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Abstract
Most of today’s distributed machine learning sys-
tems assume reliable networks: whenever two
machines exchange information (e.g., gradients
or models), the network should guarantee the de-
livery of the message. At the same time, recent
work exhibits the impressive tolerance of machine
learning algorithms to errors or noise arising from
relaxed communication or synchronization. In
this paper, we connect these two trends, and con-
sider the following question: Can we design ma-
chine learning systems that are tolerant to net-
work unreliability during training? With this mo-
tivation, we focus on a theoretical problem of in-
dependent interest—given a standard distributed
parameter server architecture, if every commu-
nication between the worker and the server has
a non-zero probability p of being dropped, does
there exist an algorithm that still converges, and
at what speed? The technical contribution of this
paper is a novel theoretical analysis proving that
distributed learning over unreliable network can
achieve comparable convergence rate to central-
ized or distributed learning over reliable networks.
Further, we prove that the influence of the packet
drop rate diminishes with the growth of the num-
ber of parameter servers. We map this theoretical
result onto a real-world scenario, training deep
neural networks over an unreliable network layer,
and conduct network simulation to validate the
system improvement by allowing the networks to
be unreliable.

1. Introduction
Distributed learning has attracted significant interest from
both academia and industry. Over the last decade, re-
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Figure 1: An illustration of the communication pattern of
distributed learning with three parameter servers and four
workers — each server serves a partition of the model, and
each worker holds a replica of the whole model. In this
paper, we focus on the case in which every communication
between the worker and the server has a non-zero probability
p of being dropped.

searchers have come with up a range of different designs
of more efficient learning systems. An important subset of
this work focuses on understanding the impact of different
system relaxations to the convergence and performance of
distributed stochastic gradient descent, such as the com-
pression of communication, e.g (Seide & Agarwal, 2016),
decentralized communication (Lian et al., 2017a; Sirb &
Ye, 2016; Lan et al., 2017; Tang et al., 2018a; Stich et al.,
2018), and asynchronous communication (Lian et al., 2017b;
Zhang et al., 2013; Lian et al., 2015). Most of these works
are motivated by real-world system bottlenecks, abstracted
as general problems for the purposes of analysis.

In this paper, we focus on the centralized SGD algorithm
in the distributed machine learning scenario implemented
using standard AllReduce operator or parameter server ar-
chitecture and we are motivated by a new type of system
relaxation—the reliability of the communication channel.
We abstract this problem as a theoretical one, conduct a
novel convergence analysis for this scenario, and then vali-
date our results in a practical setting.

The Centralized SGD algorithm works as Figure 1 shows.
Given n machines/workers, each maintaining its own lo-
cal model, each machine alternates local SGD steps with
global communication steps, in which machines exchange
their local models. In this paper, we covers two standard
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distributed settings: the Parameter Server model1 (Li et al.,
2014; Abadi et al., 2016), as well as standard implementa-
tions of the AllReduce averaging operation in a decentral-
ized setting (Seide & Agarwal, 2016; Renggli et al., 2018).
There are two components in the communication step:

1. Step 0 - Model Partitioning (Only Conducted
Once). In most state-of-the-art implementations of
AllReduce and parameter servers (Li et al., 2014;
Abadi et al., 2016; Thakur et al., 2005), models are par-
titioned into n blocks, and each machine is the owner
of one block (Thakur et al., 2005). The rationale is to
increase parallelism over the utilization of the underly-
ing communication network. The partitioning strategy
does not change during training.

2. Step 1.1 - Reduce-Scatter. In the Reduce-Scatter step,
for each block (model partition) i, the machines av-
erage their model on the block by sending it to the
corresponding machine.

3. Step 1.2 - All-Gather. In the subsequent All-Gather
step, each machine broadcasts its block to all others,
so that all machines have a consistent model copy.

In this paper, we focus on the scenario in which the com-
munication is unreliable — The communication channel
between any two machines has a probability p of not de-
livering a message, as the Figure 1 shows, where the grey
arrows represent the dropping message and the black arrows
represent the success-delivering message. We change the
two aggregation steps as follows. In the Reduce-Scatter
step, a uniform random subset of machines will average
their model on each model block i. In the All-Gather step, it
is again a uniform random subset of machines which receive
the resulting average. Specifically, machines not chosen for
the Reduce-Scatter step do not contribute to the average,
and all machines that are not chosen for the All-Gather will
not receive updates on their model block i. This is a realistic
model of running an AllReduce operator implemented with
Reduce-Scatter/All-Gather on unreliable network. We call
this revised algorithm the RPS algorithm.

Our main technical contribution is characterizing the con-
vergence properties of the RPS algorithm. To the best of
our knowledge, this is a novel theoretical analysis of this
faulty communication model. We will survey related work
in more details in Section 2.

We then apply our theoretical result to a real-world use case,
illustrating the potential benefit of allowing an unreliable
network. We focus on a realistic scenario where the net-
work is shared among multiple applications or tenants, for

1Our modeling above fits the case of n workers and n parameter
servers, although our analysis will extend to any setting of these
parameters.

instance in a data center. Both applications communicate
using the same network. In this case, if the machine learning
traffic is tolerant to some packet loss, the other application
can potentially be made faster by receiving priority for its
network traffic. Via network simulations, we find that tol-
erating a 10% drop rate for the learning traffic can make
a simple (emulated) Web service up to 1.2× faster (Even
small speedups of 10% are significant for such services;
for example, Google actively pursues minimizing its Web
services’ response latency). At the same time, this degree
of loss does not impact the convergence rate for a range of
machine learning applications, such as image classification
and natural language processing.

Organization The rest of this paper is organized as follow.
We first review some related work in Section 2. Then we
formulate the problem in Section 3 and describe the RPS
algorithm in Section 4, with its theoretical guarantee stated
in Section 5. We evaluate the scalability and accuracy of
the RPS algorithm in Section 6 and study an interesting
case of speeding up colocated applications in Section 7. At
last, we conclude the paper in Section 8. The proofs of
our theoretical results can be found in the supplementary
material.

2. Related Work
Distributed Learning There has been a huge number of
works on distributing deep learning, e.g. Seide & Agarwal
(2016); Abadi et al. (2016); Goyal et al. (2017); Colin et al.
(2016). Also, many optimization algorithms are proved
to achieve much better performance with more workers.
For example, Hajinezhad et al. (2016) utilize a primal-dual
based method for optimizing a finite-sum objective function
and proved that it’s possible to achieve a O(n) speedup cor-
responding to the number of the workers. In Xu et al. (2017),
an adaptive consensus ADMM is proposed and Goldstein
et al. (2016) studied the performance of transpose ADMM
on an entire distributed dataset. In Scaman et al. (2017), the
optimal convergence rate for both centralized and decentral-
ized distributed learning is given with the time cost for com-
munication included. In Lin et al. (2018); Stich (2018), they
investigate the trade off between getting more mini-batches
or having more communication. To save the communication
cost, some sparse based distributed learning algorithms is
proposed (Shen et al., 2018b; wu2, 2018; Wen et al., 2017;
McMahan et al., 2016; Wang et al., 2016). Recent works in-
dicate that many distributed learning is delay-tolerant under
an asynchronous setting (Zhou et al., 2018; Lian et al., 2015;
Sra et al., 2015; Leblond et al., 2016). Also, in Blanchard
et al. (2017); Yin et al. (2018); Alistarh et al. (2018) They
study the Byzantine-robust distributed learning when the
Byzantine worker is included in the network. In Drumond
et al. (2018), authors proposed a compressed DNN training
strategy in order to save the computational cost of floating
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point.
Centralized parallel training Centralized parallel (Agar-
wal & Duchi, 2011; Recht et al., 2011) training works on
the network that is designed to ensure that all workers could
get information of all others. One communication primi-
tive in centralized training is to average/aggregate all mod-
els, which is called a collective communication operator
in HPC literature (Thakur et al., 2005). Modern machine
learning systems rely on different implementations, e.g.,
parameter server model (Li et al., 2014; Abadi et al., 2016)
or the standard implementations of the AllReduce averag-
ing operation in a decentralized setting (Seide & Agarwal,
2016; Renggli et al., 2018). In this work, we focus on the
behavior of centralized ML systems under unreliable net-
work, when this primitive is implemented as a distributed
parameter servers (Jiang et al., 2017), which is similar to a
Reduce-Scatter/All-Gather communication paradigm. For
many implementations of collective communication opera-
tors, partitioning the model is one key design point to reach
the peak communication performance (Thakur et al., 2005).
Decentralized parallel training Another direction of re-
lated work considers decentralized learning. Decentralized
learning algorithms can be divided into fixed topology al-
gorithms and random topology algorithms. There are many
work related to the fixed topology decentralized learning.
Specifically, Jin et al. (2016) proposes to scale the gradient
aggregation process via a gossip-like mechanism. Lian et al.
(2017a) provided strong convergence bounds for a similar
algorithm to the one we are considering, in a setting where
the communication graph is fixed and regular. In Tang et al.
(2018b), a new approach that admits a better performance
than decentralized SGD when the data among workers is
very different is studied. Shen et al. (2018a) generalize the
decentralized optimization problem to a monotone operator.
In He et al. (2018), authors study a decentralized gradient
descent based algorithm (CoLA) for learning of linear clas-
sification and regression model. For the random topology
decentralized learning, the weighted matrix for randomized
algorithms can be time-varying, which means workers are
allowed to change the communication network based on the
availability of the network. There are many works (Boyd
et al., 2006; Li & Zhang, 2010; Lobel & Ozdaglar, 2011;
Nedic et al., 2017; Nedić & Olshevsky, 2015) studying the
random topology decentralized SGD algorithms under dif-
ferent assumptions. Blot et al. (2016) considers a more
radical approach, called GoSGD, where each worker ex-
changes gradients with a random subset of other workers
in each round. They show that GoSGD can be faster than
Elastic Averaging SGD (Zhang et al., 2015) on CIFAR-10,
but provide no large-scale experiments or theoretical justifi-
cation. Recently, Daily et al. (2018) proposed GossipGrad,
a more complex gossip-based scheme with upper bounds
on the time for workers to communicate indirectly, periodic
rotation of partners and shuffling of the input data, which

provides strong empirical results on large-scale deployments.
The authors also provide an informal justification for why
GossipGrad should converge.

In this paper, we consider a general model communication,
which covers both Parameter Server (Li et al., 2014) and
AllReduce (Seide & Agarwal, 2016) distribution strategies.
We specifically include the uncertainty of the network into
our theoretical analysis. In addition, our analysis highlights
the fact that the system can handle additional packet drops
as we increase the number of worker nodes.

3. Problem Setup
We consider the following distributed optimization problem:

min
x

f(x) =
1

n

n∑
i=1

Eξ∼DiFi(x; ξ)︸ ︷︷ ︸
=:fi(x)

, (1)

where n is the number of workers, Di is the local data
distribution for worker i (in other words, we do not assume
that all nodes can access the same data set), and Fi(x; ξ) is
the local loss function of model x given data ξ for worker i.

Unreliable Network Connection Nodes can communicate
with all other workers, but with packet drop rate p (here
we do not use the common-used phrase “packet loss rate”
because we use “loss” to refer to the loss function). That
means, whenever any node forwards models or data to any
other model, the destination worker fails to receive it, with
probability p. For simplicity, we assume that all packet drop
events are independent, and that they occur with the same
probability p.

Definitions and notations Throughout, we use the follow-
ing notation and definitions:

• ∇f(·) denotes the gradient of the function f .

• λi(·) denotes the ith largest eigenvalue of a matrix.

• 1n = [1, 1, · · · , 1]> ∈ Rn denotes the full-one vector.

• An :=
1n1

>
n

n denotes the all 1
n ’s n by n matrix.

• ‖ · ‖ denotes the `2 norm for vectors.

• ‖ · ‖F denotes the Frobenius norm of matrices.

4. Algorithm
In this section, we describe our algorithm, namely RPS —
Reliable Parameter Server — as it is robust to package loss
in the network layer. We first describe our algorithm in
detail, followed by its interpretation from a global view.
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4.1. Our Algorithm: RPS
In the RPS algorithm, each worker maintains an individual
local model. We use x(i)

t to denote the local model on
worker i at time step t. At each iteration t, each worker first
performs a regular SGD step

v
(i)
t ← x

(i)
t − γ∇Fi(x

(i)
t ; ξ

(i)
t );

where γ is the learning rate and ξ(i)t are the data samples of
worker i at iteration t.

We would like to reliably average the vector v(i)t among
all workers, via the RPS procedure. In brief, the RS step
perfors communication-efficient model averaging, and the
AG step performs communication-efficient model sharing.

The Reduce-Scatter (RS) step: In this step, each worker i
divides v(i)t into n equally-sized blocks.

v
(i)
t =

((
v
(i,1)
t

)>
,
(
v
(i,2)
t

)>
, · · · ,

(
v
(i,n)
t

)>)>
. (2)

The reason for this division is to reduce the communication
cost and parallelize model averaging since we only assign
each worker for averaging one of those blocks. For example,
worker 1 can be assigned for averaging the first block while
worker 2 might be assigned to deal with the third block. For
simplicity, we would proceed our discussion in the case that
worker i is assigned for averaging the ith block.

After the division, each worker sends its ith block to worker
i. Once receiving those blocks, each worker would average
all the blocks it receives. As noted, some packets might be
dropped. In this case, worker i averages all those blocks
using

ṽ
(i)
t =

1

|N (i)
t |

∑
j∈N (i)

t

v
(i,j)
t ,

whereN (i)
t is the set of the packages worker i receives (may

including the worker i’s own package).

The AllGather (AG) step: After computing ṽ(i)t , each
worker i attempts to broadcast ṽ(i)t to all other workers,
using the averaged blocks to recover the averaged original
vector v(i)t by concatenation:

x
(i)
t+1 =

((
ṽ
(i,1)
t

)>
,
(
ṽ
(i,2)
t

)>
, · · · ,

(
ṽ
(i,n)
t

)>)>
.

Note that it is entirely possible that some workers in the net-
work may not be able to receive some of the averaged blocks.
In this case, they just use the original block. Formally,

x
(i)
t+1 =

((
x
(i,1)
t+1

)>
,
(
x
(i,2)
t+1

)>
, · · · ,

(
x
(i,n)
t+1

)>)>
,

(3)

Algorithm 1 RPS

1: Input: Initialize all x(i)
1 ,∀i ∈ [n] with the same value,

learning rate γ, and number of total iterations T .
2: for t = 1, 2, · · · , T do
3: Randomly sample ξ(i)t from local data of the ith

worker, ∀i ∈ [n].
4: Compute a local stochastic gradient based on

ξ
(i)
t and current optimization variable x

(i)
t :

∇Fi(x(i)
t ; ξ

(i)
t ),∀i ∈ [n]

5: Compute the intermediate model v(i)t according to

v
(i)
t ← x

(i)
t − γ∇Fi(x

(i)
t ; ξ

(i)
t ),

and divide v
(i)
t into n blocks((

v
(i,1)
t

)>
,
(
v
(i,2)
t

)>
, · · · ,

(
v
(i,n)
t

)>)>
.

6: For any i ∈ [n], randomly choose one worker b(i)t
a

without replacement. Then, every worker attempts
to send their ith block of their intermediate model to
worker b(i)t . Then each worker averages all received
blocks using

ṽ
(i)
t =

1

|N (i)
t |

∑
j∈N (j)

t

v
(i,j)
t .

7: Worker b(i)t broadcast ṽ(i)t to all workers (maybe
dropped due to packet drop), ∀i ∈ [n].

8: x
(i)
t+1 =

((
x
(i,1)
t+1

)>
,
(
x
(i,2)
t+1

)>
, · · · ,

(
x
(i,n)
t+1

)>)>
,

where

x
(i,j)
t+1 =

{
ṽ
(j)
t j ∈ Ñ (i)

t

v
(i,j)
t j /∈ Ñ (i)

t

,

for all i ∈ [n].
9: end for

10: Output: x(i)
T

aHere b(i)t ∈ {1, 2, · · · , n} indicates which worker is assigned
for averaging the ith block.

where

x
(i,j)
t+1 =

{
ṽ
(j)
t j ∈ Ñ (i)

t

v
(i,j)
t j /∈ Ñ (i)

t

We can see that each worker just replace the corresponding
blocks of v(i)t using received averaged blocks. The complete
algorithm is summarized in Algorithm 1.

4.2. RPS From a Global Viewpoint
It can be seen that at time step t, the jth block of worker
i’s local model, that is, x(i,j)

t , is a linear combination of jth
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block of all workers’ intermediate model v(k,j)t (k ∈ [n]),

X
(j)
t+1 = V

(j)
t W

(j)
t , (4)

where

X
(j)
t+1 :=

(
x
(1,j)
t+1 ,x

(2,j)
t+1 , · · · ,x

(n,j)
t+1

)
V

(j)
t :=

(
v
(1,j)
t ,v

(2,j)
t , · · · ,v(n,j)t

)
and W (j)

t is the coefficient matrix indicating the commu-
nication outcome at time step t. The (m, k)th element of
W

(j)
t is denoted by

[
W

(j)
t

]
m,k

.
[
W

(j)
t

]
m,k
6= 0 means

that worker k receives worker m’s individual jth block (that
is, v(m,j)t ), whereas

[
W

(j)
t

]
m,k

= 0 means that the package

might be dropped either in RS step (worker m fails to send)
or AG step (worker k fails to receive). So W (j)

t is time-
varying because of the randomness of the package drop.
Also W (j)

t is not doubly-stochastic (in general) because the
package drop is independent between RS step and AG step.
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Figure 2: α2 under different number of workers n
and package drop rate p.
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Figure 3: (α1 − α2) under different number of
workers n and package drop rate p.

The property of W (j)
t In fact, it can be shown that all

W
(j)
t ’s (∀j,∀t) satisfy the following properties(

E(W
(j)
t )
)
An =An

E
[
W

(j)
t

(
W

(j)
t

)>]
=α1In + (1− α1)An (5)

E
[
W

(j)
t An

(
W

(j)
t

)>]
=α2In + (1− α2)An (6)

for some constants α1 and α2 satisfying 0 < α2 < α1 < 1
(see Lemmas 6, 7, and 8 in Supplementary Material). Since
the exact expression is too complex, we plot the α1 and
α2 related to different n in Figure 2 and Figure 3 (detailed
discussion is included in Section D in Supplementary Mate-
rial.). Here, we do not plot α2, but plot α1−α2 instead. This
is because α1 − α2 is an important factor in our Theorem
(See Section 5 where we define α1 − α2 as β).

5. Theoretical Guarantees and Discussion
Below we show that, for certain parameter values, RPS with
unreliable communication rates admits the same conver-
gence rate as the standard algorithms. In other words, the
impact of network unreliablity may be seen as negligible.

First let us make some necessary assumptions, that are com-
monly used in analyzing stochastic optimization algorithms.

Assumption 1. We make the following commonly used as-
sumptions:

1. Lipschitzian gradient: All function fi(·)’s are with
L-Lipschitzian gradients, which means

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖

2. Bounded variance: Assume the variance of stochastic
gradient

Eξ∼Di ‖∇Fi(x; ξ)−∇fi(x)‖2 6σ2, ∀i,∀x,

1

n

n∑
i=1

‖∇fi(x)−∇f(x)‖2 6ζ2, ∀i,∀x,

is bounded for any x in each worker i.

3. Start from 0: We assume X1 = 0 for simplicity w.l.o.g.

Next we are ready to show our main result.

Theorem 1 (Convergence of Algorithm 1). Under Assump-
tion 1, choosing γ in Algorithm 1 to be small enough that
satisfies 1 − 6L2γ2

(1−
√
β)2

> 0, we have the following conver-
gence rate for Algorithm 1

1

T

T∑
t=1

(
E ‖∇f(xt)‖2 + (1− Lγ)E

∥∥∇f(Xt)
∥∥2)
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≤2f(0)− 2f(x∗)

γT
+
γLσ2

n
+ 4α2Lγ(σ2 + 3ζ2)

+

(
2α2Lγ + L2γ2 + 12α2L

3γ3
)
σ2C1

(1−
√
β)2

+
3
(
2α2Lγ + L2γ2 + 12α2L

3γ3
)
ζ2C1

(1−
√
β)2

, (7)

where

∇f(xt) =f

(
1

n

n∑
i=1

x
(i)
t

)
,

∇f(Xt) =

n∑
i=1

∇fi
(
x
(i)
t

)
,

β =α1 − α2,

C1 =

(
1− 6L2γ2

(1−
√
β)2

)−1
,

and α1, α2 follows the definition in (5) and (6).

To make the result more clear, we appropriately choose the
learning rate as follows:

Corollary 2. Choose γ = 1−
√
β

6L+3(σ+ζ)
√
α2T+σ

√
T√
n

in Algo-

rithm 1, under Assumption 1, we have the follow conver-
gence rate for Algorithm 1

1

T

T∑
t=1

E ‖∇f(xt)‖2 .
(σ + ζ)

(
1 +
√
nα2

)
(1−

√
β)
√
nT

+
1

T

+
n(σ2 + ζ2)

(1 + nα2)σ2T + nα2Tζ2
,

where β, α1, α2, ∇f(x) follow to the definitions in Theo-
rem 1, and we treat f(0),f∗, and L to be constants.

We discuss our theoretical results below

• (Comparison with centralized SGD and decentral-
ized SGD) The dominant term in the convergence rate
is O(1/

√
nT ) (here we use α2 = O(p(1− p)/n) and

β = O(p) which is shown by Lemma 8 in Supple-
ment), which is consistent with the rate for centralized
SGD and decentralized SGD (Lian et al., 2017a).

• (Linear Speedup) Since the the leading term
of convergence rate for 1

T

∑T
t=1 E ‖∇f(xt)‖2 is

O(1/
√
nT ). It suggests that our algorithm admits the

linear speedup property with respect to the number of
workers n.

• (Better performance for larger networks) Fixing the
package drop rate p (implicitly included in Section D),
the convergence rate under a larger network (increasing

n) would be superior, because the leading terms’ de-
pendence of the α2 = O(p(1− p)/n). This indicates
that the affection of the package drop ratio diminishes,
as we increase the number of workers and parameter
servers.

• (Why only converges to a ball of a critical point)
This is because we use a constant learning rate, the
algorithm could only converges to a ball centered at a
critical point. This is a common choice to make the
statement simpler, just like many other analysis for
SGD. Our proved convergence rate is totally consistent
with SGD’s rate, and could converge (in the same rate)
to a critical point by choosing a decayed learning rate
such as O(1/

√
T ) like SGD.

6. Experiments: Convergence of RPS
We now validate empirically the scalability and accuracy of
the RPS algorithm, given reasonable message arrival rates.

6.1. Experimental Setup
Datasets and models We evaluate our algorithm on two
state of the art machine learning tasks: (1) image classifica-
tion and (2) natural language understanding (NLU). We train
ResNet (He et al., 2016) with different number of layers
on CIFAR-10 (Krizhevsky & Hinton, 2009) for classify-
ing images. We perform the NLU task on the Air travel
information system (ATIS) corpus on a one layer LSTM
network.
Implementation We simulate packet losses by adapting the
latest version 2.5 of the Microsoft Cognitive Toolkit (Seide
& Agarwal, 2016). We implement the RPS algorithm us-
ing MPI. During training, we use a local batch size of 32
samples per worker for image classification. We adjust the
learning rate by applying a linear scaling rule (Goyal et al.,
2017) and decay of 10 percent after 80 and 120 epochs,
respectively. To achieve the best possible convergence, we
apply a gradual warmup strategy (Goyal et al., 2017) during
the first 5 epochs. We deliberately do not use any regular-
ization or momentum during the experiments in order to
be consistent with the described algorithm and proof. The
NLU experiments are conducted with the default parameters
given by the CNTK examples, with scaling the learning rate
accordingly, and omit momentum and regularization terms
on purpose. The training of the models is executed on 16
NVIDIA TITAN Xp GPUs. The workers are connected
by Gigabit Ethernet. We use each GPU as a worker. We
describe the results in terms of training loss convergence,
although the validation trends are similar.
Convergence of Image Classification We perform conver-
gence tests using the analyzed algorithm, model averaging
SGD, on both ResNet110 and ResNet20 with CIFAR-10.
Figure 4(a,b) shows the result. We vary probabilities for
each packet being correctly delivered at each worker be-
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Figure 4: Convergence of RPS on different datasets.

tween 80%, 90%, 95% and 99%. The baseline is 100%
message delivery rate. The baseline achieves a training loss
of 0.02 using ResNet110 and 0.09 for ResNet20. Dropping
1% doesn’t increase the training loss achieved after 160
epochs. For 5% the training loss is identical on ResNet110
and increased by 0.02 on ResNet20. Having a probability of
90% of arrival leads to a training loss of 0.03 for ResNet110
and 0.11 for ResNet20 respectively.
Convergence of NLU We perform full convergence tests
for the NLU task on the ATIS corpus and a single layer
LSTM. Figure 4(c) shows the result. The baseline achieves
a training loss of 0.01. Dropping 1, 5 or 10 percent of the
communicated partial vectors result in an increase of 0.01
in training loss.
Comparison with Gradient Averaging We conduct exper-
iments with identical setup and a probability of 99 percent of
arrival using a gradient averaging methods, instead of model
averaging. When running data distributed SGD, gradient
averaging is the most widely used technique in practice,
also implemented by default in most deep learning frame-
works(Abadi et al., 2016; Seide & Agarwal, 2016). As
expected, the baseline (all the transmissions are success-
ful) convergences to the same training loss as its model
averaging counterpart, when omitting momentum and regu-
larization terms. As seen in figures 5(a,b), having a loss in
communication of even 1 percentage results in worse con-
vergence in terms of accuracy for both ResNet architectures
on CIFAR-10. The reason is that the error of package drop
will accumulate over iterations but never decay, because the
model is the sum of all early gradients, so the model never
converges to the optimal one. Nevertheless, this insight sug-
gests that one should favor a model averaging algorithm over
gradient averaging, if the underlying network connection is
unreliable.

Extended Analysis We report additional experiments with
a brief analysis of the generalization properties regarding
the test accuracy in Section E in the supplementary mate-
rial. We test a wider range of probabilities for each packet
being correctly delivered, and finally analyze the impact of
varying number of nodes at a fixed arrival rate. We use the

default hyperparameter values given by the deep learning
frameworks for all the experiments conducted. As a further
work, one might envisage tuning the hyper-parameters such
as learning rate for a given number of nodes and arrival
probability.

7. Case study: Speeding up Colocated
Applications

Our results on the resilience of distributed learning to losses
of model updates open up an interesting use case. That
model updates can be lost (within some tolerance) with-
out the deterioration of model convergence implies that
model updates transmitted over the physical network can be
de-prioritized compared to other more “inflexible,” delay-
sensitive traffic, such as for Web services. Thus, we can
colocate other applications with the training workloads, and
reduce infrastructure costs for running them. Equivalently,
workloads that are colocated with learning workers can ben-
efit from prioritized network traffic (at the expense of some
model update losses), and thus achieve lower latency.

To demonstrate this in practice, we perform a packet simula-
tion over 16 servers, each connected with a 1 Gbps link to a
network switch. Over this network of 16 servers, we run two
workloads: (a) replaying traces from the machine learning
process of ResNet110 on CIFAR-10 (which translates to a
load of 2.4 Gbps) which is sent unreliably, and (b) a simple
emulated Web service running on all 16 servers. Web ser-
vices often produce significant background traffic between
servers within the data center, consisting typically of small
messages fetching distributed pieces of content to compose
a response (e.g., a Google query response potentially con-
sists of advertisements, search results, and images). We
emulate this intra data center traffic for the Web service as
all-to-all traffic between these servers, with small messages
of 100 KB (a reasonable size for such services) sent reli-
ably between these servers. The inter-arrival time for these
messages follows a Poisson process, parametrized by the
expected message rate, λ (aggregated across the 16 servers).

Different degrees of prioritization of the Web service traffic
over learning traffic result in different degrees of loss in
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Figure 5: Why RPS? The Behavior of Standard SGD in the Presence of Message Drop.
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learning updates transmitted over the network. As the Web
service is prioritized to a greater extent, its performance
improves – its message exchanges take less time; we re-
fer to this reduction in (average) completion time for these
messages as a speed-up. Note that even small speedups of
10% are significant for such services; for example, Google
actively pursues minimizing its Web services’ response la-
tency. An alternative method of quantifying the benefit for
the colocated Web service is to measure how many addi-
tional messages the Web service can send, while maintaining
a fixed average completion time. This translates to running
more Web service queries and achieving more throughput
over the same infrastructure, thus reducing cost per request
/ message.

Fig. 6 and Fig. 7 show results for the above described
Web service speedup and cost reduction respectively. In
Fig. 6, the arrival rate of Web service messages is fixed
(λ = {2000, 5000, 10000} per second). As the network
prioritizes the Web service more and more over learning
update traffic, more learning traffic suffers losses (on the x-
axis), but performance for the Web service improves. With
just 10% losses for learning updates, the Web service can
be sped up by more than 20% (i.e., 1.2×).

In Fig. 7, we set a target average transmission time (2, 5,
or 10 ms) for the Web service’s messages, and increase the
message arrival rate, λ, thus causing more and more losses
for learning updates on the x-axis. But accommodating
higher λ over the same infrastructure translates to a lower
cost of running the Web service (with this reduction shown
on the y-axis).

Thus, tolerating small amounts of loss in model update
traffic can result in significant benefits for colocated services,
while not deteriorating convergence.

8. Conclusion
In this paper, we present a novel analysis for a general model
of distributed machine learning, under a realistic unreliable
communication model. We present a novel theoretical analy-
sis for such a scenario, and evaluated it while training neural
networks on both image and natural language datasets. We
also provided a case study of application collocation, to
illustrate the potential benefit that can be provided by al-
lowing learning algorithms to take advantage of unreliable
communication channels.
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Supplemental Materials
A. Notations
In order to unify notations, we define the following notations about gradient:

g(i)(x
(i)
t ; ξ

(i)
t ) = ∇Fi(x(i)

t ; ξ
(i)
t )

We define In as the n× n identity matrix, 1n as (1, 1, · · · , 1)> and An as 1
n11

>. Also, we suppose the packet drop rate is
p.

The following equation is used frequently:

Tr(XAnX
>) = Tr

(
X

11>

n
X>
)

= nTr

((
X

1

n

)>
X

1

n

)
= n

(
X

1

n

)>
X

1

n
= n

∥∥∥∥X 1

n

∥∥∥∥2 (8)

A.1. Matrix Notations

We aggregate vectors into matrix, and using matrix to simplify the proof.

Xt :=
(
x
(1)
t ,x

(2)
t , · · · ,x(n)

t

)
Vt :=

(
v
(1)
t ,v

(2)
t , · · · ,v(n)t

)
Ξt :=

(
ξ
(1)
t , ξ

(2)
t , · · · , ξ(n)t

)
G(Xt; Ξt) :=

(
g(1)(x

(1)
t ; ξ

(1)
t ), · · · , g(n)(x(n)

t ; ξ
(n)
t )

)
A.2. Averaged Notations

We define averaged vectors as follows:

xt :=
1

n

n∑
i=1

x
(i)
t (9)

vt :=
1

n

n∑
i=1

vt (10)

g(Xt; Ξt) :=

n∑
i=1

g(i)(x
(i)
t ; ξ

(i)
t ) (11)

∇f(Xt) :=
1

n

n∑
i=1

fi(x
(i)
t )

∆xt := xt+1 − xt

A.3. Block Notations

Remember in (2) and (3), we have divided models in blocks:

v
(i)
t =

((
v
(i,1)
t

)>
,
(
v
(i,2)
t

)>
, · · · ,

(
v
(i,n)
t

)>)>
x
(i)
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x
(i,1)
t

)>
,
(
x
(i,2)
t

)>
, · · · ,

(
x
(i,n)
t

)>)>
,∀i ∈ [n].

We do the some division on some other quantities, see following (the dimension of each block is the same as the corresponding
block in v(i)t ) :

xt =

((
x
(1)
t

)>
,
(
x
(2)
t

)>
, · · · ,

(
x
(n)
t

)>)>
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A.4. Aggregated Block Notations

Now, we can define some additional notations throughout the following proof

X
(j)
t :=(x

(1,j)
t ,x

(2,j)
t , · · · ,x(n,j)

t )

V
(j)
t :=(v

(1,j)
t ,v

(2,j)
t , · · · ,v(n,j)t )

G(j)(Xt; Ξt) :=
(
g(1,j)(x

(1)
t ; ξ

(1)
t ), · · · , g(n,j)(x(n)

t ; ξ
(n)
t )

)
A.5. Relations between Notations

We have the following relations between these notations:

x
(j)
t = X

(j)
t

1

n
(12)

v
(j)
t = V

(j)
t

1

n
(13)

g(j)(Xt; Ξt) = G(j)(Xt; Ξt)
1

n
(14)

AnAn = An (15)
Vt = Xt − γG(Xt; Ξt) (16)

V
(j)
t = X

(j)
t − γG(j)(Xt; Ξt) (17)

A.6. Expectation Notations

There are different conditions when taking expectations in the proof, so we list these conditions below: Et,G[·] Denote taking
the expectation over the computing stochastic Gradient procedure at tth iteration on condition of the history information
before the tth iteration. Et,P [·] Denote taking the expectation over the Package drop in sending and receiving blocks
procedure at tth iteration on condition of the history information before the tth iteration and the SGD procedure at the
tth iteration. Et[·] Denote taking the expectation over all procedure during the tth iteration on condition of the history
information before the tth iteration. E[·] Denote taking the expectation over all history information.

B. Proof to Theorem 1
The critical part for a decentralized algorithm to be successful, is that local model on each node will converge to their
average model. We summarize this critical property by the next lemma.
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Lemma 3. From the updating rule (4) and Assumption 1, we have

T∑
s=1

n∑
i=1

E
∥∥∥x(i)

s+1 − xs+1

∥∥∥2 ≤2γ2nσ2TC1

(1−
√
β)2

+
6nζ2TC1

(1−
√
β)2

, (18)

where C1 :=
(

1− 6L2γ2

(1−
√
β)2

)−1
and β = α1 − α2.

We will prove this critical property first. Then, after proving some lemmas, we will prove the final theorem. During the
proof, we will use properties of weighted matrix W (j)

t which is showed in Section D.

B.1. Proof of Lemma 3

Proof to Lemma 3. According to updating rule (4) and Assumption 1, we have

X
(j)
t+1 =V

(j)
t W

(j)
t

=
(
X

(j)
t − γG(j)(Xt; Ξt)

)
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=− γ
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r . (due to X1 = 0) (19)

We also have
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(j)
t+1

1

n
1>n

∥∥∥∥2
F

=
∥∥∥X(j)

t+1 −X
(j)
t+1An

∥∥∥2
F

(20)

Combing (19) and (20) together, and define

H
(j)
t,s := G(j)(Xs; Ξs)

t∏
r=s

W (j)
r

we get

n∑
i=1

∥∥∥(x(i,j)
t+1 − x

(j)
t+1

)∥∥∥2 =
∥∥∥X(j)

t+1(In −An)
∥∥∥2
F

=γ2

∥∥∥∥∥
t∑

s=1

H
(j)
t,s (In −An)

∥∥∥∥∥
2

F

=γ2 Tr

(
(In −An)

t∑
s=1

(
H

(j)
t,s

)> t∑
s′=1

H
(j)
t,s′(I −An)

)

=γ2
t∑

s,s′=1

Tr

(
(In −An)

(
H

(j)
t,s

)>
H

(j)
t,s′(I −An)

)

≤γ
2

2

t∑
s,s′=1

(
ks,s′

∥∥∥H(j)
t,s (In −An)

∥∥∥2
F

+
1

ks,s′

∥∥∥H(j)
t,s′(In −An)

∥∥∥2
F

)
, (21)

where ks,s′ is a scale factor that is to be computed later. The last inequality is because 2 Tr(A>B) ≤ k‖A‖2F + 1
k‖B‖

2
F for

any matrix A and B.
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For
∥∥∥H(j)

t,s (In −An)
∥∥∥2
F

, we have

E
∥∥∥H(j)

t,s (In −An)
∥∥∥2
F

=ETr

(
G(j)(Xs; Ξs)W

(j)
s · · ·W

(j)
t (In −An)

(
W

(j)
t

)>
· · ·
(
W (j)
s

)> (
G(j)(Xs; Ξs)

)>)
. (22)

Now we can take expectation from time t − 1 back to time s − 1. When taking expectation of time t, we only need to

compute E
[
W

(j)
t (In −An)

(
W

(j)
t

)>]
. From Lemma 7 and Lemma 8, this is just (α1 − α2)(In −An). Applying this to

(22), we can get the similar form except replacing t by t− 1 and multiplying by factor α1 − α2. Therefore, we have the
following:

E
∥∥∥H(j)

t,s (In −An)
∥∥∥2
F

=(α1 − α2)t−s+1E
∥∥∥G(j)(Xs; Ξs)(In −An)

∥∥∥2
F

≤(α1 − α2)t−sE
∥∥∥G(j)(Xs; Ξs)(In −An)

∥∥∥2
F
.

The last inequality comes from α2 ≤ α1c and β = α1 − α2 is defined in Theorem 1 .

Then (21) becomes

n∑
i=1

∥∥∥(x(i,j)
t+1 − x

(j)
t+1

)∥∥∥2
≤γ

2

2

t∑
s,s′=1

(
ks,s′β

t−s
∥∥∥G(j)(Xs; Ξs)(In −An)

∥∥∥2
F

+
1

ks,s′
βt−s

′
∥∥∥G(j)(Xs′ ; ξs′)(In −An)

∥∥∥2
F

)
.

So if we choose ks,s′ = β
s−s′

2 , the above inequality becomes

n∑
i=1

∥∥∥(x(i,j)
t+1 − x

(j)
t+1

)∥∥∥2
≤γ

2

2

t∑
s,s′=1

(
β

2t−s−s′
2

∥∥∥G(j)(Xs; Ξs)(In −An)
∥∥∥2
F

+ β
2t−s′−s

2

∥∥∥G(j)(Xs′ ; ξs′)(In −An)
∥∥∥2
F

)

=
γ2βt

2

t∑
s,s′=1

β
−s−s′

2

(∥∥∥G(j)(Xs; Ξs)(In −An)
∥∥∥2
F

+
∥∥∥G(j)(Xs′ ; ξs′)(In −An)

∥∥∥2
F

)

=γ2βt
t∑

s,s′=1

β
−s−s′

2

∥∥∥G(j)(Xs; Ξs)(In −An)
∥∥∥2
F

=γ2
t∑

s=1

β
t−s
2

∥∥∥G(j)(Xs; Ξs)(In −An)
∥∥∥2
F

t∑
s′=1

β
t−s′

2

≤ γ2

1−
√
β

t∑
s=1

β
t−s
2

∥∥∥G(j)(Xs; Ξs)(In −An)
∥∥∥2
F

(23)

We also have:
n∑
j=1

E
∥∥∥G(j)(Xs; Ξs)(In −An)

∥∥∥2
F

=

n∑
j=1

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )− g(j)(Xt; Ξt)

∥∥∥2
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≤
n∑
j=1

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )−∇(j)fi(x

(i)
t )
∥∥∥2

+ 3

n∑
j=1

n∑
i=1

∥∥∥∇(j)fi(xt)−∇(j)f(xt)
∥∥∥2 + 6L

n∑
j=1

n∑
i=1

∥∥∥x(i,j)
t − x(j)

t

∥∥∥2 (using (31))

=

n∑
i=1

Et,G
∥∥∥g(i)(x(i)

t ; ξ
(i)
t )−∇f (i)(x(i)

t )
∥∥∥2

+ 3

n∑
i=1

∥∥∥∇f (i)(xt)−∇f(xt)
∥∥∥2 + 6L

n∑
i=1

∥∥∥x(i)
t − xt

∥∥∥2
≤nσ2 + 6L

n∑
i=1

∥∥∥xs − x(i)
s

∥∥∥2 + 3nζ2

From the inequality above and (23) we have
n∑
j=1

T∑
s=1

n∑
i=1

E
∥∥∥x(i,j)

s+1 − x
(j)
s+1

∥∥∥2

≤

 γ2nσ2

1−
√
β

+

n∑
j=1

3nζ2

1−
√
β

 T∑
s=1

s∑
r=1

β
s−r
2 +

6L2γ2

1−
√
β

T∑
s=1

s∑
r=1

n∑
i=1

β
s−r
2

∥∥∥xr − x(i)
r

∥∥∥2

≤ γ2nσ2T

(1−
√
β)2

+
nζ2T

(1−
√
β)2

+
6L2γ2

1−
√
β

n∑
i=1

T∑
s=1

s∑
r=1

β
s−r
2

∥∥∥xr − x(i)
r

∥∥∥2
=

γ2nσ2T

(1−
√
β)2

+
3nζ2T

(1−
√
β)2

+
6L2γ2

1−
√
β

n∑
i=1

T∑
r=1

T∑
s=r

β
s−r
2

∥∥∥xr − x(i)
r

∥∥∥2
=

γ2nσ2T

(1−
√
β)2

+
3nζ2T

(1−
√
β)2

+
6L2γ2

1−
√
β

n∑
i=1

T∑
r=1

T−r∑
s=0

β
s
2

∥∥∥xr − x(i)
r

∥∥∥2
≤ γ2nσ2T

(1−
√
β)2

+
3nζ2T

(1−
√
β)2

+
6L2γ2

(1−
√
β)2

n∑
i=1

T∑
r=1

∥∥∥xr − x(i)
r

∥∥∥2 .
If γ is small enough that satisfies

(
1− 6L2γ2

(1−
√
β)2

)
> 0, then we have(

1− 6L2γ2

(1−
√
β)2

) T∑
s=1

n∑
i=1

E
∥∥∥x(i)

s − xs
∥∥∥2 ≤ γ2nσ2T

(1−
√
β)2

+
3nζ2T

(1−
√
β)2

.

Denote C1 :=
(

1− 6L2γ2

(1−
√
β)2

)−1
, then we have

T∑
s=1

n∑
i=1

E
∥∥∥x(i)

s − xs
∥∥∥2 ≤2γ2nσ2TC1

(1−
√
β)2

+
6nζ2TC1

(1−
√
β)2

.

B.2. Proof to Theorem 1

Lemma 4. From the updating rule (4) and Assumption 1, we have

Et,P
[
‖∆xt‖2

]
=
α2

n

n∑
j=1

Tr

((
V

(j)
t

)>
(In −An)V

(j)
t

)
+ γ2 ‖g(Xt; Ξt)‖2 ,

Et,P [∆xt] =− γg(Xt; Ξt).
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Proof. We begin with Et,P
[
‖∆xt‖2

]
:

Et,P
[
‖∆xt‖2

]
=

n∑
j=1

Et,P
[ ∥∥∥∆(j)xt

∥∥∥2 ]
(12)

====

n∑
j=1

Et,P
[ ∥∥∥∥(X(j)

t+1 −X
(j)
t

) 1n
n

∥∥∥∥2 ]

=

n∑
j=1

Et,P
[ ∥∥∥∥(V (j)

t W
(j)
t −X(j)

t

) 1n
n

∥∥∥∥2 ]
(8)

===
1

n

n∑
j=1

Et,P
[

Tr

((
V

(j)
t W

(j)
t −X(j)

t

)
An

((
W

(j)
t

)> (
V

(j)
t

)>
−
(
X

(j)
t

)>))]

=
1

n

n∑
j=1

Tr

(
V

(j)
t Et,P

[
W

(j)
t An

(
W

(j)
t

)>](
V

(j)
t

)>)

− 2

n

n∑
j=1

Tr

(
X

(j)
t AnEt,P

[(
W

(j)
t

)>](
V

(j)
t

)>)
+

1

n

n∑
j=1

Tr

(
X

(j)
t An

(
X

(j)
t

)>)

=
α2

n

n∑
j=1

Tr

(
V

(j)
t (In −An)

(
V

(j)
t

)>)
+

1

n

n∑
j=1

Tr

(
V

(j)
t An

(
V

(j)
t

)>)

− 2

n

n∑
j=1

Tr

(
X

(j)
t An

(
V

(j)
t

)>)
+

1

n

n∑
j=1

Tr

(
X

(j)
t An

(
X

(j)
t

)>)
, (24)

where for the last two equations, we use Lemma (8), Lemma(6), and (15). From (16), we can obtain the following equation:

V
(j)
t An

(
V

(j)
t

)>
=X

(j)
t An

(
X

(j)
t

)>
− γG(j)(Xt; Ξt)An

(
X

(j)
t

)>
− γX(j)

t An

(
G(j)(Xt; Ξt)

)>
+ γ2G(j)(Xt; Ξt)An

(
G(j)(Xt; Ξt)

)>
X

(j)
t An

(
V

(j)
t

)>
=X

(j)
t An

(
X

(j)
t

)>
− γG(j)(Xt; Ξt)An

(
X

(j)
t

)>
, (25)

From the property of trace, we have:

Tr

(
G(j)(Xt; Ξt)An

(
X

(j)
t

)>)
= Tr

(
X

(j)
t A>n

(
G(j)(Xt; Ξt)

)>)
= Tr

(
X

(j)
t An

(
G(j)(Xt; Ξt)

)>)
. (26)

Combing (24), (25) and (26), we have

Et,P ‖∆xt‖2 =
α2

n

n∑
j=1

Tr

(
V

(j)
t (In −An)

(
V

(j)
t

)>)
+
γ2

n

n∑
j=1

Tr

(
G(j)(Xt; Ξt)An

(
G(j)(Xt; Ξt)

)>)
(8)

===
α2

n

n∑
j=1

Tr

(
V

(j)
t (In −An)

(
V

(j)
t

)>)
+ γ2

n∑
j=1

∥∥∥∥G(j)(Xt; Ξt)
1n
n

∥∥∥∥2
(14)

====
α2

n

n∑
j=1

Tr

(
V

(j)
t (In −An)

(
V

(j)
t

)>)
+ γ2 ‖g(Xt; Ξt)‖2 .

For Et,P [∆xt], we first compute Et,P [∆(j)xt], (j ∈ [n]).

Et,P [∆(j)xt] = Et,P [x
(j)
t+1]− Et,P [x

(j)
t ]

= Et,P
[
X

(j)
t

] 1
n
− x(j)

t
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= V
(j)
t Et,P

[
W

(j)
t

] 1
n
− x(j)

t

Lemma (6)
======= V

(j)
t (α1In + (1− α1)An)

1

n
− x(j)

t

= V
(j)
t

1

n
− x(j)

t

= v
(j)
t − x

(j)
t

= −γg(j)(Xt; Ξt),

which immediately leads to Et,P [∆xt] = −γg(Xt; Ξt).

Lemma 5. From the updating rule (4) and Assumption 1, we have

n∑
j=1

Et,G
[
Tr

(
V

(j)
t (In −An)

(
V

(j)
t

)>)]
≤(2 + 12γ2L)

n∑
i=1

∥∥∥(x(i)
t − xt

)∥∥∥2 + 6nγ2ζ2 + 2nγ2σ2.

Proof.

Tr

(
V

(j)
t (In −An)

(
V

(j)
t

)>)
= Tr

(
V

(j)
t

(
V

(j)
t

)>)
− Tr

(
V

(j)
t An

(
V

(j)
t

)>)
(8

===
∥∥∥V (j)

t

∥∥∥2
F
− n

∥∥∥∥V (j)
t

1n
n

∥∥∥∥2
=

n∑
i=1

(∥∥∥v(i,j)t

∥∥∥2 − ∥∥∥v(j)t ∥∥∥2)

=

n∑
i=1

∥∥∥v(i,j)t − v(j)t
∥∥∥2 , (27)

the last equation above is because

n∑
i=1

‖ai‖2 −

∥∥∥∥∥
n∑
i=1

ai
n

∥∥∥∥∥
2

=

n∑
i=1

∥∥∥∥∥ai −
n∑
k=1

ai
n

∥∥∥∥∥
2

. (28)

Since

v
(j)
t =x

(j)
t − γg(j)(Xt; Ξt)

v
(i,j)
t − v(j)t =

(
x
(i,j)
t − x(j)

t

)
− γ

(
g(i,j)(x

(i)
t ; ξ

(i)
t )− g(j)(Xt; Ξt)

)
,

we have the following:

n∑
i=1

∥∥∥v(i,j)t − v(j)t
∥∥∥2 =

n∑
i=1

∥∥∥(x(i,j)
t − x(j)

t

)
− γ

(
g(i,j)(x

(i)
t ; ξ

(i)
t )− g(j)(Xt; Ξt)

)∥∥∥2
≤2

n∑
i=1

∥∥∥(x(i,j)
t − x(j)

t

)∥∥∥2 + 2γ2
n∑
i=1

∥∥∥g(i,j)(x(i)
t ; ξ

(i)
t )− g(j)(Xt; Ξt)

∥∥∥2 , (29)

where the last inequality comes from ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2.

For
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )− g(j)(Xt; Ξt)

∥∥∥2, we have

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )− g(j)(Xt; Ξt)

∥∥∥2
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(28)
====

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )
∥∥∥2 − nEt,G ∥∥∥g(j)(Xt; Ξt)

∥∥∥2
=

n∑
i=1

Et,G
∥∥∥(g(i,j)(x(i)

t ; ξ
(i)
t )−∇(j)fi(x

(i)
t )
)

+∇(j)fi(x
(i)
t )
∥∥∥2

− nEt,G
∥∥∥(g(j)(Xt; Ξt)−∇

(j)
f(Xt)

)
+∇(j)

f(Xt)
∥∥∥2

=

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )−∇(j)fi(x

(i)
t )
∥∥∥2 +

n∑
i=1

∥∥∥∇(j)fi(x
(i)
t )
∥∥∥2 − nEt,G ∥∥∥g(j)(Xt; Ξt)−∇

(j)
f(Xt)

∥∥∥2
− n

∥∥∥∇(j)
f(Xt)

∥∥∥2 + 2

n∑
i=1

Et,G
[〈
g(i,j)(x

(i)
t ; ξ

(i)
t )−∇(j)fi(x

(i)
t ),∇(j)fi(x

(i)
t )
〉]

− 2nEt,G
[〈
g(j)(Xt; Ξt)−∇

(j)
f(Xt),∇

(j)
f(Xt)

〉]
=

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )−∇(j)fi(x

(i)
t )
∥∥∥2 +

n∑
i=1

∥∥∥∇(j)fi(x
(i)
t )
∥∥∥2 − nEt,G ∥∥∥g(j)(Xt; Ξt)−∇

(j)
f(Xt)

∥∥∥2
− n

∥∥∥∇(j)
f(Xt)

∥∥∥2
≤

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )−∇(j)fi(x

(i)
t )
∥∥∥2 +

n∑
i=1

∥∥∥∇(j)fi(x
(i)
t )
∥∥∥2 − n∥∥∥∇(j)

f(Xt)
∥∥∥2 . (30)

For
∑n
i=1

∥∥∥∇(j)fi(x
(i)
t )
∥∥∥2 − n∥∥∥∇(j)

f(Xt)
∥∥∥2, we have

n∑
i=1

∥∥∥∇(j)fi(x
(i)
t )
∥∥∥2 − n∥∥∥∇(j)

f(Xt)
∥∥∥2

(28)
====

n∑
i=1

∥∥∥∇(j)fi(x
(i)
t )−∇(j)

f(Xt)
∥∥∥2

=

n∑
i=1

∥∥∥(∇(j)fi(x
(i)
t )−∇(j)fi(xt)

)
−
(
∇(j)

f(Xt)−∇(j)f(xt)
)

+
(
∇(j)fi(xt)−∇(j)f(xt)

)∥∥∥2
≤3

n∑
i=1

∥∥∥∇(j)fi(x
(i)
t )−∇(j)fi(xt)

∥∥∥2 + 3

n∑
i=1

∥∥∥∇(j)
f(Xt)−∇(j)f(xt)

∥∥∥2
+ 3

n∑
i=1

∥∥∥∇(j)fi(xt)−∇(j)f(xt)
∥∥∥2 (due to ‖a+ b+ c‖2 ≤ 3 ‖a‖2 + 3 ‖‖2 + 3 ‖c‖2

)
≤3L2

n∑
i=1

∥∥∥x(i,j)
t − x(j)

t

∥∥∥2 + 3n
∥∥∥∇(j)

f(Xt)−∇(j)f(xt)
∥∥∥2 + 3

n∑
i=1

∥∥∥∇(j)fi(xt)−∇(j)f(xt)
∥∥∥2

=3L2
n∑
i=1

∥∥∥x(i,j)
t − x(j)

t

∥∥∥2 +
3

n

∥∥∥∥∥
n∑
k=1

(
∇(j)fk(x

(k)
t )−∇(j)fi(xt)

)∥∥∥∥∥
2

+ 3

n∑
i=1

∥∥∥∇(j)fi(xt)−∇(j)f(xt)
∥∥∥2

≤3L2
n∑
i=1

∥∥∥x(i,j)
t − x(j)

t

∥∥∥2 + 3

n∑
k=1

∥∥∥∇(j)fk(x
(k)
t )−∇(j)fk(xt)

∥∥∥2 + 3

n∑
i=1

∥∥∥∇(j)fi(xt)−∇(j)f(xt)
∥∥∥2

≤3L2
n∑
i=1

∥∥∥x(i,j)
t − x(j)

t

∥∥∥2 + 3L2
n∑
k=1

∥∥∥x(k,j)
t − x(j)

t

∥∥∥2 + 3

n∑
i=1

∥∥∥∇(j)fi(xt)−∇(j)f(xt)
∥∥∥2

≤6L2
n∑
i=1

∥∥∥x(i,j)
t − x(j)

t

∥∥∥2 + 3

n∑
i=1

∥∥∥∇(j)fi(xt)−∇(j)f(xt)
∥∥∥2 .
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Taking the above inequality into (30), we get

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )− g(j)(Xt; Ξt)

∥∥∥2
≤

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )−∇(j)fi(x

(i)
t )
∥∥∥2 + 3

n∑
i=1

∥∥∥∇(j)fi(xt)−∇(j)f(xt)
∥∥∥2

+ 6L2
n∑
i=1

∥∥∥x(i,j)
t − x(j)

t

∥∥∥2 . (31)

Combinig (29) and (31) together we have

Et,G
n∑
i=1

∥∥∥v(i,j)t − v(j)t
∥∥∥2 ≤(2 + 12L2γ2)

n∑
i=1

∥∥∥x(i,j)
t − x(j)

t

∥∥∥2 + 6γ2
n∑
i=1

∥∥∥∇(j)fi(xt)−∇(j)f(xt)
∥∥∥2

+ 2γ2
n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )−∇(j)fi(x

(i)
t )
∥∥∥2

Summing j from 1 to n, we obtain the following:

Et,G
n∑
i=1

∥∥∥v(i)t − vt∥∥∥2 ≤(2 + 12L2γ2)

n∑
i=1

∥∥∥x(i)
t − xt

∥∥∥2 + 6γ2
n∑
i=1

‖∇fi(xt)−∇f(xt)‖2

+ 2γ2
n∑
i=1

Et,G
∥∥∥g(i)(x(i)

t ; ξ
(i)
t )−∇fi(x(i)

t )
∥∥∥2

≤(2 + 12L2γ2)

n∑
i=1

∥∥∥(x(i)
t − xt

)∥∥∥2 + 6nγ2ζ2 + 2nγ2σ2. (32)

From (27) and (32), we have

n∑
j=1

Et,G Tr

(
V

(j)
t (In −An)

(
V

(j)
t

)>)
≤(2 + 12γ2L)

n∑
i=1

∥∥∥(x(i)
t − xt

)∥∥∥2 + 6nγ2ζ2 + 2nγ2σ2.

Proof to Theorem 1. From Lemma 6 and Lemma 8, we have

Et,P (W
(j)
t ) =α1In + (1− α1)An

Et,P
(
W

(j)
t An

(
W

(j)
t

)>)
=α2In + (1− α2)An

From the updating rule (4) and L-Lipschitz of f , we have

Et,P f(Xt+1) ≤f(Xt) + Et,P 〈∇f(Xt),∆xt〉+ Et,P
L

2
‖xt‖2

Lemma 4
======f(Xt)− γ〈∇f(Xt), γg(Xt; Ξt)〉+ Et,P

L

2
‖xt‖2

Lemma 4
======f(Xt)− γ〈∇f(Xt), γg(Xt; Ξt)〉+

α2L

2n

n∑
j=1

Tr

(
V

(j)
t (In −An)

(
V

(j)
t

)>)

+

n∑
j=1

γ2L

2
Et,G

∥∥∥g(j)(Xt; Ξt)
∥∥∥2 .



Distributed Learning over Unreliable Networks

So

Etf(Xt+1) ≤f(Xt)− γ〈∇f(Xt),∇f(Xt)〉+
α2L

2n

n∑
j=1

Et,G Tr

(
V

(j)
t (In −An)

(
V

(j)
t

)>)

+
γ2L

2

n∑
j=1

Et,G
∥∥∥g(j)(Xt; Ξt)

∥∥∥2 . (33)

Since

Et,G
∥∥∥g(j)(Xt; Ξt)

∥∥∥2 =Et,G
∥∥∥(g(j)(Xt; Ξt)−∇

(j)
f(Xt)

)
+∇(j)

f(Xt)
∥∥∥2

=Et,G
∥∥∥g(j)(Xt; Ξt)−∇

(j)
f(Xt)

∥∥∥2 + E
∥∥∥∇(j)

f(Xt)
∥∥∥2

+ 2Et,G

〈
g(j)(Xt; Ξt)−∇

(j)
f(Xt),∇

(j)
f(Xt)

〉
=Et,G

∥∥∥g(j)(Xt; Ξt)−∇
(j)
f(Xt)

∥∥∥2 +
∥∥∥∇(j)

f(Xt)
∥∥∥2 ,

and
n∑
j=1

Et,G
∥∥∥g(j)(Xt; Ξt)−∇

(j)
f(Xt)

∥∥∥2

=
1

n2

n∑
j=1

Et,G

∥∥∥∥∥
n∑
i=1

(
g(i,j)(x

(i)
t ; ξ

(i)
t )−∇(j)fi(x

(i)
t )
)∥∥∥∥∥

2

=
1

n2

n∑
j=1

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )−∇(j)fi(x

(i)
t )
∥∥∥2

+
1

n2

n∑
j=1

Et,G
∑
i6=i′

〈
g(i,j)(x

(i)
t ; ξ

(i)
t )−∇(j)fi(x

(i)
t ), g(i

′,j)(x
(i′)
t ; ξ

(i′)
t )−∇(j)fi′(x

(i′)
t )

〉
=

1

n2

n∑
j=1

n∑
i=1

Et,G
∥∥∥g(i,j)(x(i)

t ; ξ
(i)
t )−∇(j)fi(x

(i)
t )
∥∥∥2

=
1

n2

n∑
i=1

Et,G
∥∥∥g(i)(x(i)

t ; ξ
(i)
t )−∇fi(x(i)

t )
∥∥∥2

≤ 1

n2

n∑
i=1

σ2

=
σ2

n

then we have

Et,G
n∑
j=1

∥∥∥g(j)(Xt; Ξt)
∥∥∥2 ≤σ2

n
+

n∑
j=1

∥∥∥∇(j)
f(Xt)

∥∥∥2 (34)

Combining (33) and (34), we have

Etf(Xt+1) ≤f(Xt)− γ〈∇f(Xt),∇f(Xt)〉+
α2L

2n

n∑
j=1

Et,G Tr

(
V

(j)
t (In −An)

(
V

(j)
t

)>)

+
γ2Lσ2

2n
+
γ2L

2

n∑
j=1

∥∥∥∇(j)
f(Xt)

∥∥∥2



Distributed Learning over Unreliable Networks

≤f(Xt)− γ〈∇f(Xt),∇f(Xt)〉+
γ2Lσ2

2n
+
γ2L

2

n∑
j=1

∥∥∥∇(j)
f(Xt)

∥∥∥2
+
α2L(2 + 12L2γ2)

2n

n∑
i=1

n∑
j=1

∥∥∥(x(i,j)
t − x(j)

t

)∥∥∥2 + 2α2L
2γ2σ2 + 6α2Lζ

2γ2 (due to Lemma 5 )

=f(Xt)− γ〈∇f(Xt),∇f(Xt)〉+
γ2Lσ2

2n
+
γ2L

2

∥∥∇f(Xt)
∥∥2

+
α2L(2 + 12L2γ2)

2n

n∑
i=1

∥∥∥(x(i)
t − xt

)∥∥∥2 + 2α2Lσ
2γ2 + 6α2Lζ

2γ2

=f(Xt)−
γ

2

∥∥∇f(Xt)
∥∥2 − γ

2

∥∥∇f(Xt)
∥∥2 +

γ

2

∥∥∇f(Xt)−∇f(Xt)
∥∥2 +

γ2Lσ2

2n

+
γ2L

2

∥∥∇f(Xt)
∥∥2 +

α2L(2 + 12L2γ2)

2n

n∑
i=1

∥∥∥(x(i)
t − xt

)∥∥∥2 + 2α2Lσ
2γ2 + 6α2Lζ

2γ2. (35)

Since

∥∥∇f(Xt)−∇f(Xt)
∥∥2 =

1

n2

∥∥∥∥∥
n∑
i=1

(
∇fi(Xt)−∇fi(x(i)

t )
)∥∥∥∥∥

2

≤ 1

n

n∑
i=1

∥∥∥∇fi(Xt)−∇fi(x(i)
t )
∥∥∥2

≤L
2

n

n∑
i=1

∥∥∥Xt − x(i)
t

∥∥∥2 .
So (35) becomes

Etf(Xt+1) ≤f(Xt)−
γ

2

∥∥∇f(Xt)
∥∥2 − γ

2

∥∥∇f(Xt)
∥∥2 +

γ2Lσ2

2n

+
γ2L

2

∥∥∇f(Xt)
∥∥2 +

α2L(2 + 12L2γ2) + L2γ

2n

n∑
i=1

∥∥∥(x(i)
t − xt

)∥∥∥2 + 2α2Lσ
2γ2 + 6α2Lζ

2γ2

=f(Xt)−
γ

2

∥∥∇f(Xt)
∥∥2 − γ(1− Lγ)

2

∥∥∇f(Xt)
∥∥2 +

γ2Lσ2

2n
+ 2α2Lσ

2γ2 + 6α2Lζ
2γ2

+
α2L(2 + 12L2γ2) + L2γ

2n

n∑
i=1

∥∥∥(x(i)
t − xt

)∥∥∥2 .
Taking the expectation over the whole history, the inequality above becomes

Ef(Xt+1) ≤Ef(Xt)−
γ

2
E
∥∥∇f(Xt)

∥∥2 − γ(1− Lγ)

2
E
∥∥∇f(Xt)

∥∥2 +
γ2Lσ2

2n
+ 2α2Lσ

2γ2 + 6α2Lζ
2γ2

+
α2L(2 + 12L2γ2) + L2γ

2n

n∑
i=1

E
∥∥∥(x(i)

t − xt
)∥∥∥2 ,

which implies

γ

2
E
∥∥∇f(Xt)

∥∥2 +
γ(1− Lγ)

2
E
∥∥∇f(Xt)

∥∥2 ≤Ef(Xt)− Ef(Xt+1) +
γ2Lσ2

2n
+ 2α2Lσ

2γ2 + 6α2Lζ
2γ2

+
α2L(2 + 12L2γ2) + L2γ

2n

n∑
i=1

E
∥∥∥(x(i)

t − xt
)∥∥∥2 . (36)
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Summing up both sides of (36), it becomes

T∑
t=1

(
E
∥∥∇f(Xt)

∥∥2 + (1− Lγ)E
∥∥∇f(Xt)

∥∥2)
≤2(f(x0)− Ef(xT+1))

γ
+
γLσ2T

n
+ 4α2Lσ

2γT + 12α2Lζ
2γT

+
α2L(2 + 12L2γ2) + L2γ

2nγ

T∑
t=1

n∑
i=1

E
∥∥∥(x(i)

t − xt
)∥∥∥2 . (37)

According to Lemma 3, we have

T∑
t=1

n∑
i=1

E
∥∥∥x(i)

t − xt
∥∥∥2 ≤2γ2nσ2TC1

(1−
√
β)2

+
6nζ2TC1

(1−
√
β)2

,

where C1 =
(

1− 6L2γ2

(1−
√
β)2

)−1
. Combing the inequality above with (37) we get

1

T

T∑
t=1

(
E
∥∥∇f(Xt)

∥∥2 + (1− Lγ)E
∥∥∇f(Xt)

∥∥2)
≤2f(0)− 2f(x∗)

γT
+
γLσ2

n
+ 4α2Lγ(σ2 + 3ζ2)

+

(
α2Lγ(2 + 12L2γ2) + L2γ2

)
σ2C1

(1−
√
β)2

+
3
(
α2Lγ(2 + 12L2γ2) + L2γ2

)
ζ2C1

(1−
√
β)2

.

C. Proof to Corollary 2
Proof to Corollary 2. Setting

γ =
1−
√
β

6L+ 3(σ + ζ)
√
α2T + σ

√
T√
n

,

then we have

1− Lγ ≥0

C1 ≤2

2 + 12L2γ2 ≤4

So (7) becomes

1

T

T∑
t=1

E
∥∥∇f(Xt)

∥∥2 ≤ (2f(0)− 2f(x∗) + L)σ√
nT (1−

√
β)

+
(2f(0)− 2f(x∗) + L)(σ + ζ)

1−
√
β

√
α2

T

+
(2f(0)− 2f(x∗))L

T
+

L2(σ2 + ζ2)

(Tn + α2T )σ2 + α2Tζ2
,

1

T

T∑
t=1

E
∥∥∇f(Xt)

∥∥2 .
σ + ζ

(1−
√
β)
√
nT

+
σ + ζ

(1−
√
β)

√
α2

T
+

1

T
+

n(σ2 + ζ2)

(1 + nα2)σ2T + nα2Tζ2
.
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D. Properties of Weighted Matrix W
(j)
t

In this section, we will give three properties of W (j)
t , described by Lemma 6, Lemma 7 and Lemma 8.

Throughout this section, we will frequently use the following two fact: Fact 1: 1
m+1

(
n
m

)
= 1

n+1

(
n+1
m+1

)
. Fact 2:

1
(m+1)(m+2)

(
n
m

)
= 1

(n+1)(n+2)

(
n+2
m+2

)
.

Lemma 6. Under the updating rule (4), there exists α1 ∈ [0, 1], s.t.,∀j ∈ [n],∀ time t,

Et,P
[
W

(j)
t

]
= α1In + (1− α1)An.

Proof. Because of symmetry, we will fix j, say, j = 1. So for simplicity, we omit superscript (j) for all quantities in this
proof, the subscript t for W , and the subscript t, P for E, because they do not affect the proof.

First we proof: ∃α1, s.t.
E[W ] = α1In + (1− α1)An. (38)

Let us understand the meaning of the element of W . For the (k, l)th element Wkl. From Xt+1 = VtW , we know that, Wkl

represents the portion that v(l)t will be in x(k)
t+1 (the block number j has been omitted, as stated before). For v(l)t going into

x
(k)
t+1, it should first sent from k, received by node bt (also omit j), averaged with other jth blocks by node bt, and at last

sent from bt to l. For all pairs (k, l) satisfied k 6= l, the expectations of Wkl are equivalent because of the symmetry (the
same packet drop rate, and independency). For the same reason, the expectations of Wkl are also equivalent for all pairs
(k, l) satisfied k = l. But for two situations that k = l and k 6= l, the expectation need not to be equivalent. This is because
when the sending end l is also the receiving end k, node l (or k) will always keep its own portion v(l)t if l is also the node
dealing with block j, which makes a slight different.

Lemma 7. Under the updating rule (4), there exists α1 ∈ [0, 1], s.t.,∀j ∈ [n],∀ time t,

Et,P
[
W

(j)
t W

(j)
t

>]
= α1In + (1− α1)An.

Moreover, α1 satisfies:

α1 ≤
np+ (1− p)n + nT1 + nT2 − 1

n− 1
,

where

T1 =
2
(
1− pn+1 − (n+ 1)(1− p)pn − (n+ 1)n(1− p)2pn−1/2− (1− p)n+1

)
n(n+ 1)(1− p)2

,

T2 =
1− pn − n(1− p)pn−1 − (1− p)n

(n− 1)(1− p)
.

Proof. Similar to Lemma (6), we fix j = 1, and omit superscript (j) for all quantities in this proof, the subscript t for W
and the subscript t, P for E.

Also similar to Lemma (6), there exists α, s.t.

E
[
WW>

]
= α1In + (1− α1)An (39)

The only thing left is to bound α1. From (39), we know that α1 =
nE[WW>](1,1)−1

n−1 . After simple compute, we have

E[WW>](1,1) = E
[ n∑
i=1

W 2
1,i

]
. So we have the following:

α1 =

nE
[ n∑
i=1

W 2
1,i

]
− 1

n− 1
.
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Therefore, bounding α1 equals bounding E
[ n∑
i=1

W 2
1,i

]
. Similar to Lemma (6), we denote the event "node 1 deal with the

first block" by A.

Case 1: node 1 deal with the first block In this case, let’s understand W again. node 1 average the 1st blocks it has
received, then broadcast to all nodes. Therefore, for every node i who received this averaged block, x(i)

t+1 has the same value,
in other words, the column i of W equals, or, W1,i equals to W1,1. On the other hand, for every node i who did not receive
this averaged block, they keep their origin model v(i)t . But i 6= 1 (because node 1 deal with this block, itself must receive its
own block), which means W1,i = 0.

Therefore, for i 6= 1, i ∈ [n], if node i receive the averaged model, W1,i = W1,1. Otherwise, W1,i = 0. Based on this fact,
we can define the random variable Bi for i 6= 1, i ∈ [n]. Bi = 1 if node i receive the averaged block., Bi = 0 if node i does
not receive the averaged block. Immediately, we can obtain the following equation:

E
[ n∑
i=1

W 2
1,i | A

]
= E

[
W 2

1,1 ·
( n∑
i=2

Bi + 1
)
| A
]

= E[W 2
1,1 | A] ·

(
1 + (n− 1)E[Bn | A]

)
. (40)

The last equation results from that A,B2, · · · , Bn are independent and B2, · · · , Bn are from identical distribution.

First let’s compute E[W 2
1,1 | A]. If node i received the 1st block from m(0 ≤ m ≤ n − 1) nodes (except itself), then

W1,1 = 1/(m+ 1). The probability of this event is
(
n−1
m

)
(1− p)mpn−1−m. So we can obtain:

E[W 2
1,1 | A] =

n−1∑
m=0

1

(m+ 1)2

(
n− 1

m

)
(1− p)mpn−1−m

=
1

n2
(1− p)n−1 + pn−1 +

n−2∑
m=1

1

(m+ 1)2

(
n− 1

m

)
(1− p)mpn−1−m

≤ 1

n2
(1− p)n−1 + pn−1 +

n−2∑
m=1

2

(m+ 1)(m+ 2)

(
n− 1

m

)
(1− p)mpn−1−m

Fact 2
=====

1

n2
(1− p)n−1 + pn−1 +

n−2∑
m=1

2

n(n+ 1)

(
n+ 1

m+ 2

)
(1− p)mpn−1−m

=
1

n2
(1− p)n−1 + pn−1 +

2

n(n+ 1)

n∑
m=3

(
n+ 1

m

)
(1− p)m−2pn+1−m

=
1

n2
(1− p)n−1 + pn−1 +

2

n(n+ 1)(1− p)2
n∑

m=3

(
n+ 1

m

)
(1− p)mpn+1−m

=
1

n2
(1− p)n−1 + pn−1

+
2
(
1− pn+1 − (n+ 1)(1− p)pn − (n+ 1)n(1− p)2pn−1/2− (1− p)n+1

)
n(n+ 1)(1− p)2

≤ 1

n2
(1− p)n−1 + pn−1 + T1,

where we denote T1 :=
2
(
1−pn+1−(n+1)(1−p)pn−(n+1)n(1−p)2pn−1/2−(1−p)n+1

)
n(n+1)(1−p)2 .

Next let’s compute E[Bn | A]. Bn is just a 0− 1 distribution, with success probability 1− p. Therefore, E[Bn | A] = 1− p.

Applying all these equations into (40), we can get:

E
[ n∑
i=1

W 2
1,i | A

]
≤
(

1

n2
(1− p)n−1 + pn−1 + T1

)
(1 + (n− 1)(1− p))

≤ (1− p)n−1

n
+ pn−1 + nT1 (41)
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Case 2: node 1 does not deal with the first block and node 1 does not receive averaged block We define a new event
C, representing that node 1 does not receive the averaged block. So, Case 2 equals the event Ā ∩ C. In this case, node 1
keeps its origin block v(1)t , which means W1,1 = 1.

Again due to symmetry, we can suppose that node n deal with the first block. Then we can use the method in Case 1. But in
this case, we only use B2, · · · , Bn−1, because node n must receive its own block and node 1 does not receive averaged
block, and we use W1,n instead of W1,1. Then, we obtain:

E
[ n∑
i=1

W 2
1,i | Ā, C

]
= 1 + E

[
W 2

1,n ·
( n−1∑
i=2

Bi + 1
)
| Ā, C

]
(42)

= 1 + E[W 2
1,n | Ā, C] ·

(
1 + (n− 2)E[Bn−1 | Ā, C]

)
. (43)

Here, we similarly have E[Bn−1 | Ā, C] = 1 − p, but we need to compute E[W 2
1,n | Ā, C]. When the 1st block from

node 1 is not received by node n, W1,n = 0. If node 1’s block is received, together with other m, (0 ≤ m ≤ n − 2)
nodes’ blocks, then W1,n = 1/(m + 2) (node n’s block is always received by itself). The probability of this event is(
n−2
m

)
(1− p)m+1pn−2−m. Therefore,

E[W 2
1,n | Ā, C] =

n−2∑
m=0

1

(m+ 2)2

(
n− 2

m

)
(1− p)m+1pn−2−m

=
1

n2
(1− p)n−1 +

n−3∑
m=0

1

(m+ 2)2

(
n− 2

m

)
(1− p)m+1pn−2−m

≤ 1

n2
(1− p)n−1 +

n−3∑
m=0

1

(m+ 2)(m+ 1)

(
n− 2

m

)
(1− p)m+1pn−2−m

Fact 2
=====

1

n2
(1− p)n−1 +

n−3∑
m=0

1

n(n− 1)

(
n

m+ 2

)
(1− p)m+1pn−2−m

=
1

n2
(1− p)n−1 +

1

n(n− 1)

n−1∑
m=2

(
n

m

)
(1− p)m−1pn−m

=
1

n2
(1− p)n−1 +

1

n(n− 1)(1− p)

n−1∑
m=2

(
n

m

)
(1− p)mpn−m

=
1

n2
(1− p)n−1 +

1− pn − n(1− p)pn−1 − (1− p)n

n(n− 1)(1− p)

≤ 1

n2
(1− p)n−1 +

1

n
T2,

where T2 := 1−pn−n(1−p)pn−1−(1−p)n
(n−1)(1−p) .

Applying these equations into (42), we get:

E
[ n∑
i=1

W 2
1,i | Ā, C

]
≤1 +

(
1

n2
(1− p)n−1 +

1

n
T2

)
· (1 + (n− 2)(1− p))

≤1 +
(1− p)n−1

n
+ T2 (44)

Case 3: node 1 does not deal with the first block and node 1 receives averaged block This is the event C̄ ∩ Ā. Similar
to the analysis above, we have:

E
[ n∑
i=1

W 2
1,i | Ā, C̄

]
= E

[
W 2

1,1 ·
( n−1∑
i=2

Bi + 2
)
| Ā, C̄

]
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= E
[
W 2

1,1 | Ā, C̄
]
· (2 + (n− 2)E[B2 | Ā, C̄])

Similarly, we have E[B2 | Ā, C̄] = 1− p. For E
[
W 2

1,1 | Ā, C̄
]
, the argument is the same as E[W 2

1,n | Ā, C] in Case 2. So,
we have:

E
[
W 2

1,1 | Ā, C̄
]
≤ 1

n2
(1− p)n−1 +

1

n
T2.

Applying these together, we can obtain:

E
[ n∑
i=1

W 2
1,i | Ā, C̄

]
≤
(

1

n2
(1− p)n−1 +

1

n
T2

)
· (2 + (n− 2)(1− p))

≤ (1− p)n−1

n
+ T2 (45)

Combined with three cases, P (A) = 1/n, P (Ā, C) = p(n− 1)/n, and P (Ā, C̄) = (1− p)(n− 1)/n, we have

E
[ n∑
i=1

W 2
1,i

]
≤ 1

n
E
[ n∑
i=1

W 2
1,i | A

]
+
p(n− 1)

n
E
[ n∑
i=1

W 2
1,i | Ā, C

]
+

(1− p)(n− 1)

n
E
[ n∑
i=1

W 2
1,i | Ā, C̄

]
.

Combing the inequality above and (41) (44) (45) together, we get

E
[ n∑
i=1

W 2
1,i

]
≤ (1− p)n

n2
+
pn

n
+ T1 +

p(n− 1)

n
+
p(1− p)n−1

n
+ T2p+

(1− p)n(n− 1)

n2
+ T2(1− p)

≤p+
(1− p)n

n
+ T1 + T2

α1 ≤
np+ (1− p)n + nT1 + nT2 − 1

n− 1

Lemma 8. Under the updating rule (4), there exists α2 ∈ [0, 1], s.t.,∀j ∈ [n],∀ time t,

Et,P
[
W

(j)
t AnW

(j)
t

>]
= α2In + (1− α2)An.

Moreover, α2 satisfies:

α2 ≤
p(1 + 2T3) + (1− p)n−1

n
+

2p(1− p)n

n
+
pn(1− p)

n2
+ T1 + T2,

where

T1 =
2
(
1− pn+1 − (n+ 1)(1− p)pn − (n+ 1)n(1− p)2pn−1/2− (1− p)n+1

)
n(n+ 1)(1− p)2

,

T2 =
1− pn − n(1− p)pn−1 − (1− p)n

(n− 1)(1− p)
,

T3 =
n

n− 1

(
1− pn−1 − (1− p)n−1

)
+ (1− p)n−1.

Proof. Similar to Lemma (6) and Lemma (7), we fix j = 1, and omit superscript (j) for all quantities in this proof, the
subscript t for W and the subscript t, P for E. And we still use A to denote the event "node 1 deal with the first block", use
the binary random variable Bi to denote whether node i receive the averaged block. The definitions is the same to them in
Lemma 7.
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Again similar to Lemma (6), there exists α2, s.t.

E
[
WAnW

>] = α2In + (1− α2)An. (46)

The only thing left is to bound α2. From (46), we know that α2 =
nE[WAnW

>](1,1)−1
n−1 . After simple compute, we have

E[WAnW
>](1,1) = E

[(
n∑
i=1

W1,i

)2
]
/n. So we have the following:

α2 =

E

[(
n∑
i=1

W1,i

)2
]
− 1

n− 1
.

Therefore, bounding α2 equals bounding E

[(
n∑
i=1

W1,i

)2
]

.

Case 1: node 1 deal with the first block In this case,
n∑
i=1

W1,i = W1,1 ·
(

1 +
n∑
i=2

Bi

)
, which means,

(
n∑
i=1

W1,i

)2

=

W 2
1,1 ·

(
1 +

n∑
i=2

Bi

)2

. Similar to Lemma 7, A and {Bi}ni=2 are independent, so we have:

E

( n∑
i=1

W1,i

)2

| A

 = E
[
W 2

1,1 | A
]
· E

(1 +

n∑
i=2

Bi

)2

| A

 .
From Lemma 7, we have

E
[
W 2

1,1 | A
]
≤ 1

n2
(1− p)n−1 + pn−1 + T1.

For E[(1 +
n∑
i=2

Bi)
2 | A], since {Bi}ni=2 are independent, we have the following:

E

(1 +

n∑
i=2

Bi

)2

| A

 =

(
E

[
1 +

n∑
i=2

Bi | A

])2

+ Var

[
1 +

n∑
i=2

Bi | A

]
= (1 + (n− 1) (1− p))2 + (n− 1)p(1− p)

Combined these together, we obtain:

E

( n∑
i=1

W1,i

)2

| A


≤
(

1

n2
(1− p)n−1 + pn−1 + T1

)(
(1 + (n− 1) (1− p))2 + (n− 1)p(1− p)

)
≤ (1− p)n−1(1 + (n− 1)(1− p))2

n2
+ pn−1(1 + (n− 1)(1− p))2 +

pn(1− p) + (1− p)np
n

+ n2T1

Case 2: node 1 does not deal with the first block and node 1 does not receive averaged block In this case,
n∑
i=1

W1,i =

1 +W1,n ·
(
n−1∑
i=2

Bi + 1

)
(suppose node n deal with the first block). So we have:

(
n∑
i=1

W1,i

)2

= 1 + 2W1,n

(
n−1∑
i=2

Bi + 1

)
+W 2

1,n

(
n−1∑
i=2

Bi + 1

)2

,
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which means (notice W1,n and {Bi}n−1i=2 are independent),

E

( n∑
i=1

W1,i

)2

| Ā, C

 = 1+2E
[
W1,n | Ā, C

]
E

[
n−1∑
i=2

Bi + 1 | Ā, C

]
+E

[
W 2

1,n | Ā, C
]
E

(n−1∑
i=2

Bi + 1

)2

| Ā, C

 .
First let’s consider E[W1,n | Ā, C]. Similar to the analysis of Case 2 in Lemma 7 except instead first moment of second
moment, we have:

E[W1,n | Ā, C] =

n−2∑
m=0

1

m+ 2

(
n− 2

m

)
(1− p)m+1pn−2−m

=
1

n
(1− p)n−1 +

n−3∑
m=0

1

m+ 2

(
n− 2

m

)
(1− p)m+1pn−2−m

≤ 1

n
(1− p)n−1 +

n−3∑
m=0

1

m+ 1

(
n− 2

m

)
(1− p)m+1pn−2−m

Fact 1
=====

1

n
(1− p)n−1 +

n−3∑
m=0

1

n− 1

(
n− 1

m+ 1

)
(1− p)m+1pn−2−m

=
1

n
(1− p)n−1 +

1

n− 1

n−2∑
m=1

(
n− 1

m

)
(1− p)mpn−1−m

=
1

n
(1− p)n−1 +

1

n− 1

(
1− pn−1 − (1− p)n−1

)
=
T3
n
,

where we denote T3 := n
n−1

(
1− pn−1 − (1− p)n−1

)
+ (1− p)n−1.

Next, from Lemma 7, we have

E
[
W 2

1,n | Ā, C
]
≤ 1

n2
(1− p)n−1 +

1

n
T2.

Next we deal with item with Bi. We have the following:

E

[
n−1∑
i=2

Bi + 1 | Ā, C

]
= (n− 2)(1− p) + 1

E

(n−1∑
i=2

Bi + 1

)2

| Ā, C

 = 1 + 2(n− 2)E[B2 | Ā, C] + E

(n−1∑
i=2

Bi

)2

| Ā, C


= 1 + 2(n− 2)(1− p) +

(
E

[
n−1∑
i=2

Bi | Ā, C

])2

+ Var

[
n−1∑
i=2

Bi | Ā, C

]
= 1 + 2(n− 2)(1− p) + (n− 2)2(1− p)2 + (n− 2)p(1− p)

Combining those terms together we get

E

( n∑
i=1

W1,i

)2

| Ā, C


≤1 +

(1− p)n−1

n2
+

(n− 2)(1− p)n

n
+
p(1− p)n

n
+ nT2 + 2T3



Distributed Learning over Unreliable Networks

Case 3: node 1 does not deal with the first block and node 1 receives averaged block In this case,
n∑
i=1

W1,i =

W1,1 ·
(
n−1∑
i=2

Bi + 2

)
. So we have:

(
n∑
i=1

W1,i

)2

= W 2
1,1 ·

(
n−1∑
i=2

Bi + 2

)2

,

which means (notice that W1,1 and {Bi}n−1i=2 are independent)

E

( n∑
i=1

W1,i

)2

| Ā, C̄

 = E
[
W 2

1,1 | Ā, C̄
]
· E

(n−1∑
i=2

Bi + 2

)2

| Ā, C̄

 .
Similar to Lemma 7, E

[
W 2

1,1 | Ā, C̄
]

is the same as E
[
W 2

1,n | Ā, C
]
.

E
[
W 2

1,1 | Ā, C̄
]

=
1

n2
(1− p)n−1 +

1

n
T2

Also, we have the following:

E

(n−1∑
i=2

Bi + 2

)2

| Ā, C̄

 =

(
E

[
n−1∑
i=2

Bi + 2 | Ā, C̄

])2

+ Var

[
n−1∑
i=2

Bi + 2 | Ā, C̄

]
= [(n− 2)(1− p) + 2]2 + (n− 2)p(1− p)

So we have

E

( n∑
i=1

W1,i

)2

| Ā, C̄


≤ (1− p)n−1((n− 2)(1− p) + 2)2

n2
+
p(1− p)n

n
+ nT2

Combining these inequalities together, we have the following:

E

( n∑
i=1

W1,i

)2


=E

( n∑
i=1

W1,i

)2

| A

P (A) + E

( n∑
i=1

W1,i

)2

| Ā, C

P (Ā, C)

+ E

( n∑
i=1

W1,i

)2

| Ā, C̄

P (Ā, C̄)

≤ (1− p)n−1(1 + (n− 1)(1− p))2

n3
+
pn−1(1 + (n− 1)(1− p))2

n
+

2pn(1− p) + (1− p)np
n2

+ nT1 +
(n− 1)p

n

(
1 +

(1− p)n−1

n2
+

(n− 2)(1− p)n

n
+
p(1− p)n

n
+ nT2 + 2T3

)
+

(n− 1)(1− p)
n

(
(1− p)n−1((n− 2)(1− p) + 2)2

n2
+
p(1− p)n

n
+ nT2

)
≤ (1− p)n−1

n
+
pn−1(1 + (n− 1)(1− p))2

n
+
p(1− p)n + pn(1− p)

n2
+ nT1
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(a) Training Loss (b) Test Accuracy

Figure 8: ResNet20 on CIFAR10 - Varying arrival probability on 16 nodes. Impact on test accuracy.

+ p+
p(1− p)n

n
+ nT2 + 2T3p+

(n− 1)(1− p)n

n

≤p(1 + 2T3) + (1− p)n−1 +
2p(1− p)n

n
+
pn(1− p)

n2
+ n(T1 + T2),

and

α2 ≤
p(1 + 2T3) + (1− p)n−1

n
+

2p(1− p)n

n
+
pn(1− p)

n2
+ T1 + T2.

E. Extended Experimental Analysis
In this section we conduct an extended analysis of the experiments on the CIFAR-10 dataset using the ResNet20 architecture.
We focus on this setting with default hyper-parameters in order to get some insight about the generalization properties when
lowering the packet arrival probabilities or changing the number of nodes for a fixed probability of packet arrival. Not
surprisingly, the effect of increasing the number of nodes for a fixed arrival rate (Figure 9) on the train loss is similar to
lowering the arrival probability for a fixed number of nodes (Figure 8). When looking at the test accuracy though, the gap
when lowering the arrival rate is less than 1 point in percentage, whereas the difference in test accuracy between 2 and 16
nodes is around 2 points in percentage.

To show that having too low arrival probabilities might effect convergence on the training loss or generalization, we further
lower the parameter to an extreme value of 0% arrival rate (Figure 10). Although the training loss still converges for this
scenario, the trained model does generalize very badly as visible in the test accuracy. Interestingly, this extreme scenario
could in certain cases still offer proper convergence and generalization. Imaging having a very large training dataset.
Training a model on n nodes with p = 0.0%, and reporting the final model at a specific node is identical to training a model
on 1

n -th of the data on a single node.

Lastly, we want to re-emphasize that we make use of default values given by the underlying deep learning framework for
all the hyper-parameters (learning rate, decay strategy and minibatch size per nodes) regardless of the number of nodes or
arrival probability. We believe that carefully tuning the hyper-parameters based on the given number of nodes and arrival
probability might help further lowering the training loss while maintaining generalization with regard to the test accuracy.
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(a) Training Loss (b) Test Accuracy

Figure 9: ResNet20 on CIFAR10 - Varying number of nodes for 80% arrival probabilty.

(a) Training Loss (b) Test Accuracy

Figure 10: ResNet20 on CIFAR10 - Extreme arrival probabilities on 16 nodes.
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