimized policies):

max
π̂1:T
i

Eτ∼p̂(τ)

[
log η(s1) +

T∑
t=1

(logP (st+1|st,at) + logπt−i(a
t
−i|st) + ri(s

t,at))−

log η(s1)−
T∑
t=1

(logP (st+1|st,at) + logπt−i(a
t
−i|st) + log π̂ti(a

t
i|at−i, st))

]

= Eτ∼p̂(τ)

[
T∑
t=1

ri(s
t,at)− log π̂ti(a

t
i|at−i, st)

]
=

T∑
t=1

E(st,at)∼p̂(st,at)[ri(s
t,at)− log π̂ti(a

t
i|at−i, st)] (17)

To maximize this objective, we can use a dynamic programming procedure. Let us first consider the base case of optimizing
π̂Ti (aTi |aT−i, sT ):

E(sT ,aT )∼p̂(sT ,aT )[ri(s
T ,aT )− log π̂Ti (aTi |aT−i)] =

EsT∼p̂(sT ),aT−i∼πT−i(·|sT )

[
−DKL

(
π̂Ti (aTi |aT−i, sT )||

exp(ri(s
T , aTi ,a

T
−i))

exp(Vi(sT ,aT−i))

)
+ Vi(s

T ,aT−i)

]
(18)

where exp(Vi(s
T ,aT−i)) is the partition function and Vi(sT ,aT−i) = log

∑
a′i

exp(ri(s
T , a′i,a

T
−i)). The optimal policy is

given by:

πTi (aTi |aT−i, sT ) = exp(ri(s
T , aTi ,a

T
−i)− Vi(sT ,aT−i)) (19)

With the optimal policy in Equation (19), Equation (18) is equivalent to (with the KL divergence being zero):

E(sT ,aT )∼p̂(sT ,aT )[ri(s
T ,aT )− log π̂Ti (aTi |aT−i)] = EsT∼p̂(sT ),aT−i∼πT−i(·|sT )[Vi(s

T ,aT−i)] (20)

Then recursively, for a given time step t, π̂ti(a
t
i|at−i, st) must maximize:

E(st,at)∼p̂(st,at)

[
ri(s

t,at)− log π̂ti(a
t
i|at−i) + Est+1∼P (·|st,at),at+1

−i ∼π
t+1
−i (·|st+1)[V

πt+2:T

i (st+1,at+1
−i )]

]
= (21)

Est∼p̂(st),at−i∼πt−i(·|st)

[
−DKL

(
π̂ti(a

t
i|at−i, st)||

exp(Qπ
t+1:T

i (st, ati,a
t
−i))

exp(V π
t+1:T

i (st,at−i))

)
+ V π

t+1:T

i (st,at−i)

]
(22)
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where we define:

Qπ
t+1:T

i (st,at) = ri(s
t,at) + Est+1∼p(·|st,at)

[
H(πt+1

i (·|st+1)) + Eat+1
−i ∼π

t+1
−i (·|st+1)[Vi(s

t+1,at+1
−i )]

]
(23)

V π
t+1:T

i (st,at−i) = log
∑
a′i

exp(Qπ
t+1:T

i (st, a′i,a
t
−i)) (24)

The optimal policy to Equation (22) is given by:

πti(a
t
i|at−i, st) = exp(Qπ

t+1:T

i (st,at)− V π
t+1:T

i (st,at−i)) (25)

which is exactly the set of conditional distributions used to produce LSBRE (Definition 2).

A.2. Maximum Pseudolikelihood Estimation for LSBRE

Theorem 2 strictly follows the asymptotic consistency property of maximum pseudolikelihood estimation (Lehmann &
Casella, 2006; Dawid & Musio, 2014). For simplicity, we will show the proof for normal form games and similar to
Appendix A.1, the extension to Markov games can be proved by induction.

Consider a normal form game with N players and reward functions {ri(a;ωi)}Ni=1. Suppose the expert demonstrations D =
{(a1, . . . , aN )m}Mm=1 are generated by π(a;ω∗), where ω∗ denotes the true value of the parameters. The pseudolikelihood
objective we want to maximize is given by:

`PL(ω) =
1

M

M∑
m=1

N∑
i=1

log πi(a
m
i |am−i;ωi) =

1

M

M∑
m=1

N∑
i=1

log
exp(ri(a

m
i ,a

m
−i;ωi))∑

a′i
exp(ri(a′i,a

m
−i;ωi))

(26)

=
1

M

M∑
m=1

N∑
i=1

ri(a
m
i ,a

m
−i;ωi)−

1

M

M∑
m=1

N∑
i=1

logZ(am−i;ωi) (27)

=

N∑
i=1

∑
a

pD(a)ri(ai,a−i;ωi)−
N∑
i=1

∑
a−i

pD(a−i) logZ(a−i;ωi) (28)

where pD is the empirical data distribution and Z(a−i;ωi) is the partition function.

Take derivatives of `PL(ω):

∂

∂ω
`PL(ω) =

N∑
i=1

∑
a

pD(a)
∂

∂ω
ri(ai,a−i;ωi)−

N∑
i=1

∑
a−i

pD(a−i)
1

Z(a−i;ωi)

∂

∂ω
Z(a−i;ωi) (29)

=

N∑
i=1

∑
a

pD(a)
∂

∂ω
ri(ai,a−i;ωi)−

N∑
i=1

∑
a−i

pD(a−i)
∑
ai

exp(ri(ai,a−i;ωi))

Z(a−i;ωi)

∂

∂ω
ri(ai,a−i;ωi) (30)

=

N∑
i=1

∑
a

pD(a)
∂

∂ω
ri(ai,a−i;ωi)−

N∑
i=1

∑
a−i

pD(a−i)
∑
ai

πi(ai|a−i;ωi)
∂

∂ω
ri(ai,a−i;ωi) (31)

When the sample size m→∞, Equation (31) is equivalent to:

∂

∂ω
`PL(ω) =

N∑
i=1

∑
a

p(a;ω∗)
∂

∂ω
ri(ai,a−i;ωi)−

N∑
i=1

∑
a−i

p(a−i;ω
∗)
∑
ai

πi(ai|a−i;ωi)
∂

∂ω
ri(ai,a−i;ωi) (32)

=

N∑
i=1

∑
a−i

p(a−i;ω
∗)
∑
ai

(p(ai|a−i;ω∗)− πi(ai|a−i;ωi))
∂

∂ω
ri(ai,a−i;ωi) (33)

When ω = ω∗, the gradients in Equation (33) will be zero.


