
A Conditional-Gradient-Based Augmented Lagrangian Framework

Alp Yurtsever 1 Olivier Fercoq 2 Volkan Cevher 1

Abstract
This paper considers a generic convex minimiza-
tion template with affine constraints over a com-
pact domain, which covers key semidefinite pro-
gramming applications. The existing conditional
gradient methods either do not apply to our tem-
plate or are too slow in practice. To this end,
we propose a new conditional gradient method,
based on a unified treatment of smoothing and
augmented Lagrangian frameworks. The pro-
posed method maintains favorable properties of
the classical conditional gradient method, such as
cheap linear minimization oracle calls and sparse
representation of the decision variable. We prove
O(1/

√
k) convergence rate for our method in the

objective residual and the feasibility gap. This
rate is essentially the same as the state of the
art CG-type methods for our problem template,
but the proposed method is arguably superior in
practice compared to existing methods in various
applications.

1. Introduction
In this paper we focus on the following constrained convex
minimization template:

minimize
x

f(x) + g(Bx)

subject to x ∈ X & Ax ∈ K
(P)

where x is the decision variable that lives on the convex
and compact optimization domain X ⊂ Rn with diameter
DX := maxx1,x2∈X ‖x1 − x2‖; f : X → R is a convex
differentiable function with Lf -Lipschitz continuous gradi-
ent; A : X → Rp and B : X → Rq are known linear maps;
g : Rq → R is a convex function which can be non-smooth
but we assume that it is Lg-Lipchitz continuous; K ⊆ Rp is
a convex set.

1LIONS, Ecole Polytechnique Fédérale de Lausanne, Switzer-
land 2LTCI, Télécom ParisTech, Université Paris-Saclay, France.
Correspondence to: Alp Yurtsever <alp.yurtsever@epfl.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

This template has a large number of applications in ma-
chine learning, signal processing, and computer science;
from unsupervised clustering (Peng and Wei, 2007) to gen-
eralized eigenvector problems (Boumal et al., 2018), and
from maximum cut (Goemans and Williamson, 1995) to
phase-retrieval (Candès et al., 2013). We refer the reader
to Section 5 from (Yurtsever et al., 2018) for a detailed
discussion on the special instances and applications of (P).

The conditional gradient method (CGM, a.k.a. Frank-Wolfe
algorithm) is one of the most scalable methods in the lit-
erature for solving convex optimization problems over a
structured domain (Yurtsever et al., 2017). The main com-
putational efficiency of CGM comes from the so-called
linear minimization oracles (lmo), the main building blocks
of CGM:

lmoX (v) = arg min
x∈X

〈
x, v

〉
.

lmo is significantly less expensive than the projection. For
instance, lmo contains a rank-1 solution whenX is a nuclear
norm-ball, which can be efficiently approximated via Krylov
subspace methods. Recall that the projection oracle requires
a full singular value decomposition instead.

The classical CGM is originated by Frank and Wolfe (1956),
but its resurgence in machine learning follows Hazan and
Kale (2012) and Jaggi (2013). Unfortunately, CGM has
restrictive assumptions such as the smoothness of the objec-
tive function. Therefore, extending CG-type methods for
broader templates is an active research area (see Section 4
for some recent advancements). In this work, we introduce
the conditional gradient augmented Lagrangian framework
(CGAL) for solving (P).

(P) is significantly broader in applications in comparison
with the classical CGM template. We can consider the non-
smooth term g(Bx) as a regularizer to promote some known
structures of the solution, or directly as a non-smooth loss
function (e.g., least absolute deviations) for robust optimiza-
tion. More importantly, (P) contains an affine inclusion
constraint Ax ∈ K. In particular, it covers the standard
semidefinite programming (SDP) template (with bounded
trace constraint).

Affine constraints are key for the flexibility of the template,
but they pose substantial computational difficulty in solving
the problem in the primal domain. As a result, primal-

A Conditional-Gradient-Based Augmented Lagrangian Framework

dual methods are typically preferred for solving these prob-
lems in large-scale. Among the primal-dual approaches,
augmented Lagrangian provides a powerful framework for
deriving fast methods. However, the majority of the primal-
dual methods for solving (P) rely on the projection and/or
proximal-oracles, which do not scale well in many appli-
cations (SDP’s in particular) and impose a computational
bottleneck. In contrast, CGAL provides the utmost scalabil-
ity by exploiting the cheap linear minimization oracles.

CGAL can be viewed as an extension of the recent work of
(Yurtsever et al., 2018), from the quadratic penalty to an aug-
mented Lagrangian formulation in the spirit of (Bertsekas,
1976), with the focus on improving its empirical perfor-
mance. CGAL guarantees O(1/

√
k) convergence rate both

in the objective residual and the feasibility gap. The simplic-
ity of our analysis enables us to identify adaptive bounds, us-
ing which we can propose explicit and implementable dual
step-size rules that retain the theoretical convergence rates,
while significantly enhancing the practical performance of
the algorithm. Our numerical evidence demonstrates supe-
rior performance.

The rest of this paper is organized as follows. We review
the notions of smoothing, quadratic penalty and augmented
Lagrangian in Section 2. In Section 3 we introduce CGAL
and the main convergence theorem. We provide a detailed
discussion of the related works in Section 4. Finally, in
Section 5 we present the empirical evidence supporting the
advantages of our framework. Technical details are deferred
to the supplementary material.

Notation. We use lowercase letters for vectors (or matrices
when considering vector space of matrices), uppercase let-
ters for linear maps, and calligraphic letters for sets. We de-
note the Euclidean inner product by

〈
·, ·
〉
, and the Euclidean

norm by ‖·‖. We denote the adjoint of a linear mapA byA>.
For a set K, its indicator function ιK : Rq → R ∪ {+∞} is
defined as

ιK(z) =

{
0 if z ∈ K
+∞ otherwise.

2. Preliminaries
Our algorithmic design is based on the unified treatment of
smoothing, quadratic penalty and augmented Lagrangian
frameworks. This section reviews these notions and explains
their similarities.

2.1. Nesterov Smoothing

In his seminal work, Nesterov (2005a) introduces a tech-
nique for solving some structured non-smooth optimization
problems with efficiency estimates O(1/ε), which is much
better than the theoretical lower bound O(1/ε2). This tech-
nique is known as Nesterov smoothing, and it is commonly

used to design efficient primal-dual methods (e.g., (Nes-
terov, 2005b), (Tran-Dinh et al., 2018)).

Nesterov smoothing exploits an important class of non-
smooth functions ψ(x) that can be written in the following
max-form:

ψ(x) = max
u∈U

{〈
Bx, u

〉
− φ̂(u)

}
,

for some convex and compact set U ⊂ Rq and a convex
function φ̂ : U → R.

Let us consider a prox-function δ(u) of U , i.e., a strongly
convex continuous function on U . Define the center point
of this prox-function as

u̇ = arg min
u∈U

δ(u).

Without loss of generality, we assume that the strong convex-
ity parameter of δ is 1 and δ(u̇) = 0. Smooth approximation
ψβ(x) with the smoothness parameter β > 0 is defined as

ψβ(x) = max
u∈U

{〈
Bx, u

〉
− φ̂(u)− βδ(u)

}
.

Then, ψβ is well defined, differentiable, convex and smooth.
Moreover, it uniformly approximates ψ, in the sense it satis-
fies the following envelop property:

ψβ(x) ≤ ψ(x) ≤ ψβ(x) + βDU (∀x ∈ X),

where DU = maxu∈U δ(u). See Theorem 1 in (Nesterov,
2005a) for the proof and more details.

For notational convenience, we restrict ourselves with
g(B ·), a Lipschitz continuous function coupled with a lin-
ear map. Note that we can write g(B ·) in the max form
by choosing ψ(x) = g(Bx) and φ̂(u) = g∗(u). Here, g∗

denotes the Fenchel conjugate of g:

g∗(u) = max
z

{〈
u, z

〉
− g(z)

}
.

Since g is convex and lower semicontinuous, Fenchel dual-
ity holds, and we have g(Bx) = g∗∗(Bx). Moreover, the
Lipschitz continuity assumption of g ensures the bounded-
ness of the dual domain (see Lemma 5 in (Dünner et al.,
2016) for a formal statement of this well-known result).

In this work, we specifically focus on the Euclidean prox-
functions, δ(u) = 1

2‖u− u̇‖
2. By definition of ψβ , gβ takes

the following form:

gβ(Bx) = max
u∈Rq

{〈
Bx, u

〉
− g∗(u)− β

2
‖u− u̇‖2

}
.

The argument of this maximization subproblem can be writ-
ten as proxβ−1g∗(u̇+ β−1Bx), where

proxg(z) = arg min
u

g(u) +
1

2
‖z − u‖2.

A Conditional-Gradient-Based Augmented Lagrangian Framework

Finally, we can compute the gradient of gβ as

∇gβ(Bx) = B>proxβ−1g∗(u̇+ β−1Bx)

= B>u̇+ β−1B>
(
Bx− proxβg(βu̇+Bx)

)
,

where the second line follows from the well-known Moreau
decomposition.

2.2. Quadratic Penalty

The quadratic penalty method is an effective proxy for han-
dling the affine constraints Ax ∈ K. It works by replacing
the constraint with the penalty function which favors the fea-
sibility of iterates. We consider the squared Euclidean dis-
tance, λ2 dist2(Ax,K), as the penalty function, and λ > 0
is called as the penalty parameter. We update this parameter
as we progress in the optimization procedure to converge to
a solution of the original constrained problem. Surprisingly,
the quadratic penalty approach is structurally equivalent to
a de facto instance of Nesterov smoothing.

Let us start by writing the Fenchel conjugate of the indicator
function ιK(·),

ι∗K(z) = max
v∈K

〈
v, z

〉
.

Then, we can write the affine constraint in the max form by
choosing φ̂(z) = ι∗K(z) and using the following formula:

ιK(Ax) = max
z

{
min
v∈K

〈
Ax− v, z

〉}
= max

z

{〈
Ax, z

〉
− ι∗K(z)

}
.

By choosing the standard Euclidean prox-function δ(v) =
1
2‖v‖

2, we get the following “smooth approximation”:

ιKβ(Ax) = max
z

{
min
v∈K

〈
Ax− v, z

〉
− β

2
‖z‖2

}
= min

v∈K
max
z

{〈
Ax− v, z

〉
− β

2
‖z‖2

}
=

1

2β
dist2(Ax,K),

where the inversion of min and max holds due to the Sion’s
minimax theorem (Sion, 1958).

In summary, we can obtain the quadratic penalty with pa-
rameter λ = β−1, by applying the Nesterov smoothing
procedure to the indicator of an affine constraint.

Note that the quadratic penalty does not serve as a uniform
approximation, because the dual domain is unbounded and
the envelope property does not hold. Consequently, the
common analysis techniques for smoothing does not apply
for quadratic penalty methods. Nevertheless, one can exploit
this structural similarity to design algorithms that universally

work for both cases; composite problems with smoothing-
friendly non-smooth regularizers, and problems with affine
constraints.

Quadratic penalty provides simple algorithms with inter-
pretable steps, but they provide limited practical applicabil-
ity due to the poor empirical performance. To this end, the
next subsection reviews augmented Lagrangian methods as
an alternative approach.

2.3. Augmented Lagrangian

Augmented Lagrangian (AL) methods replace the affine
constraint with a continuous function that promotes the
feasibility, similar to the quadratic penalty approach. This
function is parametrized by a penalty parameter λ > 0 (aka
augmented Lagrangian parameter) and a dual vector v̇ ∈ Rp
(Lagrange multiplier). In the min-form, we can write this
function as

min
v∈K

{〈
v̇, Ax− v

〉
+
λ

2
‖Ax− v‖2

}
.

We can view the augmented Lagrangian as a shifted
quadratic penalty, since

arg min
x
f(x) + min

v∈K

{〈
v̇, Ax− v

〉
+
λ

2
‖Ax− v‖2

}
= arg min

x
f(x) + min

v∈K

λ

2
‖Ax− v + 1

λ v̇‖
2

= arg min
x
f(x) +

λ

2
dist2(Ax+ 1

λ v̇,K).

Therefore, it is not surprising that we can relate augmented
Lagrangian function with Nesterov smoothing. To draw
this relation, we simply follow similar arguments as in the
quadratic penalty case, but this time we use a shifted prox-
function δ(v) = 1

2‖v − v̇‖
2:

ιKβ(Ax) = max
z

{
min
v∈K

〈
Ax− v, z

〉
− β

2
‖z − v̇‖2

}
= min

v∈K
max
z

{〈
Ax− v, z

〉
− β

2
‖z − v̇‖2

}
= min

v∈K

{〈
v̇, Ax− v

〉
+

1

2β
‖Ax− v‖2

}
.

In conclusion, augmented Lagrangian formulation is struc-
turally equivalent to a de facto instance of Nesterov smooth-
ing, applied to the indicator of the constraint, with a shifted
Euclidean prox-function. The center point of this prox-
function corresponds to the dual variable, and the penalty
parameter corresponds to the inverse of the smoothness pa-
rameter (λ = β−1). Once again, this approach does not
serve as a uniform approximation, and the common analy-
sis for Nesterov smoothing does not apply for augmented
Lagrangian.

A Conditional-Gradient-Based Augmented Lagrangian Framework

3. Algorithm
In this section, we design CGAL for the special case of
g(Bx) = 0 for the ease of presentation. One can extend
CGAL in a straightforward way for the general case, based
on the discussion in Section 2, and the analysis techniques
in this work and (Yurtsever et al., 2018).

Algorithm 1 CGAL (for g(Bx) = 0)
Input: x1 ∈ X , y1 ∈ Rp, λ0 > 0
for k = 1, 2, . . . , do
ηk = 2/(k + 1) and λk = λ0

√
k + 1

rk = projK (Axk + (1/λk)yk)
vk = ∇f(xk) +A>yk + λkA

>(Axk − rk)
sk = arg minx∈X 〈vk, x〉
xk+1 = xk + ηk(sk − xk)
r̄k+1 = projK (Axk+1 + (1/λk+1)yk)
σk+1 ← using (decr.) or (const.)
yk+1 = yk + σk+1 (Axk+1 − r̄k+1)

end for

3.1. Design of CGAL

Let us introduce the slack variable r = Ax ∈ K and define
the augmented Lagrangian function as

Lλ(x, y) = f(x) + min
r∈K

{〈
y, Ax− r

〉
+
λ

2
‖Ax− r‖2

}
= f(x)− 1

2λ
‖y‖2 +

λ

2
dist2

(
Ax+

1

λ
y,K

)
.

where y ∈ Rp is the Lagrange multiplier and λ > 0 is the
penalty parameter. Clearly, Lλ(x, y) is a smooth convex
function with respect to x.

One CGAL iteration is composed of three basic steps:

. Primal step (conditional gradient step on x),

. Penalty parameter update (increment λ),

. Dual step (proximal gradient step on y).

Primal step. CGAL is characterized by the conditional
gradient step with respect to Lλ(· , y) on the primal variable.
Define

rk = projK

(
Axk +

1

λk
yk

)
.

Then, we can evaluate∇xLλk
(x, yk) as

∇xLλk
(x, yk) = ∇f(xk) +A>yk + λkA

>(Axk − rk).

Next, we query the linear minimization oracle

sk = arg min
x∈X

〈
∇xLλk

(xk, yk), x
〉
,

and we form the next iterate (xk+1) by combining the cur-
rent iterate xk and sk with the CG step-size ηk. We use

the classical step size ηk = 2/(k + 1) of CG-type methods,
but the same guarantees hold for the design variants with
line-search or fully corrective updates.

Penalty parameter update.

Penalty methods typically require the penalty parameter
to be increased at a certain rate for provable convergence.
In contrast, augmented Lagrangian methods can be de-
signed with a fixed penalty parameter, because the sad-
dle point formulation already favors the constraints. Un-
like other augmented Lagrangian CG-type methods, we
adopt an increasing penalty sequence in CGAL by choosing
λk = λ0

√
k + 1 for some λ0 > 0.

Dual step. Once xk+1 is formed, we update the dual vari-
able yk by a gradient ascent step with respect to Lλ(x, ·).
At iteration k, we evaluate dual update by

yk+1 = yk + σk+1∇yLλk+1
(xk+1, yk).

To compute∇yLλk+1
, we first define

r̄k+1 = projK
(
Axk+1 + 1

λk+1
yk
)
.

Then, we can use the following formulation:

∇yLλk+1
(xk+1, yk) = Axk+1 − r̄k+1.

The choice of dual step-size is crucial for convergence guar-
antees. We propose two alternative schemes, with a decreas-
ing or constant bound on the step-size.

Decreasing bound on step-size. This variant cancels posi-
tive quadratic terms in the majorization bounds due to dual
updates, with the negative quadratic terms that come from
the penalty parameter updates. Consequently, we choose
the largest σk+1 ≥ 0 which satisfies

σk+1 ≤ λ0

2
√
k+1

& ‖yk+1‖ ≤ DYk+1
(decr.)

DYk+1
is a sequence of positive numbers to be chosen,

which acts as a dual domain diameter and appears in the
final bounds. We will specify a reasonable positive constant
DY = DYk+1

in the sequel from the final converges bounds,
by matching the factors of the dominating terms.

Constant bound on step-size. We observed significant per-
formance improvements by slightly relaxing the decreasing
upper bound on the step-size. To this end, we design this
second variant. We do not cancel out additional quadratic
terms but restrict them to be smaller than other dominating
terms in the majorization bound. To this end, we choose
the largest σk+1 ≥ 0 which satisfies (DYk

is similar as in
(decr.) case)

σk+1 ≤ λ0
‖yk+1‖ ≤ DYk+1

(const.)

σk+1‖Axk+1 − r̄k+1‖2 ≤ 1
2η

2
k(Lf + λk+1‖A‖2)D2

X .

A Conditional-Gradient-Based Augmented Lagrangian Framework

We underline that the computation of σk does not
require an iterative line-search procedure. Instead,
it can be computed by simple vector operation
both in (decr.) and (const.) variants. As a result,
the computational cost of finding σk is negligible.

3.2. Theoretical Guarantees of CGAL

We present convergence guarantees of CGAL in this section.
But first, we define some basic notions to be used in the
sequel and state our main assumptions.

Solution set. We denote a solution of (P) by x?, and the
set of all solutions by X ?. Similarly, we denote a solu-
tion of the dual problem by y?, and the set of all solutions
by Y?. Throughout, we assume that the solution set is
nonempty and that there exists a finite dual solution, i.e.,
miny∈Y? ‖y‖ <∞.

ε-solution. Given an accuracy level ε > 0, we call a point
x ∈ X as an ε-solution of (P) if

f(x)− f? ≤ ε, and dist(Ax,K) ≤ ε.

We call f(x)−f? as the objective residual and dist(Ax,K)
as the feasibility gap. Note that the convergence of objective
residual alone is not enough to approximate the solution
since the iterates are non-feasible and f(x)−f? can take
negative values.

Strong duality. We assume that the strong duality holds.
This assumption is common for primal-dual methods, and
the Slater’s condition is a widely used sufficient condition
for the strong duality:

relint(X ×K) ∩ {(x, r) ∈ dom(f)×Rd : Ax = r} 6= ∅,

where relint means relative interior.

Theorem 3.1. Sequence xk generated by CGAL with dual
step-size conditions (const.) satisfies:

f(xk)− f? ≥ −‖y?‖ dist(Axk,K)

f(xk)− f? ≤ 4D2
X

(
Lf
k

+
λ0‖A‖2√

k

)
+

D2
Yk

2λ0
√
k

dist(Axk,K) ≤ 2/λ0√
k

(
DYk

2
+‖yk − y?‖+

√
2C0λ0D2

X

)
where C0 = Lf + ‖A‖2λ0. We can also bound ‖yk − y?‖
using triangle inequality. Considering the bounds, it is
reasonable to choose DY proportional to DX ‖A‖λ0.

Sequence xk generated by CGAL with dual step-size con-
ditions (decr.) satisfies similar guarantees as (const.), with
the factor of 1/2 for all terms involving D2

X .

We omit design variants of CGAL with line-search and
fully corrective updates, covered by our theory. The same
guarantees hold for these variants.

3.3. Extension for Composite Problems

One can extend CGAL in a straightforward way for compos-
ite problems based on the discussions in Section 2. For this,
we simply need to define the sum of two non-smooth terms:
G(Ax,Bx) = ιK(Ax) + g(Bx). Then, CGAL guarantees
O(1/

√
k) rates in the feasibility gap dist(Ax,K) and in the

objective residual f(x) + g(Bx) − f(x?) − g(Bx?). See
the supplements for more details.

Below we describe the extension (const.) for this setting

σk+1 ≤ λ0 and γk+1 ≤ β0
‖yk+1‖ ≤ DYk+1

and ‖zk+1‖ ≤ DZk+1

σk+1‖Axk+1 − r̄k+1‖2 ≤ 1
4η

2
k

¯̄Lk+1D
2
X

γk+1‖Bxk+1 − t̄k+1‖2 ≤ 1
4η

2
k

¯̄Lk+1D
2
X (const.2)

where ¯̄Lk+1 = (Lf + λk+1‖A‖2 + β−1k+1‖B‖2). A rea-
sonable choice is DZk+1

= DZ = Lg. One can similarly
also extend (decr.) for this setting. Alternatively, we can set
zk = 0n fixed, and perform dual updates only on yk.

Algorithm 2 CGAL for (P)
Input: x1 ∈ X , y1 ∈ Rp, z1 ∈ Rq, λ0 > 0, β0 > 0
for k = 1, 2, . . . , do
ηk = 2/(k+1), λk = λ0

√
k + 1, βk = β0/

√
k + 1

rk = projK (Axk + (1/λk)yk)
tk = proxβkg

(Bxk + βkzk)

vk = A>yk + λkA
>(Axk − rk)

wk = B>zk + (1/βk)B>(Bxk − tk)
sk = arg minx∈X 〈∇f(xk) + vk + wk, x〉
xk+1 = xk + ηk(sk − xk)
r̄k+1 = projK (Axk+1 + (1/λk+1)yk)
σk+1 ← using (decr.2) or (const.2)
yk+1 = yk + σk+1 (Axk+1 − r̄k+1)
t̄k+1 = proxβk+1g

(Bxk+1 + βk+1zk)
γk+1 ← using (decr.2) or (const.2)
zk+1 = zk + γk+1 (Bxk+1 − t̄k+1)

end for

4. Related Work
The majority of convex methods for solving (P) are based
on computationally challenging oracles, e.g., some second-
order oracle (for interior point methods), the projection
onto X (for operator splitting methods), and a constrained
proximal-oracle (for the majority of the classical primal-
dual methods). For these methods, we refer to (Wright,
1997), (Komodakis and Pesquet, 2015), (Ryu and Boyd,
2016) and the references therein. In the rest of this section,
we focus on the lmo-based algorithms for solving (P) or
some special instances of it.

Lan (2014) introduces a conditional gradient method for
non-smooth minimization over a convex compact domain.

A Conditional-Gradient-Based Augmented Lagrangian Framework

His method is based on the Nesterov smoothing, and it is
the first attempt to combine the Nesterov smoothing and
conditional gradient approach, to the best of our knowledge.
However, this method does not apply in the presence of
affine constraints, since it relies on the boundedness of the
dual domain and the uniform approximation property.

Yurtsever et al. (2015) present the universal primal-dual
method (UPD), a primal-dual subgradient approach for solv-
ing convex minimization problems with affine constraints.
The main template of UPD is fairly different than (P); it
does not have the non-smooth term g(Bx) and the smooth-
ness assumption on f , but it assumes Hölder smoothness
in the dual space instead. The method does not directly
work with lmo’s, but it leverages the so-called sharp opera-
tors. For the standard form SDP formulation, however, the
sharp-operator is an instance of the lmo.

UPD adopts the inexact line-search strategy introduced by
Nesterov (2015). This strategy requires the target accuracy
ε as an input parameter, and UPD is guaranteed to converge
only up to ε accuracy, i.e., UPD guarantees f(x) − f? ≤
O(1/

√
k) + ε. The practical performance of UPD heavily

depends on this parameter: Choosing ε too small leads to
very small step-sizes hence slow convergence. Best values
for ε are typically around 1/10th and 1/100th of the |f?|,
but UPD is difficult to tune unless the optimal value is
roughly known.

Lan and Zhou (2016) propose the conditional gradient slid-
ing method (CGS). This method is based on an inexact ver-
sion of the accelerated gradient method by Nesterov (1987),
where the projection subproblem is approximately solved
by using the classical CGM. CGS is originally proposed
for smooth minimization over a convex and compact do-
main, but the results are generalized for smoothing friendly
non-smooth functions in Section 4 by following the same
approach as Lan (2014). Note that this generalization di-
rectly follows the standard approach of Nesterov smoothing,
and it does not apply for affine constraints.

Yen et al. (2016b) propose the greedy direction method
of multipliers (GDMM), a CGM variant for minimizing a
linear objective function over an intersection of polytopes.
GDMM relies on a consensus reformulation over the carte-
sian product of these polytopes, and the consistency con-
straint is incorporated by the augmented Lagrangian. This
method is further explored in the structural support vector
machine (Yen et al., 2016a) and maximum a-posteriori in-
ference (Huang et al., 2017) problems. Nevertheless, Gidel
et al. (2018) point out some technical issues in the analysis
of this approach, see Section B.1 in (Gidel et al., 2018).

Gidel et al. (2018) propose an augmented Lagrangian
framework for the convex splitting problem (FW-AL). Simi-
lar to CGAL, this method is characterized by one CGM step

on Lλ(·, yk) followed by one dual gradient ascent step on
Lλ(xk+1, ·). In contrast to CGAL, the penalty parameter
λ of FW-AL is kept fixed. Originally, FW-AL is proposed
for Ax = 0 type of constraints (i.e., splitting), but it can
be applied to Ax = b case by using a simple product space
technique. The analysis of FW-AL relies on the error bounds
(see Theorem 1 in (Gidel et al., 2018) for the conditions,
and (Bolte et al., 2017) for more details about error bounds).
Their dual step-size σk+1 depends on the error bound con-
stant α, as σk+1 = 2σ0

k+2 with σ0 ≤ min{ 2λ ,
α2

2δ }. Hence,
σ0 is a tuning parameter, and the method has guaranteed
convergence only if it is chosen small enough. However, α
is typically not only not known, and it can be also arbitrarily
small.

Liu et al. (2018) introduce an inexact augmented La-
grangian method (IAL), where the Lagrangian subproblems
are approximately solved by CGM up to a prescribed accu-
racy εk = ε0/k for some ε0 > 0 to be tuned. This results
in a double-loop algorithm, where each outer iteration runs
multiple CGM iterations until the following condition is
satisfied:

max
x∈X

〈
∇f(xk+1) +A>yk + λA>(Axk+1 − b), x

〉
≤ εk.

Then, the algorithm takes a dual gradient ascent step.

IAL provably generates an ε-solution after O(1/ε2) outer it-
erations, by choosing the penalty parameter λ appropriately
(proportional to 1/

√
ε). This method, however, requires

multiple queries of lmo at each iteration. Since the number
of lmo calls is bounded by d6LfD2

X /εke − 2 (see Theo-
rem 2.2 in (Liu et al., 2018)), the overall lmo complexity of
this method is O(1/ε4). Note that this is much worse than
O(1/ε2) calls required by our method.

Yurtsever et al. (2018) present a CG-type method (HCGM)
for (P). This method relies on the quadratic penalty ap-
proach to handle affine constraints. HCGM guarantees
O(1/

√
k) convergence rate both in the objective residual

and the feasibility gap, similar to CGAL. As explained in
Section 2, however, penalty methods typically exhibit their
proven worst case guarantees in practice. We can indeed
observe that the empirical rate of HCGM is O(1/

√
k) in

our numerical experiments (in Section 5), as well as in the
experiments in (Yurtsever et al., 2018).

5. Numerical Experiments
This section presents the numerical evidence to demonstrate
the empirical superiority of CGAL, based on the max-cut,
clustering ,and generalized eigenvector problems.

We compared CGAL against UPD and HCGM from Sec-
tion 4. This choice is based on the practicality of the al-
gorithms: FW-AL and IAL have 2 tuning parameters each,

A Conditional-Gradient-Based Augmented Lagrangian Framework

and it is very difficult to tune these methods for medium or
large scale problems. On the other hand, CGAL, HCGM,
and UPD have a single parameter to tune (penalty param-
eter λ0 for CGAL and HCGM, and accuracy parameter ε
for UPD). We tune all these parameters by bisection (with
factor 10), until the method (with the chosen parameter)
outperforms itself with 10th and 1/10th of the parameter.
Although CGAL with (decr.) performed better than HCGM
in all of our experiments, CGAL with (const.) uniformly
outperformed (decr.) and HCGM. Hence in this section, we
focus on CGAL with (const.).

Note that the computational cost of all algorithms is dom-
inated by lmo. Hence, we plot some of the results with
respect to the number of lmo calls. Arguably, this roughly
represents the computation time.

5.1. Max-cut

Maximum cut is an NP-Hard combinatorial problem from
computer science. Denoting the symmetric n × n graph
Laplacian matrix of a graph by c, this problem can be re-
laxed as (Goemans and Williamson, 1995):

maximize
x

1
4 tr(cx)

subject to xii = 1 for i = 1, 2, . . . , n

tr(x) = n, x ∈ Sn+.

Tuning all methods from Section 4 requires substantial com-
putational effort, especially because some of these methods
have multiple tuning parameters. To this end, we first con-
sider a small scale max-cut instance where we compare
all of these methods (which applies to this problem) and
CGAL. In this setup, we use the GD97 b dataset1, which
corresponds to a 47× 47 dimensional problem.

lmo
100 101 102 103 104

|t
r(

c(
x
−
x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

GD97_b

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−
1‖
/‖
1‖

10−3

10−2

10−1

100

GD97_b

CGAL
HCGM
UPD
FW-AL
IAL

Figure 1. Empirical performance of various methods for solving
max-cut problem.

In Figure 1, we present the performance of each method
with the best parameter choice obtained after an extensive
search. We also provide the performance of each algorithm
at all trials in the supplements, and some other variants of
these methods as well.

1V. Batagelj and A. Mrvar. Pajek datasets, http://vlado.
fmf.uni-lj.si/pub/networks/data/

Next, we consider a medium scale experiment, where we
compare CGAL, HCGM, and UPD for max-cut with G1
(800× 800) and G40 (2000× 2000) datasets2. We compile
the results of these tests in Figure 2. Observe that HCGM
converges with O(1/

√
k) (which is the worst case bound)

while CGAL achieves a faster rate.

lmo
100 101 102 103 104 105

|t
r(

c⊤
(x

−
x
⋆
))

|/
|t
r(
c⊤

x
⋆
)|

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
G1

CGAL
HCGM
UPD

lmo
100 101 102 103 104 105

‖d
ia
g
(x
)
−
1‖
/‖
1‖

10−5

10−4

10−3

10−2

10−1

100

101

G1

lmo
100 101 102 103 104 105

|t
r(

c⊤
(x

−
x
⋆
))

|/
|t
r(
c⊤

x
⋆
)|

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101
G40

lmo
100 101 102 103 104 105

‖d
ia
g
(x
)
−
1
‖/
‖1
‖

10−5

10−4

10−3

10−2

10−1

100

101

102
G40

Figure 2. Empirical comparison of CGAL, HCGM and UPD with
max-cut problem setup.

5.2. k-means Clustering

Consider the SDP formulation of model-free k-means clus-
tering problem by (Peng and Wei, 2007):

minimize
x

tr(cx)

subject to x1n = 1n, x ≥ 0, x ∈ Sn+ & tr(x) = α.

where α is the number of clusters and c is the n × n Eu-
clidean distance matrix. We denote the vector of ones by 1n,
hence x1n = 1n and x ≥ 0 together implies that each row
of x is on the unit simplex. The same applies to the columns
of x due to symmetry. This problem is an instance of (P),
where f(x) = tr(cx), X = {x : x ∈ Sn+, tr(x) = α},
A : Sn+ → Rn × Rn×n maps x → (x1n, x), and K =
{1n} × Rn×n+ .

We use the same setup as in (Yurtsever et al., 2018), which is
designed and published online by Mixon et al. (2017). This
setup contains a 1000×1000 dimensional dataset generated
by sampling and preprocessing the MNIST dataset3 using a
one-layer neural network. Further details on this setup and
the dataset can be found in (Mixon et al., 2017).

2Y. Ye. Gset random graphs. https://www.cise.ufl.
edu/research/sparse/matrices/gset/

3Y. LeCun and C. Cortes. MNIST handwritten digit database,
http://yann.lecun.com/exdb/mnist/

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://www.cise.ufl.edu/research/sparse/matrices/gset/
https://www.cise.ufl.edu/research/sparse/matrices/gset/
http://yann.lecun.com/exdb/mnist/

A Conditional-Gradient-Based Augmented Lagrangian Framework

iteration
100 101 102 103 104

|t
r(
ψ
(x

−
x
⋆
))
|/
|t
r(
ψ
x
⋆
)|

10−12

10−10

10−8

10−6

10−4

10−2

Gaussian

CGAL
HCGM
UPD

iteration
100 101 102 103 104

|t
r(
ψ
x
)
−
1|

10−12

10−10

10−8

10−6

10−4

10−2

100
Gaussian

iteration
100 101 102 103 104

|t
r(
ψ
(x

−
x
⋆
))
|/
|t
r(
ψ
x
⋆
)|

10−12

10−10

10−8

10−6

10−4

10−2

PolyDecay

iteration
100 101 102 103 104

|t
r(
ψ
x
)
−
1|

10−12

10−10

10−8

10−6

10−4

10−2

100
PolyDecay

iteration
100 101 102 103 104

|t
r(
ψ
(x

−
x
⋆
))
|/
|t
r(
ψ
x
⋆
)|

10−12

10−10

10−8

10−6

10−4

10−2

ExpDecay

iteration
100 101 102 103 104

|t
r(
ψ
x
)
−
1
|

10−12

10−10

10−8

10−6

10−4

10−2

100
ExpDecay

iteration
100 101 102 103 104

|t
r(
ψ
(x

−
x
⋆
))
|/
|t
r(
ψ
x
⋆
)|

10−12

10−10

10−8

10−6

10−4

10−2

MaxCut SDP

iteration
100 101 102 103 104

|t
r(
ψ
x
)
−
1
|

10−12

10−10

10−8

10−6

10−4

10−2

100
MaxCut SDP

Figure 3. Empirical comparison of CGAL, HCGM and UPD for solving generalized eigenvector problem with 4 different synthetic setups.
Dotted lines present objective residual and feasibility gap of the atoms chosen by linear minimization oracle (sk).

iteration
100 101 102 103 104 105 106

d
is
t(
A
x
,K

)

10−3

10−2

10−1

100

101

102

iteration
100 101 102 103 104 105 106

|f
(x
)
−

f
⋆
|/
|f

⋆
|

10−4

10−3

10−2

10−1

100

101

102

CGAL
HCGM

Figure 4. Objective residual and feasibility gap for k-means clus-
tering with preprocessed MNIST dataset.

In Figure 4, we observe once again that CGAL outperforms
HCGM, achieving O(1/k) empirical convergence rate. In
this problem instance, we failed to tune UPD, even with
the knowledge of f?. After extensive analysis and tests, we
concluded that UPD has an implicit tuning parameter. It is
possible to choose different accuracy terms for objective and
feasibility in UPD, as also noted by the authors, simply by
scaling the objective function with a constant. The perfor-
mance of UPD heavily depends on this scaling in addition
to tuning accuracy parameter, hence we omit UPD.

5.3. Generalized Eigenvector Problem

Consider the SDP relaxation of the generalized eigenvector
problem from Boumal et al. (2018):

maximize
x

tr(φx)

subject to tr(x) ≤ α, X ∈ Sn+ & tr(ψx) = 1

where φ and ψ are symmetric matrices of size n × n and
α > 0 is a model parameter. In this problem, we use some
synthetic setups, where we generate ψ with iid Gaussian
entries, and we consider 4 different cases for φ:

◦ Gaussian - φ generated by taking symmetric part of
103 × 103 iid Gaussian matrix
◦ PolyDecay - φ generated by randomly rotating

diag(1−i, 2−i, . . . , 1000−i) (i = 1)
◦ ExpDecay - φ generated by randomly rotating

diag(10−i, 10−2i, . . . , 10−1000i) (i = 0.025)
◦ MaxCut SDP - φ is a solution of the max-cut SDP with

G40 dataset (2000× 2000)

This problem highlights an important observation that par-
tially explains the reason why CGAL outperforms the base
method HCGM. Remark that this problem has a rank-1 so-
lution, and if we set α correctly, this solution becomes an
extreme point of the domain. In this scenario, if the prob-
lem is well-conditioned, we might expect the lmo to pick
this solution (or some close points). For the sake of the
better adaptation to the problem geometry, CGAL updates
the dual variable (which corresponds to the center point of
a quadratic penalty). In Figure 3, we provide empirical evi-
dence of this adaptation: Dotted lines correspond to extreme
points chosen by lmo. Unsurprisingly, these points (sk)
quickly converge (with linear rates) to a solution for CGAL,
while we do not observe the same behavior for HCGM or
UPD (we omit lmo outputs of UPD in figure which do not
converge).

A Conditional-Gradient-Based Augmented Lagrangian Framework

Acknowledgements
This work was supported by the Swiss National Science
Foundation (SNSF) under grant number 200021 178865/1.
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
no 725594 - time-data).

References
D. P. Bertsekas. On penalty and multiplier methods for

constrained minimization. SIAM J. Control Optim., 14
(2):216–235, 1976.

J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter.
From error bounds to the complexity of first-order descent
methods for convex functions. Math. Program., 165(2):
471–507, 2017.

N. Boumal, V. Voroninski, and A. Bandeira. Deterministic
guarantees for Burer–Monteiro factorizations of smooth
semidefinite programs. arXiv:1804.02008v1, 2018.

E. J. Candès, T. Strohmer, and V. Voroninski. PhaseLift:
Exact and stable signal recovery from magnitude mea-
surements via convex programming. Communications on
Pure and Applied Math., 66(8):1241–1274, 2013.

C. Dünner, S. Forte, M. Takác, and M. Jaggi. Primal–dual
rates and certificates. In Proc. 33rd Int. Conf. Machine
Learning, 2016.

M. Frank and P. Wolfe. An algorithm for quadratic program-
ming. Naval Research Logistics Quarterly, 3:95–110,
1956.

G. Gidel, F. Pedregosa, and S. Lacoste-Julien. Frank-Wolfe
splitting via augmented Lagrangian method. In Proc. 21st
Int. Conf. Artificial Intelligence and Statistics (AISTATS),
2018.

M. X. Goemans and D. P. Williamson. Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
the ACM, 43(6):1115–1145, 1995.

E. Hazan and S. Kale. Projection–free online learning. In
Proceedings of the 29th International Conference on Ma-
chine Learning, 2012.

X. Huang, I. E.-H. Yen, R. Zhang, Q. Huang, P. Ravikumar,
and I. S. Dhillon. Greedy direction method of multiplier
for MAP inference of large output domain. In Proc. 20th
Int. Conf. Artificial Intelligence and Statistics (AISTATS),
2017.

M. Jaggi. Revisiting Frank–Wolfe: Projection–free sparse
convex optimization. In Proc. 30th Int. Conf. Machine
Learning, 2013.

N. Komodakis and J.-C. Pesquet. Playing with duality: An
overview of recent primal-dual approaches for solving
large-scale optimization problems. IEEE Signal Process.
Mag., 32(6):31–54, 2015.

G. Lan. The complexity of large–scale convex programming
under a linear optimization oracle. arXiv:1309.5550v2,
2014.

G. Lan and Y. Zhou. Conditional gradient sliding for convex
optimization. SIAM J. Optim., 26(2):1379–1409, 2016.

Y.-F. Liu, X. Liu, and S. Ma. On the non-ergodic conver-
gence rate of an inexact augmented Lagrangian frame-
work for composite convex programming. to appear in
Mathematics of Operations Research, 2018.

D. G. Mixon, S. Villar, and R. Ward. Clustering subgaussian
mixtures by semidefinite programming. Information and
Inference: A Journal of the IMA, 6(4):389–415, 2017.

Y. Nesterov. A method of solving a convex programming
problem with convergence rate O(1/k2). Soviet Mathe-
matics Doklady, 27(2):372–376, 1987.

Y. Nesterov. Smooth minimization of non-smooth functions.
Math. Program., 103:127–152, 2005a.

Y. Nesterov. Excessive gap technique in nonsmooth convex
minimization. SIAM J. Optim., 16(1):235–249, 2005b.

Y. Nesterov. Universal gradient methods for convex opti-
mization problems. Math. Program., 152(1-2):381–404,
2015.

J. Peng and Y. Wei. Approximating K–means–type cluster-
ing via semidefinite programming. SIAM J. Optim., 18
(1):186–205, 2007.

E. K. Ryu and S. Boyd. Primer on monotone operator
methods. Appl. Comput. Math., 15(1):3–43, 2016.

M. Sion. On general minimax theorems. Pacific J. Math., 8
(1):171–176, 1958.

Q. Tran-Dinh, O. Fercoq, and V. Cevher. A smooth primal-
dual optimization framework for nonsmooth composite
convex minimization. SIAM J. Optim., 28(1):96–134,
2018.

S. J. Wright. Primal–Dual Interior–Point Methods. SIAM,
Philadelphia, USA, 1997.

A Conditional-Gradient-Based Augmented Lagrangian Framework

I. E.-H. Yen, K. Huang, R. Zhong, P. Ravikumar, and I. S.
Dhillon. Dual decomposed learning with factorwise or-
acle for structural svm with large output domain. In
Advances in Neural Information Processing Systems 29,
2016a.

I. E.-H. Yen, X. Lin, J. Zhang, P. Ravikumar, and I. S.
Dhillon. A convex atomic–norm approach to multiple se-
quence alignment and motif discovery. In Proceedings of
the 33rd International Conference on Machine Learning,
2016b.

A. Yurtsever, Q. Tran-Dinh, and V. Cevher. A universal
primal-dual convex optimization framework. In Advances
in Neural Information Processing Systems 28, 2015.

A. Yurtsever, M. Udell, J. Tropp, and V. Cevher. Sketchy
decisions: Convex low-rank matrix optimization with
optimal storage. In Proc. 20th Int. Conf. Artificial Intelli-
gence and Statistics (AISTATS), 2017.

A. Yurtsever, O. Fercoq, F. Locatello, and V. Cevher. A
conditional gradient framework for composite convex
minimization with applications to semidefinite program-
ming. In Proc. 35th Int. Conf. Machine Learning, 2018.

A Conditional-Gradient-Based Augmented Lagrangian Framework

A. Proof of convergence
For notational simplicity in the proof, we redefine augmented Lagrangian function with three variables, including the slack
variable r ∈ K as

Lλ(x, r, y) : = f(x) +
〈
y, Ax− r

〉
+
λ

2
‖Ax− r‖2,

where y ∈ Rd is the Lagrange multiplier and λ > 0 is the augmented Lagrangian parameter.

Directional derivatives of augmented Lagrangian function can be written as

∇xLλ(x, r, y) = ∇f(x) +A>y + λA>(Ax− r)
∇rLλ(x, r, y) = −y − λ(Ax− r)
∇yLλ(x, r, y) = Ax− r.

Denote by L̄k = (Lf + λk‖A‖2). Then, using the Taylor expansion, we get the following estimate:

Lλk+1
(xk+1, rk, yk) ≤ Lλk+1

(xk, rk, yk) +
〈
∇xLλk+1

(xk, rk, yk), xk+1 − xk
〉

+
L̄k+1

2
‖xk+1 − xk‖2

= Lλk+1
(xk, rk, yk) + ηk

〈
∇xLλk+1

(xk, rk, yk), sk − xk
〉

+ η2k
L̄k+1

2
‖sk − xk‖2

≤ Lλk
(xk, rk, yk) + ηk

〈
∇xLλk

(xk, rk, yk), sk − xk
〉

+ η2k
L̄k+1

2
D2
X

+
λk+1 − λk

2
‖Axk − rk‖2 + ηk(λk+1 − λk)

〈
Axk − rk, Ask −Axk

〉
.

We can bound the inner product term on the right hand as follows:〈
∇xLλk

(xk, rk, yk), sk − xk
〉

=
〈
∇f(xk) + λkA

>(Axk − rk) +A>yk, sk − xk
〉

≤
〈
∇f(xk) + λkA

>(Axk − rk) +A>yk, x
? − xk

〉
=
〈
∇f(xk), x? − xk

〉
+
〈
λk(Axk − rk) + yk, Ax

? −Axk
〉

=
〈
∇f(xk), x? − xk

〉
+
〈
λk(Axk − rk) + yk, rk − rk +Ax? −Axk

〉
=
〈
∇f(xk), x? − xk

〉
− λk‖Axk − rk‖2 −

〈
yk, Axk − rk

〉
+ λk

〈
Axk − rk, Ax? − rk

〉
+
〈
yk, Ax

? − rk
〉

≤ f? − f(xk)− λk‖Axk − rk‖2 −
〈
yk, Axk − rk

〉
+ λk

〈
Axk − rk, Ax? − rk

〉
+
〈
yk, Ax

? − rk
〉

= f? − Lλk
(xk, rk, yk)− λk

2
‖Axk − rk‖2

+ λk
〈
Axk − r, Ax? − rk

〉
+
〈
yk, Ax

? − rk
〉

= L? − Lλk
(xk, rk, yk) +

λk
2
‖Ax? − rk‖2

− λk
2
‖Axk −Ax?‖2 +

〈
yk, Ax

? − rk
〉
.

where the first inequality holds since sk is the solution of lmo, the second inequality simply follows the convexity of f , and
the last equality holds due to strong duality.

Also note by definition, r̄k+1 = arg minr∈K Lλk+1
(xk+1, r, yk), hence

Lλk+1
(xk+1, r̄k+1, yk) ≤ Lλk+1

(xk+1, rk, yk).

A Conditional-Gradient-Based Augmented Lagrangian Framework

Combining these bounds, we arrive at

Lλk+1
(xk+1, r̄k+1, yk) ≤ (1− ηk)Lλk

(xk, rk, yk) + (1− ηk)

(
λk+1

2
− λk

2

)
‖Axk − rk‖2 + ηkL?

+ η2k
L̄k+1

2
D2
X + ηk

λk
2
‖Ax? − r‖2 + ηk

〈
yk, Ax

? − rk
〉
− ηk

λk
2
‖Axk −Ax?‖2

≤ (1− ηk)Lλk
(xk, rk, yk) + (1− ηk)

(
λk+1

2
− λk

2

)
‖Axk − rk‖2 + ηkL?

+ η2k
L̄k+1

2
D2
X − ηk

λk
2
‖Axk − rk‖2 + ηk

〈
yk + λk(Axk − rk), Ax? − rk

〉
≤ (1− ηk)Lλk

(xk, rk, yk) + (1− ηk)

(
λk+1

2
− λk

2

)
‖Axk − rk‖2 + ηkL?

+ η2k
L̄k+1

2
D2
X − ηk

λk
2
‖Axk − rk‖2

where the last inequality follows from the optimality condition. rk = arg minr∈K Lλk
(xk, r, yk) by definition, hence the

following estimate holds ∀r ∈ K〈
yk + λk(Axk − rk), r − rk

〉
=
〈
∇rLλk

(xk, rk, yk), r − rk
〉
≤ 0

and in particular for r = Ax? ∈ K.

In order to obtain a recurrence, we need to shift the dual variable on the left hand side of our bound. For this, we use the
following relations:

Lλk+1
(xk+1, rk+1, yk+1) ≤ Lλk+1

(xk+1, r̄k+1, yk+1)

= Lλk+1
(xk+1, r̄k+1, yk) +

〈
yk+1 − yk, Axk+1 − r̄k+1

〉
= Lλk+1

(xk+1, r̄k+1, yk) + σk+1‖Axk+1 − r̄k+1‖2.

Combining all these bounds and subtracting L? from both sides, we end up with

Lλk+1
(xk+1, rk+1, yk+1)− L? ≤ (1− ηk) (Lλk

(xk, rk, yk)− L?) + η2k
L̄k+1

2
D2
X

+
1

2
((1− ηk)λk+1 − λk) ‖Axk − rk‖2 + σk+1‖Axk+1 − r̄k+1‖2

(1)

From this point, we consider two cases: constant step size with growth condition, and decreasing step size.

A.1. Constant bound on step-size

We choose σk+1 ≤ λ0 such that it ensures the following conditions:

σk+1‖Axk+1 − r̄k+1‖2 ≤ η2k
L̄k+1

2
D2
X & ‖yk+1‖ ≤ DYk+1

where DYk+1
is a sequence of positive and non-decreasing numbers, to input. Note that σk+1 is well defined, in the sense

there exists σk+1 ≥ 0 which satisfy both conditions, simply because σk+1 = 0 trivially satisfies them.

In addition, since we choose λk = λ0
√
k + 1 and ηk = 2/k + 1, we have

(1− ηk)λk+1 − λk =
k − 1

k + 1

√
k + 2−

√
k + 1 ≤ k√

k + 2
−
√
k + 1 ≤ 0.

As a consequence, we can simplify (1) as

Lλk+1
(xk+1, rk+1, yk+1)− L? ≤ (1− ηk) (Lλk

(xk, rk, yk)− L?) + η2kL̄k+1D
2
X

A Conditional-Gradient-Based Augmented Lagrangian Framework

Applying this recursion we get

Lλk+1
(xk+1, rk+1, yk+1)− L? ≤

k∏
j=1

(1− ηj) (Lλ1(x1, r1, y1)− L?) +D2
X

k∑
`=1

η2` L̄`+1

k∏
j=`

(1− ηj)

= D2
X

k∑
`=1

η2` L̄`+1

k∏
j=`

(1− ηj)

where the last equality follows since η1 = 1. By using the following inequality,

k∑
`=1

η2`

k∏
j=`

(1− ηj) =

k∑
`=1

4

(`+ 1)2

k∏
j=`

j − 1

j + 1
=

k∑
`=1

4

(`+ 1)2
(`− 1)`

k(k + 1)
≤ 4

k + 1
,

we get the following bound on the augmented Lagrangian:

Lλk+1
(xk+1, rk+1, yk+1)− L? ≤ 4

k + 1
D2
X L̄k+1 = 4D2

X

(
Lf
k + 1

+
λ0‖A‖2√
k + 1

)
.

In the next step, we translate the bound on augmented Lagrangian to convergence guarantees on objective residual and
feasibility gap.

Convergence of objective. We start by using the definition of augmented Lagrangian and the strong duality:

f(xk+1)− f? = Lλk+1
(xk+1, rk+1, yk+1)− L? +

1

2λk+1
‖yk+1‖2 −

λk+1

2
dist2

(
Axk+1 +

1

λ
yk+1,K

)
≤ Lλk+1

(xk+1, rk+1, yk+1)− L? +
D2
Yk+1

2λk+1

≤ 4D2
X

(
Lf
k + 1

+
λ0‖A‖2√
k + 1

)
+

D2
Yk+1

2λ0
√
k + 1

.

For the lower bound, we use the classical Lagrange saddle point properties, that ∀(x, r) ∈ X ×K we have

f? ≤ L(x, r, y?) = f(x) +
〈
y?, Ax− r

〉
≤ f(x) + ‖y?‖‖Ax− r‖. (2)

By choosing x = xk+1 and r = projK(Axk+1) and rearranging, we arrive at

f(xk+1)− f? ≥ −‖y?‖dist (Axk+1,K) .

Convergence of feasibility. We start by combining (1) and (2) by choosing x = xk+1 and r = rk+1:〈
yk+1 − y?, Axk+1 − rk+1

〉
+
λk+1

2
‖Axk+1 − rk+1‖2 ≤

4

k + 1
D2
X L̄k+1

=⇒ −‖yk+1 − y?‖‖Axk+1 − rk+1‖+
λk+1

2
‖Axk+1 − rk+1‖2 ≤

4

k + 1
D2
X L̄k+1

This is a second order inequality with respect to ‖Axk+1 − rk+1‖, and by solving this inequality we get

‖Axk+1 − rk+1‖ ≤
1

λk+1

‖yk+1 − y?‖+

√
‖yk+1 − y?‖2 +

8D2
X L̄k+1

k + 1
λk+1

≤ 1

λk+1

2‖yk+1 − y?‖+

√
8D2
X

k + 1
(Lf + λk+1)λk+1

≤ 2

λ0
√
k + 1

(
‖yk+1 − y?‖+DX

√
2

(
Lfλ0√
k + 1

+ ‖A‖2λ20
))

.

A Conditional-Gradient-Based Augmented Lagrangian Framework

Finally, we use the properties of projection to get the bound on the feasibility gap:

dist (Axk+1,K) = ‖Axk+1 − ṙk+1‖
= ‖Axk+1 − rk+1 + rk+1 − ṙk+1‖
≤ ‖Axk+1 − rk+1‖+ ‖rk+1 − ṙk+1‖

≤ ‖Axk+1 − rk+1‖+ ‖Axk+1 −Axk+1 +
1

λk+1
yk+1‖

≤ ‖Axk+1 − rk+1‖+
DYk+1

λk+1
.

A.2. Decreasing bound on step-size

Choose parameters

λk = λ0
√
k + 1 σk =

λ0

2
√
k + 1

ηk =
2

k + 1
.

Now we execute the last term using the non-expansiveness of projection operator

‖Axk+1 − r̄k+1‖ = ‖rk+1 − rk+1 +Axk+1 − r̄k+1‖
≤ ‖rk+1 − r̄k+1‖+ ‖Axk+1 − rk+1‖

≤ 1

λk+1
‖yk+1 − yk‖+ ‖Axk+1 − rk+1‖

=
σk+1

λk+1
‖Axk+1 − r̄k+1‖+ ‖Axk+1 − rk+1‖,

hence ‖Axk+1 − r̄k+1‖ ≤ (1− σk+1/λk+1)−1‖Axk+1 − rk+1‖.

Overall, we obtain the following recursion relation:

Lλk+1
(xk+1, rk+1, yk+1)− L? ≤ (1− ηk) (Lλk

(xk, rk, yk)− L?) + η2k
L̄k+1

2
D2
X

+
1

2
((1− ηk)λk+1 − λk) ‖Axk − rk‖2

+
λ2k+1σk+1

(λk+1 − σk+1)2
‖Axk+1 − rk+1‖2

Now we can apply recursion, and we get

Lλk+1
(xk+1, rk+1, yk+1)− L? ≤

k∏
j=1

(1− ηj) (Lλ1
(x1, r1, y1)− L?) +

D2
X

2

k∑
`=1

η2` L̄`+1

k∏
j=`

(1− ηj)

+
1

2

k∑
`=1

((1− η`)λ`+1 − λ`) ‖Ax` − r`‖2
k∏
j=`

(1− ηj)

+

k∑
`=1

λ2`+1σ`+1

(λ`+1 − σ`+1)2
‖Ax`+1 − r`+1‖2

k∏
j=`

(1− ηj).

Note that the terms which involve (1− η1) on the right hand side are zero since η1 = 1.

A Conditional-Gradient-Based Augmented Lagrangian Framework

Now, we focus on the last summation term:

k∑
`=1

λ2`+1σ`+1

(λ`+1 − σ`+1)2
‖Ax`+1 − r`+1‖2

k∏
j=`

(1− ηj)

=

k∑
`=1

(1− η`)
λ2`+1σ`+1

(λ`+1 − σ`+1)2
‖Ax`+1 − r`+1‖2

k∏
j=`+1

(1− ηj)

=

k+1∑
`=2

(1− η`−1)
λ2`σ`

(λ` − σ`)2
‖Ax` − r`‖2

k+1∏
j=`

(1− ηj)

≤
k∑
`=2

(1− η`−1)
λ2`σ`

(λ` − σ`)2
‖Ax` − r`‖2

k∏
j=`

(1− ηj)

+ (1− ηk)
λ2k+1σk+1

(λk+1 − σk+1)2
‖Axk+1 − rk+1‖2.

We choose parameters λk, ηk and σk+1 such that for all k ≥ 2, we have(
1

2
((1− η`)λ`+1 − λ`) + (1− η`−1)

λ2`σ`
(λ` − σ`)2

)
≤ 0,

hence by combining these bounds, we get

Lλk+1
(xk+1, rk+1, yk+1)− L? ≤ D2

X
2

k∑
`=1

η2` L̄`+1

k∏
j=`

(1− ηj) + (1− ηk)
λ2k+1σk+1

(λk+1 − σk+1)2
‖Axk+1 − rk+1‖2.

Using the following formula

k∑
`=1

η2`

k∏
j=`

(1− ηj) =

k∑
`=1

4

(`+ 1)2

k∏
j=`

j − 1

j + 1
=

k∑
`=1

4

(`+ 1)2
(`− 1)`

k(k + 1)
≤ 4

k + 1

we get the following bound on the augmented Lagrangian:

Lλk+1
(xk+1, rk+1, yk+1)− L? ≤ 2

k + 1
D2
X L̄k+1 + (1− ηk)

λ2k+1σk+1

(λk+1 − σk+1)2
‖Axk+1 − rk+1‖2

= 2D2
X

(
Lf
k + 1

+
λ0‖A‖2√
k + 1

)
+

λ0

2
√
k + 1

‖Axk+1 − rk+1‖2.

Convergence of objective. Lower bound of the objective residual follows similarly to the constant step-size case. For upper
bound, we start by

f(xk+1)− f? = Lλk+1
(xk+1, rk+1, yk+1)− L? −

〈
yk+1, Axk+1 − rk+1

〉
− λk+1

2
‖Axk+1 − rk+1‖2

≤ 2D2
X

(
Lf
k + 1

+
λ0‖A‖2√
k + 1

)
+
λ0
2

(
1√
k + 1

−
√
k + 1

)
‖Axk+1 − rk+1‖2

−
〈
yk+1, Axk+1 − rk+1

〉
≤ 2D2

X

(
Lf
k + 1

+
λ0‖A‖2√
k + 1

)
− λk

2
‖Axk+1 − rk+1‖2 + ‖yk+1‖‖Axk+1 − rk+1‖

≤ 2D2
X

(
Lf
k + 1

+
λ0‖A‖2√
k + 1

)
+
‖yk+1‖2

λ0
√
k + 1

A Conditional-Gradient-Based Augmented Lagrangian Framework

Convergence of feasibility. We start by combining (1) and (2) by choosing x = xk+1 and r = rk+1:

〈
yk+1 − y?, Axk+1 − rk+1

〉
+
λk+1

2
‖Axk+1 − rk+1‖2 ≤

2

k + 1
D2
X L̄k+1 +

λ0

2
√
k + 1

‖Axk+1 − rk+1‖2

=⇒ −‖yk+1 − y?‖‖Axk+1 − rk+1‖+
λk
2
‖Axk+1 − rk+1‖2 ≤

2

k + 1
D2
X L̄k+1

This is a second order inequality with respect to ‖Axk+1 − rk+1‖, and by solving this inequality we get

‖Axk+1 − rk+1‖ ≤
1

λk

‖yk+1 − y?‖+

√
‖yk+1 − y?‖2 +

4D2
X L̄k+1

k + 1
λk

≤ 2

λk

‖yk+1 − y?‖+

√
D2
X

k + 1
(Lf + λk+1)λk

≤ 2

λ0
√
k + 1

(
‖yk+1 − y?‖+DX

√
Lf
k + 1

+ λ20

)
.

To complete the proof, we use the following arguments: Denote by ṙk+1 = arg minr∈K ‖Axk+1 − r‖, we have

dist (Axk+1,K) = ‖Axk+1 − ṙk+1‖
= ‖Axk+1 − rk+1 + rk+1 − ṙk+1‖
≤ ‖Axk+1 − rk+1‖+ ‖rk+1 − ṙk+1‖

≤ ‖Axk+1 − rk+1‖+ ‖Axk+1 −Axk+1 +
1

λk+1
yk+1‖

≤ ‖Axk+1 − rk+1‖+
1

λk+1
‖yk+1‖.

A Conditional-Gradient-Based Augmented Lagrangian Framework

B. Generalization for the composite problem
This section follows similarly to Appendix A. We provide the details for completeness.

Recall the smooth approximation of the non-smooth term g(Bx)

gβ(Bx) = max
u∈Rq

{〈
u, Bx

〉
− g∗(u)− β

2
‖u− z‖2

}
= max
u∈Rq

min
t∈Rq

{〈
u, Bx− t

〉
+ g(t)− β

2
‖u− z‖2

}
= min
t∈Rq

max
u∈Rq

{〈
u, Bx− t

〉
+ g(t)− β

2
‖u− z‖2

}
= min
t∈Rq

{〈
z, Bx− t

〉
+

1

2β
‖Bx− t‖2 + g(t)

}
,

where we can flip the order of min and max due to Sion’s minimax theorem.

Then, we de define the smooth approximation Fλ,β , including the slack variables r ∈ K and t ∈ Rq as

Fλ,β(x, r, y, t, z) : = f(x) +
〈
y, Ax− r

〉
+
λ

2
‖Ax− r‖2 +

〈
z, Bx− t

〉
+

1

2β
‖Bx− t‖2 + g(t).

Directional derivative of this function can be written as

∇xFλ(x, r, y, t, z) = ∇f(x) +A>y + λA>(Ax− r) +B>z +
1

β
B>(Bx− t)

Denote by ¯̄Lk = (Lf + λk‖A‖2 + β−1k ‖B‖2). Then, using the Taylor expansion, we get the following estimate:

Fλk+1,βk+1
(xk+1, rk, yk, tk, zk) ≤ Fλk+1,βk+1

(xk, rk, yk, tk, zk) +
〈
∇xFλk+1,βk+1

(xk, rk, yk, tk, zk), xk+1 − xk
〉

+
¯̄Lk+1

2
‖xk+1 − xk‖2

= Fλk+1,βk+1
(xk, rk, yk, tk, zk) + ηk

〈
∇xFλk+1,βk+1

(xk, rk, yk, tk, zk), sk − xk
〉

+ η2k

¯̄Lk+1

2
‖sk − xk‖2

≤ Fλk,βk
(xk, rk, yk, tk, zk) + ηk

〈
∇xFλk,βk

(xk, rk, yk, tk, zk), sk − xk
〉

+ η2k

¯̄Lk+1

2
D2
X

+
λk+1 − λk

2
‖Axk − rk‖2 + ηk(λk+1 − λk)

〈
Axk − rk, Ask −Axk

〉
+

1

2

(
1

βk+1
− 1

βk

)
‖Bxk − tk‖2 + ηk

(
1

βk+1
− 1

βk

)〈
Bxk − tk, Bsk −Bxk

〉
.

We can bound the inner product term on the right hand as follows, similarly to the case in Appendix A:〈
∇xFλk,βk

(xk, rk, yk, tk, zk), sk − xk
〉

=
〈
∇f(xk) + λkA

>(Axk − rk) +A>yk + β−1k B>(Bxk − tk) +B>zk, sk − xk
〉

≤ f? −Fλk,βk
(xk, rk, yk, tk, zk) + g(tk) +

λk
2
‖Ax? − rk‖2 +

1

2βk
‖Bx? − tk‖2

− λk
2
‖Axk −Ax?‖2 −

1

2βk
‖Bxk −Bx?‖2 +

〈
yk, Ax

? − rk
〉

+
〈
zk, Bx

? − tk
〉

= F? + g(tk)− g(Bx?)−Fλk,βk
(xk, rk, yk, tk, zk) +

λk
2
‖Ax? − rk‖2 +

1

2βk
‖Bx? − tk‖2

− λk
2
‖Axk −Ax?‖2 −

1

2βk
‖Bxk −Bx?‖2 +

〈
yk, Ax

? − rk
〉

+
〈
zk, Bx

? − tk
〉
.

A Conditional-Gradient-Based Augmented Lagrangian Framework

Also note that by definition of r̄k+1 we have

Fλk+1,βk+1
(xk+1, r̄k+1, yk, t̄k+1, zk) ≤ Fλk+1,βk+1

(xk+1, rk, yk, tk, zk).

We combine these bounds and get

Fλk+1,βk+1
(xk+1, r̄k+1, yk, t̄k+1, zk) ≤ (1− ηk)Fλk,βk

(xk, rk, yk, tk, zk) + ηkF? + ηkg(tk)− ηkg(Bx?) + η2k

¯̄Lk+1

2
D2
X

+ (1− ηk)

(
λk+1

2
− λk

2

)
‖Axk − rk‖2 + (1− ηk)

1

2

(
1

βk+1
− 1

βk

)
‖Bxk − tk‖2

+ ηk
λk
2
‖Ax? − r‖2 + ηk

〈
yk, Ax

? − rk
〉
− ηk

λk
2
‖Axk −Ax?‖2

+ ηk
1

2βk
‖Bx? − r‖2 + ηk

〈
zk, Bx

? − tk
〉
− ηk

1

2βk
‖Bxk −Bx?‖2

≤ (1− ηk)Fλk,βk
(xk, rk, yk, tk, zk) + ηkF? + ηkg(tk)− ηkg(Bx?) + η2k

¯̄Lk+1

2
D2
X

+ (1− ηk)

(
λk+1

2
− λk

2

)
‖Axk − rk‖2 + (1− ηk)

1

2

(
1

βk+1
− 1

βk

)
‖Bxk − tk‖2

− ηk
λk
2
‖Axk − rk‖2 + ηk

〈
yk + λk(Axk − rk), Ax? − rk

〉
− ηk

1

2βk
‖Bxk − tk‖2 + ηk

〈
zk +

1

βk
(Bxk − tk), Bx? − tk

〉
≤ (1− ηk)Fλk,βk

(xk, rk, yk, tk, zk) + ηkF? + η2k

¯̄Lk+1

2
D2
X

+ (1− ηk)

(
λk+1

2
− λk

2

)
‖Axk − rk‖2 + (1− ηk)

1

2

(
1

βk+1
− 1

βk

)
‖Bxk − tk‖2

− ηk
λk
2
‖Axk − rk‖2 − ηk

1

2βk
‖Bxk − tk‖2

where the last inequality follows from the optimality conditions:

. rk = arg minr∈K Fλk,βk
(xk, r, yk, tk, zk) by definition, hence the following estimate holds ∀r ∈ K〈

yk + λk(Axk − rk), r − rk
〉

=
〈
∇rFλk

(xk, rk, yk, tk, zk), r − rk
〉
≤ 0

and in particular for r = Ax? ∈ K.

. tk = mint{
〈
zk, Bxk − t

〉
+ 1

2βk
‖Bxk − t‖2 + g(t)}. Hence, denoting the subdifferential of g by ∂g, we have

zk +
1

βk
(Bxk − tk) ∈ ∂g(tk) =⇒

〈
zk +

1

βk
(Bxk − tk), Bx? − tk

〉
≤ g(Bx?)− g(tk).

In order to obtain a recurrence, we need to shift the dual variables (Lagrange multiplier and the center point):

Fλk+1,βk+1
(xk+1, rk+1, yk+1, tk+1, zk+1) ≤ Fλk+1,βk+1

(xk+1, r̄k+1, yk+1, t̄k+1, zk)

= Fλk+1,βk+1
(xk+1, r̄k+1, yk, tk, zk)

+
〈
yk+1 − yk, Axk+1 − r̄k+1

〉
+
〈
zk+1 − zk, Bxk+1 − t̄k+1

〉
= Fλk+1,βk+1

(xk+1, r̄k+1, yk, tk, zk)

+ σk+1‖Axk+1 − r̄k+1‖2 + γk+1‖Bxk+1 − t̄k+1‖2.

A Conditional-Gradient-Based Augmented Lagrangian Framework

Combining all these bounds and subtracting L? from both sides, we end up with

Fλk+1,βk+1
(xk+1, rk+1, yk+1, tk+1, zk+1)−F? ≤ (1− ηk) (Fλk,βk

(xk, rk, yk, tk, zk)−F?) + η2k

¯̄Lk+1

2
D2
X

+
1

2
((1− ηk)λk+1 − λk) ‖Axk − rk‖2 + σk+1‖Axk+1 − r̄k+1‖2

+
1

2

(
(1− ηk)

1

βk+1
− 1

βk

)
‖Bxk − tk‖2 + γk+1‖Bxk+1 − t̄k+1‖2

We choose σk+1 ≤ λ0 and γk+1 ≤ β0 such that they ensure the following conditions:

σk+1‖Axk+1 − r̄k+1‖2 + γk+1‖Bxk+1 − t̄k+1‖2 ≤ η2k
¯̄Lk+1

2
D2
X & ‖yk+1‖ ≤ DYk+1

& ‖zk+1‖ ≤ DZk+1

where DYk+1
and DZk+1

are some positive and non-decreasing sequences. Note that σk+1 and γk+1 are well defined, in
the sense there exists σk+1 ≥ 0 and γk+1 ≥ 0 which satisfy all conditions, since σk+1 = γk+1 = 0 trivially satisfies them.
Here, we consider the extension of (const.) setting only. One can also extend (decr.) in a similar way.

In addition, since we choose λk = λ0
√
k + 1, βk = β0/

√
k + 1, and ηk = 2/k + 1, we have

(1− ηk)λk+1 − λk = λ0

(
k − 1

k + 1

√
k + 2−

√
k + 1

)
≤ 0

(1− ηk)
1

βk+1
− 1

βk
=

1

β0

(
k − 1

k + 1

√
k + 2−

√
k + 1

)
≤ 0.

As a consequence, we get

Fλk+1,βk+1
(xk+1, rk+1, yk+1, tk+1, zk+1)− L? ≤ (1− ηk) (Fλk,βk

(xk, rk, yk, tk, zk)−F?) + η2k
¯̄Lk+1D

2
X

Using this recurrence relation, we obtain

Fλk+1,βk+1
(xk+1, rk+1, yk+1, tk+1, zk+1)−F? ≤ D2

X

k∑
`=1

η2`
¯̄L`+1

k∏
j=`

(1− ηj)

≤ 4

k + 1
D2
X

¯̄Lk+1 = 4D2
X

(
Lf
k + 1

+
λ0‖A‖2 + β−10 ‖B‖2√

k + 1

)
.

Next, we need to use this bound on the smooth approximation to find guarantees on the objective residual and the feasibility
gap of the original problem.

We start by using the definition of augmented Lagrangian and the strong duality:

f(xk+1) + g(Bxk+1)− f? − g? = Fλk+1,βk+1
(xk+1, rk+1, yk+1, tk+1, zk+1)−F?

+
1

2λk+1
‖yk+1‖2 −

λk+1

2
dist2

(
Axk+1 +

1

λ
yk+1,K

)
+ g(Bxk+1)− min

t∈Rq

{〈
zk+1, Bxk+1 − t

〉
+

1

2βk+1
‖Bxk+1 − t‖2 + g(t)

}
≤ Fλk+1,βk+1

(xk+1, rk+1, yk+1, tk+1, zk+1)−F? +
D2
Yk+1

2λk+1
+
βk+1

2
max
u∈U
‖u− zk+1‖2

≤ Fλk+1,βk+1
(xk+1, rk+1, yk+1, tk+1, zk+1)−F? +

D2
Yk+1

2λk+1
+ βk+1(D2

Zk+1
+ L2

g)

≤ 4D2
X

(
Lf
k + 1

+
λ0‖A‖2 + β−10 ‖B‖2√

k + 1

)
+

D2
Yk+1

2λ0
√
k + 1

+
β0(D2

Zk+1
+ L2

g)√
k + 1

.

The lower bound on the objective residual, and the convergence of the feasibility gap follow similarly as in Appendix A. We
omit further details.

A Conditional-Gradient-Based Augmented Lagrangian Framework

C. Additional Numerical Experiments & Observations
This appendix presents implementation details and additional results from the numerical experiments in Section 5.

In the last two pages of this document, we present all trials of each method for max-cut SDP with the GD97 b dataset. Note
that FW-AL and IAL has more 2 parameters to tune. We denote by ρ in the legends of FW-AL plots the ratio between σ0
and 2/λ. Note that the method requires σ0 ≤ min{ 2λ ,

α2

2δ } to be tuned, where α is unknown and can be arbitrarily small.

We also provide a brief conclusion about all methods and our observations:

CGAL (const.) and CGAL (decr.): CGAL with (decr.) step variant outperforms the base method, HCGM in this experiment
as well as other experiments we considered. Nevertheless, we did not encounter any instance where CGAL (decr.)
outperforms CGAL (const.), hence we focus on the (const.) step variant. Note however CGAL (decr.) is still interesting
from a theoretical perspective. Similar to the O(1/

√
k) convergence guarantee of the feasibility gap, we can also show that

the norm of updates ‖Axk+1 − r̄k+1‖ is decreasing with O(1/
√
k) rate. Coupled with decreasing step size of the same rate

and by triangle inequality, we can bound the norm of ‖yk+1‖ as the sum of terms that we expect to decrease by O(1/k) rate,
resulting in a logarithmic bound naturally, without further conditions. We also did not encounter any problem in CGAL
(both cases) even when we completely remove the conditions on ‖yk+1‖ in various tests. Unfortunately, we do not have
guarantees for this case for now.

HCGM: HCGM is the base method for CGAL, and can be recovered from CGAL simply by choosing y1 = 0 and σk = 0.
HCGM guarantees O(1/

√
k) convergence rate in the objective residual and the feasibility gap, which is optimal according

to (Yurtsever et al., 2015), in ithe sense it matches the best rate for smoothness of the Lafrange dual problem. HCGM is a
very simple method, easy to analyze, interpret and tune, but as we observed in various numerical experiments, this method
typically performs with the worst case bounds in practice. CGAL specifically focuses on the practical performance and
implementation of HCGM, extending it from quadratic penalty to augmented Lagrangian setup. As a result, CGAL retains
essentially the same guarantees as HCGM, but performs much better in practice, achieving O(1/k) empirical rate in most
instances.

FW-AL: FW-AL iterations are similar to CGAL, but the penalty parameter is fixed in contrast. The method, hence directly
relies on the Lagrange multiplier for the convergence. This requires strong assumptions such as error bounds, and the
theoretical analysis of this method is much more complicated than CGAL. The bounds are non-adaptive and depends on the
unknown error bound parameter α, which is proved to be positive assuming that Slater’s condition holds. Nevertheless, this
unknown constant directly appears in the bounds and the parameters. We argue that this constant can be arbitrarily small,
and this method might be not implementable in practice. Even for a small scale max-cut SDP problem, after extensive
search of proper parameters, we failed to find good parameter choices for this method, supporting our arguments.

IAL: This method theoretically has O(1/ε4) complexity of lmo calls. Nevertheless, the method performs better in practice,
but requires a lot of effort for tuning. The method has a double-loop structure, and only the outer iterates provide reasonable
approximations (which results in the stair like plots). We also tried evaluating the performance of the inner iterations, but the
method simply jumps at the beginning of each subproblem due to CGM initialization. We also tried line-search to avoid this,
but the method performs worse with line-search overall.

UPD and AUPD: Remark that the problem instances we consider have bounded subgradients in the simple Lagrange dual
formulation due to boundedness of domain X . This corresponds to 0-th order Hölder smoothness in the dual, hence UPD
and AUPD both have O(1/

√
k) rate of convergence, which is optimal according to (Yurtsever et al., 2015). Important to

underline once again, that these methods are proved to converge only up to some accuracy level ε. Indeed, we can easily
observe this saturation in the objective residual in various of our numerical experiments.

In our numerical experiment with small max-cut dataset, we observed similar performance of UPD and AUPD in terms of
convergence rate, which is expected since the dual is only 0-th order Hölder smooth. Interestingly, saturation of AUPD
is not observed in contrast with the guarantees. One simple explanation for this observation is as follows: Both UPD and
AUPD uses an inexact line-search procedure, but UPD lets δ = ε error at each iteration, while AUPD requires increasing
accuracy in line-search and only lets δ ∼ ε/k error in kth iteration. This decrease is required from the theoretical point of
view to prevent error accumulation due to acceleration, but might not occur in practice, at least until later iterations. When
error accumulation does not occur, decreasing inexactness also prevents saturation of UPD. Note however this comes at an
increased computational cost. Dual objective depends on the output of sharp operator, and errors in sharp operator directly
translates as objective evaluation. Considering the decreasing amount of inexactness, this method requires very accurate

A Conditional-Gradient-Based Augmented Lagrangian Framework

evaluations of the sharp operator. This does not cause much problem in very small scale problems where we can compute
lmo in the exact sense, but even in medium scale problems with 1000 × 1000 dimensions we observed AUPD getting
stucked in the line-search condition. Note that when the error in dual objective evaluations in two consecutive iterations is
larger than the inexactness parameter δ, line-search condition may become ill-defined, in the sense line-search turns into an
infinite loop. Since UPD performs similarly as AUPD in small scale experiments and due to its robustness compared to
AUPD, we focus on UPD for other experiments.

A Conditional-Gradient-Based Augmented Lagrangian Framework

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
CGAL (cst)

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1
‖
/
‖1

‖

10−3

10−2

10−1

100

101
CGAL (cst)

λ0 = 100

λ0 = 101

λ0 = 102

λ0 = 103

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
CGAL (dcr)

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1
‖
/
‖1

‖

10−3

10−2

10−1

100

101
CGAL (dcr)

λ0 = 100

λ0 = 101

λ0 = 102

λ0 = 103

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
UPD

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
UPD

ǫ = 102

ǫ = 103

ǫ = 104

ǫ = 105

ǫ = 106

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
AUPD

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
AUPD

ǫ = 102

ǫ = 103

ǫ = 104

ǫ = 105

ǫ = 106

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
HCGM

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
HCGM

λ0 = 100

λ0 = 101

λ0 = 102

λ0 = 103

λ0 = 104

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
FWAL λ=0.001

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
FWAL λ=0.001

ρ = 10−8
ρ = 10−7
ρ = 10−6
ρ = 10−5
ρ = 10−4
ρ = 10−3
ρ = 10−2
ρ = 10−1
ρ = 100

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
FWAL λ=0.01

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
FWAL λ=0.01

ρ = 10−8
ρ = 10−7
ρ = 10−6
ρ = 10−5
ρ = 10−4
ρ = 10−3
ρ = 10−2
ρ = 10−1
ρ = 100

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
FWAL λ=0.1

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
FWAL λ=0.1

ρ = 10−8
ρ = 10−7
ρ = 10−6
ρ = 10−5
ρ = 10−4
ρ = 10−3
ρ = 10−2
ρ = 10−1
ρ = 100

A Conditional-Gradient-Based Augmented Lagrangian Framework

lmo
100 101 102 103 104

|t
r(

c(
x
−
x
⋆
))

|/
|t
r(
cx

⋆
)|

0.0000

0.0001

0.001

0.01

0.1

1

10
FWAL λ=1

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−
1
‖/
‖
1
‖

0.001

0.01

0.1

1

10
FWAL λ=1

ρ = 10−8
ρ = 10−7
ρ = 10−6
ρ = 10−5
ρ = 10−4
ρ = 10−3
ρ = 10−2
ρ = 10−1
ρ = 100

lmo
100 101 102 103 104

|t
r(

c(
x
−
x
⋆
))

|/
|t
r(
cx

⋆
)|

0.0000

0.0001

0.001

0.01

0.1

1

10
FWAL λ=10

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−
1
‖/
‖
1
‖

0.001

0.01

0.1

1

10
FWAL λ=10

ρ = 10−8
ρ = 10−7
ρ = 10−6
ρ = 10−5
ρ = 10−4
ρ = 10−3
ρ = 10−2
ρ = 10−1
ρ = 100

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=0.1

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
IAL λ=0.1

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=1

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
IAL λ=1

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=10

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
IAL λ=10

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=100

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
IAL λ=100

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=1000

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
IAL λ=1000

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

lmo
100 101 102 103 104

|t
r(

c(
x
−

x
⋆
))

|/
|t
r(
cx

⋆
)|

10−5

10−4

10−3

10−2

10−1

100

101
IAL λ=10000

lmo
100 101 102 103 104

‖d
ia
g
(x
)
−

1‖
/‖

1‖

10−3

10−2

10−1

100

101
IAL λ=10000

ε = 101

ε = 102

ε = 103

ε = 104

ε = 105

ε = 106

ε = 107

