
Differential Inclusions for Modeling Nonsmooth ADMM Variants: A Continuous Limit Theory

A. Preliminaries of Differential Inclusion
Recall that we denote F (x) = f(x) + g(Ax), and Assumption 4 holds. To transit from the smooth case to the nonsmooth
case, we use the tool of differential inclusion to build the connection between subdifferentiable F and differentiable functions.
One basic example of a differential inclusion takes the form of:

ẋ(t) ∈ ∂F (x(t))

To bridge the gap between differentiable objective functions and nondifferentiable objective functions, we follow Vassilis
et al. (2018) and consider the Moreau-Yosida Approximation, which is a standard tool in convex analysis.

Definition 15 (Moreau-Yosida Approximation). Moreau-Yosida Approximation of a convex function F with parameter
µ > 0 is defined as

Fµ(x) := inf
y

{
F (y) +

1

2µ
‖y − x‖22

}
Use Jµ(x) to denote the unique point that achieves the infimum above, then ∇Fµ(x) = 1

µ (x − Jµ(x)) by the Envelope
Theorem (Afriat, 1971; Takayama, 1985). For any µ > 0, Fµ is a convex, continuously differentiable function.

We take the Definition 3.1 in Vassilis et al. (2018) of a shock solution to define a solution of a differential inclusion. The
existence of a shock solution are described in Section 3 of Vassilis et al. (2018). More specifically, we can build a sequence
xµ(t) such that its subsequence converges, where xµ(t) are the solutions to the Approximate Differential Equation (ADE)
defined below:

Approximate Differential Equation (ADE)

We consider the Moreau-Yosida approximation Fµ(x) of the objective F (x) with µ > 0. We consider the following
approximating ODE:

{
ẋµ(t) +∇Fµ(xµ(t)) = 0

xµ(0) = x0

Here ∇Fµ can approximate ∂F and Fµ is differentiable as is shown in the theory of Moreau-Yosida approximation.

The convergence to a shock solution is described as the Approximation Scheme (AS):

Approximation Scheme (AS)

Let {Fµ}µ>0 be a family of functions such that Fµ is the Moreau–Yosida approximation of F for all µ > 0. Then there
exists a subsequence {xµ}µ>0 of solutions of (ADE) that converges to a shock solution x of differential inclusion in the
following sense:

• xµ → x uniformly on [0, T ] for all T > 0 as µ→ 0

• ẋµ → ẋ in Lp([0, T ];Rd) for all p ∈ [1,∞) for all T > 0 as µ→ 0

• Fµ(xµ)→ F (x)in Lp([0, T ];Rd) for all p ∈ [1,∞) for all T > 0 as µ→ 0

B. Proofs of the Theorems Related to Linearized ADMM and Gradient-Based ADMM
In this following sections, we prove the main results provided in Section 2.1. Sections B.1, B.2 and B.3 prove Theorems 5, 6
and 8, respectively.
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B.1. Proof of Theorem 5

Proof of Theorem 5. Due to the strong convexity of the optimization subproblems (5a) and (5b), it is easy to verify that the
sequence {xk, zk, uk} is unique. We have from the first-order optimality conditions of (5a) and (5b) that

0 ∈ ∂f(xk+1) + τL

[
xk+1 −

(
xk −

ρ

τL
A>(Axk − zk + uk)

)]
, (14a)

0 ∈ 1

ρ
∂g(zk+1)− (αAxk+1 + (1− α)zk − zk+1 + uk) . (14b)

We detail the proof in the following:

(i) Adding up (14b) and (5c) eliminates the common term (αAxk+1 + (1− α)zk − zk+1 + uk) and reduces to a simple
u-update:

uk+1 ∈
1

ρ
∂g(zk+1). (15)

Taking the continuous limit ρ→∞ gives U(t) = 0, and hence U̇(t) = 0.5

(ii) Reorganize (14a) into the following form:

0 ∈ ∂f(xk+1) + τL(xk+1 − xk) + ρA>(Axk − zk + uk). (16)

Bringing (15) into (16) leads to:

0 ∈ ∂f(xk+1) +A>∂g(zk) + τL(xk+1 − xk) + ρA>(Axk − zk). (17)

Again from (5c),

uk+1 − uk = αAxk+1 + (1− α)zk − zk+1

= αA(xk+1 − xk)− (zk+1 − zk) + α(Axk − zk),

and hence

Axk − zk =
1

α
[(uk+1 − uk) + (zk+1 − zk)]−A(xk+1 − xk). (18)

Plugging (18) into (17) gives

0 ∈ ∂f(xk+1) +A>∂g(zk) + τL(xk+1 − xk) + ρA>
(

1

α
[(uk+1 − uk) + (zk+1 − zk)] −A(xk+1 − xk)

)
. (19)

Taking the limit ρ→∞ and letting τL/ρ→ c, using the fact that U̇(t) = 0, (19) reduces to

0 ∈ ∂f(X(t)) +A>∂g(Z(t)) +
(
cI −A>A

)
Ẋ(t) +

1

α
A>Ż(t). (20)

(iii) We directly take the ρ→∞ limit in (5c) with the fact that uk1 → uk and zk+1 → zk, we conclude

Z(t) = AX(t), Ż(t) = AẊ(t).

It is straightforward to check that
∂f(X(t)) +A>∂g(Z(t)) ⊆ ∂F (X(t)) (21)

Combining the above and (20) concludes

0 ∈ ∂F (X(t)) +

(
cI +

1− α
α

A>A

)
Ẋ(t),

This completes the proof.

5Although the continuous version of U(t) is constantly zero, it is different with uk = 0. One may regard uk as an infinitesimal
number that dynamically changes in the system.
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B.2. Proof of Theorem 6

Proof of Theorem 6. Again the sequence {xk, zk, uk} is unique due to the strong convexity of the optimization subprob-
lem (5a) and (5b). It follows from the optimality conditions that

0 = ∇f(xk) + ρAT (Axk − zk + uk) + τG(xk+1 − xk), (22a)

0 ∈ ∂g(zk+1)− ρ(αAxk+1 + (1− α)zk − zk+1 + uk), (22b)

uk+1 = uk + (αAxk+1 + (1− α)zk − zk+1). (22c)

Seeing τL in the place of τG, (22b) and (22c) are identical to (14b) and (5c), while (22a) is identical to (14a) with ∂f(xk+1)
replaced by∇f(xk).

Carrying out the proof of Theorem 5 in §B.1 gives (19) with ∂f(xk+1) replaced by∇f(xk), and hence taking corresponding
limits gives differential inclusion (20) with ∂f(X(t)) replaced by ∇f(X(t)). The rest of the proof follows in the same
fashion as Part (iii) in the proof of Theorem 5.

B.3. Proof of Theorem 8

Proof of Theorem 8. For notation simplicity, we choose a matrixB such thatB>B = cI+ 1−α
α A>A. Recall that the largest

and smallest singular value of B are κ1 and κd. Note that when 0 < α ≤ 1, κ1 =
√
c+ 1−α

α σ2
1 and κd =

√
c+ 1−α

α σ2
d,

and when 1 < α < 2, κ1 =
√
c+ 1−α

α σ2
d and κd =

√
c+ 1−α

α σ2
1 , where σ1, σd are singular value of matrix A. Then the

original differential inclusion becomes 0 ∈ ∂F (X(t)) + (B>B)Ẋ(t). Because Moreau-Yosida approximation Fµ(Xµ(t))
is a continuously differentiable, convex function for all µ > 0, we denote an arbitrary minimizer as x∗µ.

For each µ > 0, consider the energy functional of Moreau-Yosida approximation defined as

Eµ(t) = t(Fµ(Xµ(t))− Fµ(x∗µ)) +
λ

2
‖B(Xµ(t)− x∗µ)‖22, (23)

where λ is an arbitrary constant greater than or equal to 1. Because Fµ is a continuously differentiable function, we could
write the time derivative of Eµ(t) as

Ėµ(t) = (Fµ(Xµ(t))− Fµ(x∗µ)) + t〈∇Fµ(Xµ(t)), Ẋµ(t)〉+ λ〈B>B(Xµ(t)− x∗µ), Ẋµ(t)〉. (24)

By substituting B>BẊµ(t) by −∇Fµ(Xµ(t)) and ∇Fµ(Xµ(t)) by −B>BẊµ(t) according to (9) and the definition of
the shock solution Xµ(t) in Appendix A, we have

Ėµ(t) = −t‖BẊµ(t)‖22 + (Fµ(Xµ(t))− Fµ(x∗µ))− λ〈(Xµ(t)− x∗µ),∇Fµ(Xµ(t))〉 ≤ 0, (25)

where we used the convexity of Fµ and nonnegativity of (Fµ(Xµ)− Fµ(x∗µ)), ‖BẊµ‖2 in the last inequality.

Similar to Eµ(t), we define the energy functional for F (X(t)) as

E(t) = t(F (X(t))− F (x∗)) +
λ

2
‖B(X(t)− x∗)‖22. (26)

At time t = 0, there is an upper bound on E(0) as

E(0) =
λ

2
‖B(x0 − x∗)‖22 ≤

λκ21
2
‖x0 − x∗‖22. (27)

By applying the approximation scheme (AS) argument (details as in Appendix A) as µ→ 0, we have for a.e. t ≥ 0 that
E(t) ≤ E(0).

By non-negativity of F (X)− F (x∗) in (26), we find

λκ2d
2
‖(X(t)− x∗)‖22 ≤ E(0). (28)
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Combining with the upper bound of E(0) in (27), we derive for a.e. t ≥ 0 that

‖X(t)− x∗‖2 ≤
κ1
κd
‖x0 − x∗‖2. (29)

Using the nonnegativity of all terms in (26) and monotonicity of E(t) on a.e. t ≥ 0, we have, for a.e. t ≥ 0,

t(F (X(t))− F (x∗)) ≤ E(t) ≤ E(0) ≤ λκ21
2
‖x0 − x∗‖22 (30)

Choosing λ = 1, we have the following result, for a.e. t ≥ 0,

F (X(t))− F (x∗) ≤ E(t) ≤ E(0) ≤ κ21
2t
‖x0 − x∗‖22 (31)

By applying convexity of Fµ to (25), we have

Ėµ(t) ≤ (1− λ)(Fµ(Xµ(t))− Fµ(x∗µ))− t‖BẊµ(t)‖22. (32)

Notice that the two terms in (32) are all negative, we find

Fµ(Xµ(t))− Fµ(x∗µ) ≤ −Ėµ(t)

λ− 1
and t‖Ẋµ(t)‖22 ≤ −

Ėµ(t)

κ2d
. (33)

By integrating over (0, T ), the inequalities above give for all T > 0 that∫ T

0

(Fµ(Xµ(t))− Fµ(x∗µ))dt ≤ Eµ(0)

λ− 1
,

∫ T

0

t‖Ẋµ(t)‖22dt ≤ Eµ(0)

κ2d
. (34)

By applying approximation scheme (AS), taking limit T →∞, choosing λ→∞ and λ = 1 respectively, and plugging
in (27), we have ∫ ∞

0

(F (Xµ(t))− F (x∗))dt ≤ κ21
2
‖x0 − x∗‖22,

∫ ∞
0

t‖Ẋ(t)‖22dt ≤ κ21
2κ2d
‖x0 − x∗‖22. (35)

C. Proofs of the Theorems Related to G-ADMM and the Accelerated G-ADMM
C.1. Proof of Theorem 9

Proof of Theorem 9. Proof of Theorem 9 uses idea similar to the proof of Theorem 5 to analyze G-ADMM updates. By
strong convexity of the optimization subproblems (10a) and (10b), we could verify that the sequence {xk, zk, uk} is unique.
Together with (10c), we have from the first-order optimality conditions of (10a) and (10b) that

∂f (xk+1) + ρAT (Axk+1 − zk + uk) 3 0, (36a)
1

ρ
∂g (zk+1)− (αAxk+1 + (1− α)zk − zk+1 + uk) 3 0, (36b)

uk+1 − (αAxk+1 + (1− α)zk − zk+1 + uk) = 0. (36c)

Adding up (36b) and (36c) eliminates the common term (αAxk+1 + (1− α)zk − zk+1 + uk) and reduces to a simple
u-update:

uk+1 ∈
1

ρ
∂g(zk+1). (37)
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Taking the continuous limit ρ→∞ gives U(t) = 0, and hence U̇(t) = 0.

Bringing (37) into (36a) leads to:

0 ∈ ∂f(xk+1) +A>∂g(zk) + ρA>(Axk+1 − zk), (38)

where again from (36c),

uk+1 − uk = α(Axk+1 − zk)− (zk+1 − zk),

and hence
Axk+1 − zk =

1

α
[(uk+1 − uk) + (zk+1 − zk)] (39)

Plugging (39) into (38) gives

0 ∈ ∂f(xk+1) +A>∂g(zk) + ρA>
(

1

α
[(uk+1 − uk) + (zk+1 − zk)]

)
. (40)

Taking the limit ρ→∞ , using the fact that U̇(t) = 0, (40) reduces to

0 ∈ ∂f(X(t)) +AT∂g(Z(t)) +
1

α
AT (Ż(t)). (41)

We directly take the ρ→∞ limit in (36c) and conclude

Z(t) = AX(t), Ż(t) = AẊ(t).

Recalling (21) and combining the above with (41) concludes

0 ∈ ∂F (X(t)) +

(
1

α
A>A

)
Ẋ(t),

Thus we complete the proof.

C.2. Proof of Theorem 10

Proof of Theorem 10. For each µ > 0, consider the energy functional of Moreau-Yosida approximation defined as

Eµ(t) = αt(Fµ(Xµ(t))− Fµ(x∗µ)) +
λ

2
‖A(Xµ(t)− x∗µ)‖22, (42)

where λ is an arbitrary constant chosen as λ ≥ 1 and x∗µ denotes the minimizer of Fµ. Because Fµ is a continuously
differentiable function ,we could write the time derivative of Eµ(t) as

Ėµ(t) = α(Fµ(Xµ(t))− Fµ(x∗µ)) + αt〈∇Fµ(Xµ(t)), Ẋµ(t)〉+ λ〈A>A(Xµ(t)− x∗µ), Ẋµ(t).〉 (43)

By using the equality of ATAẊµ(t) and −α∇Fµ(Xµ(t)), we have

Ėµ(t) = −t‖AẊµ(t)‖22 + α(Fµ(Xµ(t))− Fµ(x∗µ))− λα〈(Xµ(t)− x∗µ),∇Fµ(Xµ(t))〉 ≤ 0, (44)

where we used the convexity of Fµ and nonnegativity of (Fµ(Xµ(t))− F (x∗µ)), ‖AẊµ‖2 in the last inequality.

Similar to Eµ(t), we define the energy functional for F (X(t)) as

E(t) = αt(F (X(t))− F (x∗)) +
λ

2
‖A(X(t)− x∗)‖22. (45)

At time 0, there is an upper bound on E(0) as

E(0) =
λ

2
‖A(X(0)− x∗)‖22 ≤

λσ2
1

2
‖x0 − x∗‖22. (46)
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By applying the approximation scheme (AS) argument (details as in Appendix A) as µ→ 0 to equation (44), we have for
a.e. t ≥ 0, Ė(t) ≤ 0 and that E(t) ≤ E(0).

In (45), by non-negativity of F (X(t))− F (x∗) and ‖X(t)− x∗‖22, we find

λ

2
‖A(X(t)− x∗)‖22 ≤ E(0). (47)

Combining with the upper bound of E(0) in (46), and by taking λ = 1, we derive for a.e. t ≥ 0 that

‖X(t)− x∗‖2 ≤
σ1
σd
‖x0 − x∗‖2. (48)

Using the nonnegativity of all terms in (45) and monotonicity of E(t) on a.e. t ≥ 0, we have

αt(F (X(t))− F (x∗)) ≤ E(t) ≤ E(0) ≤ λσ2
1

2
‖x0 − x∗‖22 for a.e. t, (49)

which is given by (46). Thus (F (X(t))− F (x∗)) ≤ σ2
1

2αt‖x0 − x
∗‖22 by taking λ = 1.

From (44) and using the convexity of Fµ, we have

Ėµ(t) ≤ α(1− λ)(Fµ(Xµ(t))− Fµ(x∗µ))− t‖AẊµ(t)‖22. (50)

Notice that the two terms in (50) are all negative, we find

Fµ(Xµ(t))− Fµ(x∗µ) ≤ −Ėµ(t)

α(λ− 1)
and t‖AẊµ(t)‖22 ≤ −Ėµ(t). (51)

By integrating over (0, T ), the inequalities above give

∫ T

0

(Fµ(Xµ(t))− Fµ(x∗µ))dt ≤ Eµ(0)

α(λ− 1)
,

∫ T

0

t‖AẊµ(t)‖22dt ≤ Eµ(0). (52)

By applying approximation scheme (AS) and plugging in (46), we have∫ T

0

(Fµ(Xµ(t))− Fµ(x∗µ))dt ≤ λσ2
1

2α(λ− 1)
‖x0 − x∗‖22,

∫ T

0

t‖AẊµ(t)‖22dt ≤ λσ2
1

2
‖x0 − x∗‖22. (53)

Taking the limit when µ→ 0, T →∞ and choosing λ→∞ and λ = 1 respectively, we get∫ ∞
0

(F (X(t))− F (x∗))dt ≤ σ2
1

2α
‖x0 − x∗‖22,

∫ ∞
0

t‖Ẋ(t)‖22dt ≤ σ2
1

2σ2
d

‖x0 − x∗‖22. (54)

This completes our proof.

C.3. Proof of Theorem 11

Proof of Theorem 11. To analyze Accelerated G-ADMM, we adopt idea similar to proof of Theorem 5. Using strong
convexity of the optimization subproblems (12a) and (12b), we know that the sequence {xk, zk, uk, ûk, ẑk} is unique.
Together with (12c), we have from the first-order optimality conditions of (12a) and (12b) that

∂f (xk+1) + ρAT (Axk+1 − ẑk + ûk) 3 0, (55a)
1

ρ
∂g (zk+1)− (αAxk+1 + (1− α)ẑk − zk+1 + ûk) 3 0, (55b)

uk+1 − (αAxk+1 + (1− α)ẑk − zk+1 + ûk) = 0. (55c)
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Adding up (55b) and (55c) eliminates the common term − (αAxk+1 + (1− α)ẑk − zk+1 + ûk) and reduces to a simple
u-update:

uk+1 ∈
1

ρ
∂g(zk+1). (56)

Taking the continuous limit ρ → ∞ gives U(t) = 0, and hence U̇(t) = 0, Ü(t) = 0. The idea is similar to the proof of
Theorem 5.

Bringing (56) and equation (12d) which is the definition of û into (55a) leads to:

∂f(xk+1) +AT∂g(zk) + ρAT (Axk+1 − ẑk) + ργk+1A
>(uk+1 − uk) 3 0, (57)

where again from (55c),

(Axk+1 − ẑk) =
1

α
[(uk+1 − ûk) + (zk+1 − ẑk)]. (58)

In addition, from equation (12d) and equation (12e), we find that uk+1 − ûk = uk+1 − (1 + γk+1)uk + γk+1uk−1 and
zk+1− ẑk = zk+1− (1 + γk+1)zk + γk+1zk−1. For uk+1− ûk, we add the term uk − uk + uk−1− uk−1 to the right hand
side, the resulting equation is a combination of the second order difference and first order difference of the sequence {uk}:

uk+1 − ûk = (uk+1 − 2uk + uk−1) + (1− γk+1)(uk − uk−1). (59)

Similarily, the equation holds that:

zk+1 − ẑk = (zk+1 − 2zk + zk−1) + (1− γk+1)(zk − zk−1). (60)

We note that 1− γk = 1− k
k+r = r

ρ1/2t+r
. Taking the limit ρ→∞, under infinitesimal step sizes, using relationships (58),

(59), (60) and the fact that U̇(t) = 0, Ü(t) = 0, equation (57) becomes:

∂f(X(t)) +AT∂g(Z(t)) +
1

α
AT (

r

t
Ż(t) + Z̈(t)) 3 0. (61)

We directly take the ρ→∞ limit in (55c) and conclude

Z(t) = AX(t), Ż(t) = AẊ(t), Z̈(t) = AẌ(t).

Recalling (21) and combining the above with (61) concludes

0 ∈ ∂F (X(t)) +

(
1

α
A>A

)
(Ẍ(t) +

r

t
Ẋ(t)),

C.4. Proof of Theorem 12

Proof of Theorem 12. Recall that x∗µ is the minimizer of Fµ. For each µ > 0, consider the energy functional of Moreau-
Yosida approximation defined as

Eµ(t) = t2(Fµ(Xµ(t))− Fµ(x∗µ)) +
1

2α

∥∥∥A(λ(Xµ(t)− x∗µ) + tẊµ(t)
)∥∥∥2

2
+
λ(r − λ− 1)

2α
‖A(Xµ(t)− x∗µ)‖22 (62)

where λ is a constant chosen within 2 ≤ λ ≤ r − 1. Because Fµ is a continuously differentiable function, we could write
the time derivative of Eµ(t) as

Ėµ = 2t(Fµ(Xµ(t))− Fµ(x∗µ)) + t2∇Fµ(Xµ(t))>Ẋµ +
(
λ(Xµ − x∗µ) + tẊµ

)>
(

1

α
A>A)

(
(λ+ 1)Ẋµ + tẌµ

)
+ λ(r − λ− 1)(Xµ − x∗µ)>(

1

α
A>A)Ẋµ
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By using the equality of tA>AẌµ and −rA>AẊµ − αt∇Fµ(Xµ(t)), we have

Ėµ = −λt
(
Fµ(x∗µ)− Fµ(Xµ(t))− (x∗µ −Xµ)>∇Fµ(Xµ(t))

)
−(λ−2)t(Fµ(Xµ(t))−Fµ(x∗µ))− (r − 1− λ)t

α
‖AẊµ‖22 ≤ 0

(63)
where we used the convexity of Fµ and nonnegativity of Fµ(Xµ(t))− Fµ(x∗µ), ‖AẊµ‖2 in the last inequality.

Similar to Eµ(t), we define the energy functional for F (X(t)) as

E(t) = t2(F (X(t))− F (x∗)) +
1

2α

∥∥∥A(λ(X(t)− x∗) + tẊ(t)
)∥∥∥2

2
+
λ(r − λ− 1)

2α
‖A(X(t)− x∗)‖22

At time t0, there is an upper bound on E(t0) as

E(t0) = t20(F (x0)− F (x∗)) +
λ(r − 1)

2α
‖A(x0 − x∗)‖22 ≤

2α+ λ(r − 1)σ2
1

2α
∆2

0 (64)

By non-negativity of Fµ(Xµ(t))− Fµ(x∗µ), ‖Xµ − x∗µ‖22 and ‖Ẋµ‖22, we find for all r ≥ 3 and t ≥ t0 that

d

dt
(t‖Xµ − x∗µ‖22) = ‖Xµ − x∗µ‖22 + 2t(Xµ − x∗µ)>Ẋµ ≤

1

2
‖2(Xµ − x∗µ) + tẊµ‖22 ≤

αEµ
σ2
d

≤ αEµ(t0)

σ2
d

By integrating over (t0, t), this gives us

t‖Xµ − x∗µ‖22 − t0‖x0 − x∗µ‖22 ≤
α(t− t0)

σ2
d

Eµ(t0)

By applying the approximation scheme (AS) argument (details as in Appendix A) as µ→ 0, we have for a.e. t ≥ t0 that

‖X − x∗‖22 ≤
αE(t0)

σ2
d

+ ‖x0 − x∗‖22

Combining with the upper bound of E(t0) in (64), we derive for a.e. t ≥ t0 that

‖X(t)− x∗‖2 ≤ C1∆0 (65)

with factor C1 =

√
α+(r−1)σ2

1+σ
2
d

σ2
d

. Here we choose λ = 2 to minimize C1.

From (63), we know that Eµ(t) is nonincreasing for t ≥ t0, for all µ > 0. By applying (AS) we find that E(t) is
nonincreasing for a.e. t ≥ t0. Using the nonnegativity of all three terms in (62) and monotonicity of E(t) on a.e. t ≥ t0, we
have for a.e. t ≥ t0 that

F (X(t))− F (x∗) ≤ 1

t2
E(t) ≤ 1

t2
E(t0) ≤ C2

t2
∆2

0

where factor C2 = 1 + (r − 1)σ2
1/α is given by (64) with λ = 2, and

‖λ(X(t)− x∗) + tẊ‖22 ≤
2α

σ2
d

E(t) ≤ 2α

σ2
d

E(t0) ≤ 2α+ λ(r − 1)σ2
1

σ2
d

∆2
0

Therefore, by triangle inequality and (65),

‖Ẋ(t)‖2 ≤
1

t
‖λ(X(t)− x∗) + tẊ(t)‖2 +

1

t
λ‖X(t)− x∗‖2 ≤

C3

t
∆0

with factor C3 =
√

2α+2(r−1)σ2
1

σ2
d

+ 2C1. Here we choose λ = 2 to minimize C3.

From (63), we have

Ėµ ≤ −(λ− 2)t(Fµ(Xµ(t))− Fµ(x∗µ))− (r − 1− λ)t

α
‖AẊµ‖22
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when r = 3, we could only choose λ = 2 = r − 1 and the right hand side of the inequality above is always zero. However,
if we further assume r > 3, then we could choose λ = r − 1 and λ = 2 respectively, such that

t(Fµ(Xµ(t))− Fµ(x∗µ)) ≤ − 1

r − 3
Ėµ and t‖Ẋµ‖22 ≤ −

α

(r − 3)σ2
d

Ėµ

By integrating over (t0,∞), the inequalities above give∫ ∞
t0

t(Fµ(Xµ(t))− Fµ(x∗µ))dt ≤ Eµ(t0)

r − 3
and

∫ ∞
t0

t‖Ẋµ(t)‖22dt ≤ αEµ(t0)

(r − 3)σ2
d

By applying (AS) and plugging in (64), we have∫ ∞
t0

t(F (X(t))− F (x∗))dt ≤ C4∆2
0 and

∫ ∞
t0

t‖Ẋ(t)‖22dt ≤ C5∆2
0

with factors C4 =
2α+(r−1)2σ2

1

2(r−3)α and C5 =
α+(r−1)σ2

1

(r−3)σ2
d

.

C.5. Proof of Theorem 14

Proof of Theorem 14. The energy functional we used in Theorem 12 is no longer applicable, because we can not find λ
satisfying λ− 2 ≥ 0 and r − 1− λ ≥ 0 simultaneously when 0 < r < 3. Here we consider a new energy functional for the
Moreau-Yosida approximation

Eµ(t) = t2(Fµ(Xµ(t))− Fµ(x∗µ)) +
1

2α

∥∥∥∥2r

3
A(Xµ(t)− x∗µ) + tAẊµ(t)

∥∥∥∥2
2

+
r(3− r)

9α
‖A(Xµ(t)− x∗µ)‖22 (66)

By taking its time derivative, we have

Ėµ =2t(Fµ(Xµ(t))− Fµ(x∗µ)) + t2∇Fµ(Xµ(t))>Ẋµ +

(
2r

3
(Xµ − x∗µ) + tẊµ

)>
(

1

α
A>A)

(
(
2r

3
+ 1)Ẋµ + tẌµ

)
+

2r(3− r)
9

(Xµ − x∗µ)>(
1

α
A>A)Ẋµ

By using the equality of tA>AẌµ and −rA>AẊµ − αt∇Fµ(Xµ) and applying the convexity of Fµ, we have

Ėµ ≤
2(3− r)

3
t(Fµ(Xµ(t))− Fµ(x∗µ)) +

4r(3− r)
9α

(Xµ − x∗µ)>A>AẊµ +
3− r
3α

t‖AẊµ‖22

Although this energy functional does not have nonnegative derivative, there is a special relationship between it and its
derivative. We notice that

Ėµ −
2(3− r)

3t
Eµ ≤ −

2r(3− r)(3 + r)

27αt
‖A(Xµ − x∗µ)‖22 ≤ 0

This implies that, forHµ(t) := t−
2(3−r)

3 Eµ(t), for all t ≥ t0,

Ḣµ = t−
2(3−r)

3 · (Ėµ −
2(3− r)

3t
Eµ) ≤ 0

Therefore, Hµ(t) is nonincreasing over t ≥ t0, for all µ > 0. By making similar definition as H(t) := t−
2(3−r)

3 E(t) and
applying the approximation scheme, we have thatH(t) is nonincreasing for a.e. t ≥ t0. At time t0,

H(t0) ≤ t−
2(3−r)

3
0 ·

(
1 +

r(3 + r)

9α
σ2
1

)
∆2

0

By the nonnegativity of all terms in (66) and the monotonicity ofH(t), we have for a.e. t ≥ t0 that

F (X(t))− F (x∗) ≤ 1

t
2r
3

H(t) ≤ 1

t
2r
3

H(t0) ≤ C6t
− 2(3−r)

3
0 ∆2

0

t
2r
3
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with factor C6 = 1 +
r(3+r)σ2

1

9α .

Similarly, we have for a.e. t ≥ t0 that∥∥∥∥2r

3
(X(t)− x∗) + tẊ

∥∥∥∥2
2

≤ 2α

σ2
d

t
2(3−r)

3 H(t) ≤ 2α

σ2
d

t
2(3−r)

3 H(t0) ≤ 2αC6t
− 2(3−r)

3
0

σ2
d

t
2(3−r)

3 ∆2
0

If we also assume the trajectory {X(t)}t≥t0 is bounded, then by adopting the same interpretation as in Theorem 12, there
exists some positive factor C0 such that, for a.e. t ≥ t0, ‖X(t)− x∗‖2 ≤ C0∆0. Then triangle inequality gives us, for a.e.
t ≥ t0, that

‖Ẋ‖2 ≤
1

t

∥∥∥∥2r

3
(X(t)− x∗) + tẊ

∥∥∥∥
2

+
2r

3t
‖X(t)− x∗‖2 ≤

C7t
− 3−r

3
0 ∆0

t
r
3

with factor C7 =
√

2αC6

σ2
d

+ 2r
3 C0.


