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Abstract
We propose a class of novel variance-reduced
stochastic conditional gradient methods. By
adopting the recent stochastic path-integrated dif-
ferential estimator technique (SPIDER) of Fang
et al. (2018) for the classical Frank-Wolfe (FW)
method, we introduce SPIDER-FW for finite-sum
minimization as well as the more general expecta-
tion minimization problems. SPIDER-FW enjoys
superior complexity guarantees in the non-convex
setting, while matching the best known FW vari-
ants in the convex case. We also extend our frame-
work à la conditional gradient sliding (CGS) of
Lan & Zhou (2016), and propose SPIDER-CGS.

1. Introduction
We study two different problem settings in this paper, finite-
sum and the more general expectation minimization:

minimize
x∈Ω

F (x) :=

 Eξf(x, ξ) (expectation)

1
n

∑n
i=1 fi(x) (finite-sum)

(1)

. Ω ⊂ Rd is the convex and compact domain;

. F , f and fi are differentiable and possibly non-convex;

. ξ ∼ P is a random variable, supported on Ξ ⊂ Rp.

The expectation objective template covers a large number of
applications in machine learning and statistics. The finite-
sum template frequently arises in M-estimation and empir-
ical risk minimization problems. Accordingly, there are
many applications for stochastic conditional gradient meth-
ods both in convex and non-convex settings. This includes
low-rank matrix and tensor factorizations, structured sparse
matrix estimation, dictionary learning applications, multi-
class classification (considered as a motivating example in
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a related work by Hazan & Luo (2016)), constrained deep
learning problems (e.g., Ravi et al. (2018) present an appli-
cation in computer vision) and many more.

Template (1) can be solved by using the well-known pro-
jected stochastic gradient descent method (SGD). At each
iteration, SGD takes a stochastic gradient step followed by
a projection to ensure the feasibility of the new point. How-
ever, in many applications, projection onto Ω can impose a
computational bottleneck (e.g., projection onto the nuclear
norm-ball may require a full singular value decomposition),
or it can be even intractable (e.g., dual structural SVMs
(Lacoste-Julien et al., 2013)).

As a result, the Frank-Wolfe (FW) algorithm (aka condi-
tional gradient method) has witnessed tremendous interest
in the machine learning community in the last decade. FW
avoids projection by leveraging the so-called linear mini-
mization oracle instead:

lmoΩ(v) = arg min
x∈Ω
〈x, v〉. (lmo)

lmo is significantly cheaper to compute than projection. For
instance, lmo of nuclear norm-ball requires the computation
of the leading singular vectors only (vs. the full spectrum for
projection), which can be efficiently found by using Krylov
subspace methods (Jaggi, 2013).

Our focus in this paper is on the theoretical complexity of
stochastic and finite-sum FW, with an aim to identify and
present the tightest results known so far. To this end, we
also propose a class of novel variance-reduced stochastic
optimization algorithms, based on the recent stochastic path-
integrated differential estimator technique (SPIDER) of
Fang et al. (2018).

By combining SPIDER with the classical FW method, we
introduce SPIDER-FW for finite-sum and expectation min-
imization problems. We also extend our framework à la
conditional gradient sliding (CGS) of Lan & Zhou (2016),
and propose SPIDER-CGS.

From SPIDER, we adopt the variance bounds from Lemma 1
of (Fang et al., 2018), which relates the variance of the cur-
rent estimator to the error of the previous estimator and
the distance between the iterates. Nevertheless, Fang et al.
(2018) introduce SPIDER for normalized gradient method
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which is fundamentally different than the FW method. Ac-
cordingly, the analyses are different.

A natural and widely used measure for the convergence
of conditional gradient methods is the so-called FW-gap
(cf., Section 3). However, we are not aware of any reported
FW-gap convergence of CGS in the non-convex settings.
Therefore, we present a new compact proof (and an exten-
sion for the stochastic setting) in the supplementary material.
Although CGS does not seem to provide any improvement
upon FW in this setup, we use the proof technique to extend
SPIDER-CGS for the non-convex settings.

Finally, for the majority of the variance reduced FW meth-
ods in the literature, the analysis relies on the induction
technique with respect to the outer loop counter, along with
a sufficient improvement condition for each epoch. Con-
sequently, at the beginning of each epoch parameters are
typically reset. Instead, we set our learning-rate parameters
with respect to the more natural total iteration counter, and
we go over the proof without induction.

Roadmap. Section 2 provides an extensive discussion on
the related works. Section 3 recalls some basic notions
from the optimization theory. Sections 4 and 5 present
SPIDER-FW and SPIDER-CGS respectively, along with
their theoretical guarantees for various problem settings.
Section 6 provides an extensive comparison of the theoret-
ical complexity of FW methods in the literature. Finally,
Section 7 draws the conclusions.

Notation. We work on the real space with Euclidean norms
for simplicity. Throughout, 〈·, ·〉 represents the standard
inner product associated with the Euclidean norm ‖ · ‖. We
use the notation [n] = {1, 2, . . . , n}. D denotes diameter
of Ω, i.e., D = max(x,y)∈Ω2 ‖x− y‖.

2. Related Works
Frank-Wolfe algorithm. This classical method is first pro-
posed by Frank & Wolfe (1956) for solving smooth convex
minimization problems with a polyhedral domain constraint
(polyhedral constraint is relaxed for an arbitrary convex
compact set by Jaggi (2013)).

Algorithm 1 Frank-Wolfe algorithm

Input: x1 ∈ Ω
for k = 1, 2, . . . ,K do

Compute wk ∈ lmoΩ (∇F (xk) )
Update xk+1 = xk + ηk (wk − xk)

end for

Given an initial guess x1 ∈ Ω, at each iteration, FW mini-
mizes the linear approximation of F at the current iterate
xk over Ω (this corresponds to the lmo step). Clearly, mini-
mization of a linear function returns an extreme point of the

domain. Since the new estimate is constructed as a convex
combination of the current iterate and this extreme point, by
definition it is a feasible point, hence the method does not
require projections.

FW did not attract much attention in the machine learning
community due to its slow convergence rate until Hazan
(2008) and Jaggi (2013) emphasize the favorable trade-off
between the convergence rate and the per-iteration cost pro-
vided by FW in key applications. Following then, there has
been a resurgence of interest for FW-type algorithms.

FW literature in the stochastic optimization setting is much
younger compared to the projection-based stochastic gra-
dient methods. We can trace it back to a variant for online
learning proposed by Hazan & Kale (2012). More recently,
Hazan & Luo (2016) introduced stochastic FW methods
with and without variance reduction for finite-sum prob-
lems. Very recently, Mokhtari et al. (2018) have proposed
an alternative scheme for expectation minimization setting.

FW methods for non-convex stochastic learning are rela-
tively understudied, most of the known results are due to
Reddi et al. (2016). We discuss more details on the theoreti-
cal aspects of all these FW variants in Section 6.

Conditional gradient sliding. Lan & Zhou (2016) has re-
cently developed the conditional gradient sliding method
(CGS) based on the idea of applying accelerated gradient
method (AG) of Nesterov (1983) for solving problems from
template (1), but applying FW to the projection subprob-
lems. In other words, CGS establishes the convergence of
an inexact version of AG. Surprisingly, CGS has superior
first-order oracle complexity compared to FW, although they
have the same lmo complexity. We discuss more details and
variants of CGS in Section 6.

SPIDER. There has been extensive research on variance
reduced stochastic optimization methods in order to address
the needs of machine learning and big data applications.
Therefore, various variance reduction techniques are pro-
posed in the last few years such as SAG (Roux et al., 2012),
SVRG (Johnson & Zhang, 2013), SAGA (Defazio et al.,
2014), and more recently SARAH (Nguyen et al., 2017) and
SPIDER (Fang et al., 2018).

SARAH and SPIDER are closely related since they use the
same sequential update rule for the gradient estimator vk:

vk = ∇fS(xk)−∇fS(xk−1) + vk−1.

However, SARAH uses this estimator in the classical gradi-
ent descent template, while SPIDER adopts a normalized
gradient approach, and their results and analyses differ.

As described by Wang et al. (2018), the original SPIDER
framework has a restrictive step-size (proportional with the
target accuracy ε), which makes the algorithm impractical
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though its theoretical appeal. Surprisingly, this problem
disappears in the conditional gradient framework analysis.

3. Preliminaries
Solution. We denote a solution and the optimal value of
problem (1) by x? and F ? respectively:

x? ∈ arg min
x∈Ω

F (x) and F ? = F (x?).

The measure of non-stationarity. For unconstrained non-
convex problems, the typical measure of non-stationarity is
the gradient norm, because ‖∇f(x)‖ → 0 as x converges
to a stationary point. However, this measure cannot be
used for constrained problems, because ‖∇f(x)‖ might
not converge to 0 when we approach to a solution on the
boundary.

Instead, we will use the quantity

G(x) := max
u∈Ω
〈u− x, −∇F (x)〉 ,

which is widely known as the FW gap (because it naturally
appears in the analysis of FW-type methods). FW gap is
always non-negative, and it gets 0 if and only if we are
looking at a stationary point or a solution. Therefore, FW-
gap is a meaningful measure of non-stationarity. It was also
used by Lacoste-Julien (2016) and Reddi et al. (2016).

ε-solution. Due to the fundamental difference in the mea-
sure of non-stationarity, we use different definitions of ap-
proximate solutions for convex and non-convex problems:
. If F is convex, we say x?ε ∈ Ω is an ε-solution if

F (x?ε )− F ? ≤ ε.

. If F is non-convex, we say that a random variable x?ε cho-
sen uniformly from a finite set of points {x1, x2, . . . , xk} is
an ε-solution if

E[G(x?ε )] ≤ ε.

It is common to provide convergence guarantees in expecta-
tion for a randomly chosen iterate in the non-convex setting.
See (Reddi et al., 2016).

Oracle models. We adopt the following black-box oracle
model from Reddi et al. (2016), to establish a ground for
comparing the convergence speed of different algorithms:

◦ Stochastic first-order oracle (sfo)
For a stochastic function Eξf( · , ξ) with ξ ∼ P , sfo re-
turns a pair (f(x, ξ′),∇f(x, ξ′)) where ξ′ is an iid sam-
ple from P . (Nemirovski & Yudin, 1983)

◦ Incremental first-order oracle (ifo)
For a finite-sum, ifo takes an index i ∈ [n] and returns
(fi(x),∇fi(x)). (Agarwal & Bottou, 2014)

◦ Linear minimization oracle (lmo)
Well-known oracle of FW-type methods.

Assumptions (finite-sum). For the finite-sum setting, we
assume that fi(x) has an averaged L-Lipschitz gradient:

E
∥∥∇fi(x)−∇fi(y)

∥∥2 ≤ L2
∥∥x− y∥∥2

, ∀(x, y) ∈ Ω2.

Note that this implies F is L-smooth, since∥∥∇F (x)−∇F (y)
∥∥2

=
∥∥E(∇fi(x)−∇fi(y))

∥∥2

≤ E
∥∥∇fi(x)−∇fi(y)

∥∥2 ≤ L2
∥∥x− y∥∥2

.

Assumptions (expectation). For the expectation minimiza-
tion, we assume that ∇f(x, ξ) is an unbiased estimate of
the gradient:

E∇f(x, ξ) = ∇F (x).

We also assume that the variance is bounded:

E
∥∥∇f(x, ξ)−∇F (x)

∥∥2≤σ2<∞, ∀ξ ∈ Ξ, ∀x ∈ Ω.

And finally, we assume an averaged L-Lipschitz gradient
condition, i.e., the following condition holds ∀ξ ∈ Ξ:

E
∥∥∇f(x, ξ)−∇f(y, ξ)

∥∥2≤L2
∥∥x− y∥∥2

, ∀(x, y) ∈ Ω2.

Similar to the finite-sum, this implies the smoothness of F .

Assumptions (non-convex). Let us denote the initial point
by x̄1. Initial suboptimality F (x̄1)−F ? appears in the con-
vergence bounds in the non-convex setting. For notational
convenience, we denote an upper bound on this term by E :

F (x̄1)− F ? ≤ E

Assume that F ? is finite, then there exists a finite E which
satisfies this bound. This is a direct consequence of the
smoothness of F and the boundedness of domain.

All these assumptions are mild and frequently used in the
analysis of stochastic methods and FW-type algorithms.

4. SPIDER Frank-Wolfe
This section presents SPIDER-FW algorithm and its conver-
gence guarantees for various problem settings.

Our methods have a double loop structure, hence the iterates
and the parameters have two different iteration counters
t and k, such as xt,k. For notational simplicity, we drop
the first counter when there is no ambiguity, such as xk.
Throughout, st,k denotes the total number of inner iterations
until kth iteration of tth epoch. In our pseudocodes, draw
samples means iid samples for expectation minimization,
and uniform selection with replacement in the finite-sum.



Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator

Algorithm 2 SPIDER Frank-Wolfe

Input: x̄1 ∈ Ω
for t = 1, 2, . . . , T do

Set x1 = x̄t

Draw Qt samples Qt
Compute v1 = ∇fQt

(x1)
Compute w1 ∈ lmoΩ (v1)
Update x2 = x1 + ηt,1 (w1 − x1)
for k = 2, 3, . . . ,Kt do

Draw St,k samples St,k
Compute vk = ∇fSt,k(xk)−∇fSt,k(xk−1)+vk−1

Compute wk ∈ lmoΩ (vk)
Update xk+1 = xk + ηt,k (wk − xk)

end for
Set x̄t+1 = xKt+1

end for

SPIDER-FW: Convex finite-sum

We consider SPIDER-FW with

Kt = 2t−1 for t = 1, 2, . . . , T.

We choose the sampling parameters

St,k = Kt Qt = [n]

and the learning rate parameter

ηt,k =
2

st,k + 1
where st,k = Kt + k − 1.

Theorem 1. Consider the convex finite-sum optimization
template, and suppose that the assumptions in Section 3 for
this template hold. Then, estimate xt,k of SPIDER-FW with
the parameter choices described above satisfies

E[F (xt,k)]− F ? = O
(
LD2

st,k

)
Corollary 1. The ifo and lmo complexities of SPIDER-FW
for achieving ε-solution in this setting are as follows:

#(ifo) = O
(
n ln(LD

2

ε ) + L2D4

ε2

)
#(lmo) = O(LD

2

ε )

SPIDER-FW: Convex expectation minimization

We consider SPIDER-FW with

Kt = 2t−1 for t = 1, 2, . . . , T.

We choose the sampling parameters

St,k = Kt Qt = d
σ2K2

t

5L2D2
e

and the learning rate parameter

ηt,k =
2

st,k + 1
where st,k = Kt + k − 1.

Theorem 2. Consider the convex expectation minimization
template, and suppose that the assumptions in Section 3 for
this template hold. Then, estimate xt,k of SPIDER-FW with
the parameter choices described above satisfies

E[F (xt,k)]− F ? = O
(
LD2

st,k

)
Corollary 2. The sfo and lmo complexities of SPIDER-FW
for achieving ε-solution in this setting are as follows:

#(sfo) = O
(
σ2D2+L2D4

ε2

)
#(lmo) = O(LD

2

ε )

SPIDER-FW has the same asymptotic oracle complexities
as SCGS (Lan & Zhou, 2016) in this setting. In Section 5,
we also present the SPIDER-CGS.

SPIDER-FW: Non-convex finite-sum

We consider SPIDER-FW with

Kt = K = d
√
ne.

Furthermore, we choose the parameters as

St,k = S = d
√
ne Qt = [n]

and the learning rate parameter

ηt,k = η =
1

√
sT,K

where sT,K = TK.

Theorem 3. Consider the non-convex finite-sum template,
and suppose that the assumptions in Section 3 for this tem-
plate hold. Denote by xout an iterate xt,k of SPIDER-FW
chosen uniformly random over all (t, k) pairs up to (T,K).
Then, the following bound on the FW-gap holds:

E[G(xout)] = O
(
E + LD2

√
sT,K

)

Although it is impractical to store all estimates until the final
iteration, all stochastic methods for the non-convex setting
shown in Table 1 have this type convergence guarantees,
see (Reddi et al., 2016). More stringently, Lacoste-Julien
(2016) proves convergence of non-convex FW in terms of
the running best iterate. However, we cannot keep track of
best estimate in the stochastic setting, simply because we
cannot measure the FW-gap.
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Corollary 3. The ifo and lmo complexities of SPIDER-FW
for achieving ε-solution in the non-convex finite-sum setting
are as follows:

#(ifo) = O
(√

n
ε2 (E2+L2D4)

)
#(lmo) = O

(
1
ε2 (E2+L2D4)

)
SPIDER-FW has better ifo complexity than state-of-the-
art in the non-convex finite-sum setting. It improves the
dependence on sample size n. See Table 1 for comparison.

SPIDER-FW: Non-convex expectation minimization

We consider SPIDER-FW with

Kt = K = dσ/εe.

Furthermore, we choose the parameters as

St,k = S = dσ/εe Qt = Q = d4(σ/ε)2e

and the learning rate parameter

ηt,k = η =
1

√
sT,K

where sT,K = TK.

Theorem 4. Consider the non-convex expectation minimiza-
tion template, and suppose that the assumptions in Section 3
for this template hold. Denote by xout an iterate xt,k of
SPIDER-FW chosen uniformly random over all (t, k) pairs
up to (T,K). Then, the following bound holds:

E[G(xout)] = O
(
E + LD2

√
sT,K

)
+
ε

2

Corollary 4. The sfo and lmo complexities of SPIDER-FW
for achieving ε-solution in this setting are as follows:

#(sfo) = O
(
σ
ε3 (E2+L2D4)

)
#(lmo) = O

(
1
ε2 (E2+L2D4)

)
Once again, SPIDER-FW enjoys superior sfo complexity
while maintaining the same lmo complexity as its competi-
tors. SVRF was the state-of-the-art with O(ε−10/3), see
Reddi et al. (2016).

5. SPIDER Conditional Gradient Sliding
This section presents SPIDER-CGS (as shown in Algo-
rithm 3) and its convergence guarantees for various set-
tings. SPIDER-CGS has the same oracle complexity as the
SPIDER-FW.

Algorithm 3 SPIDER Conditional Gradient Sliding

Input: x̄1 = ȳ1 ∈ Ω
for t = 1, 2, . . . , T do

Set x1 = x̄t and y1 = ȳt

Update z1 = y1 + γt,1 (x1 − y1)
Draw Qt samples Qt
Compute v1 = ∇fQt

(z1)
x2 = CndG(x1, v1, αt,1, βt,1)
Update y2 = y1 + γt,1 (x2 − y1)
for k = 2, 3, . . . ,Kt do

Update zk = yk + γt,k (xk − yk)
Draw St,k samples St,k
Compute vk = ∇fSt,k(zk)−∇fSt,k(zk−1) + vk−1

xk+1 = CndG(xk, vk, αt,k, βt,k)
Update yk+1 = yk + γt,k (xk+1 − yk)

end for
Set x̄t+1 = xKt+1 and ȳt+1 = yKt+1

end for

function u+ = CndG(u, v, α, β)
Set u1 = u
for k = 1, 2, . . . do

Compute wk ∈ lmoΩ (v + β (uk − u))
Evaluate ζk = 〈v + β (uk − u), uk − wk〉
if ζk ≤ α then

break
end if
Set θk = min{1, ζk/(β‖wk − uk‖2)}
Update uk+1 = uk + θk(wk − uk)

end for
Set u+ = uk

end function

SPIDER-CGS: Convex finite-sum

We consider SPIDER-CGS with

Kt = d2t/2e for t = 1, 2, . . . , T.

Furthermore, we choose the sampling parameters as

St,k = 9Kts
2
t,Kt

Qt = [n]

CndG subsolver parameters as

βt,k =
3

2
Lγt,k αt,k =

2LD2

(st,k + 1)2

and the learning rate parameter as

γt,k =
3

st,k + 2
where st,k =

t−1∑
τ=1

Kτ + k
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Theorem 5. Consider the convex finite-sum template, and
suppose that the assumptions in Section 3 for this template
hold. Then, estimate yt,k of SPIDER-CGS with the parame-
ter choices described above satisfies

E[F (yt,k)]− F ? = O

(
LD2

s2
t,k

)

Corollary 5. The ifo and lmo complexities of SPIDER-CGS
for achieving ε-solution in this template are as follows:

#(ifo) = O
(
n ln

(
LD2

ε

)
+ L2D4

ε2

)
#(lmo) = O(LD

2

ε )

Remark that the STORC (Hazan & Luo, 2016) has a bet-
ter ifo complexity, but under the additional assumption of
Lipschitz continuity of F .

SPIDER-CGS: Convex expectation minimization

We consider SPIDER-CGS with

Kt = d2t/2e for t = 1, 2, . . . , T.

Furthermore, we choose the sampling parameters as

St,k = 9Kts
2
t,Kt

Qt = d
σ2s4t,Kt

L2D2
e

CndG subsolver parameters as

βt,k =
3

2
Lγt,k αt,k =

2LD2

(st,k + 1)2

and the learning rate parameter as

γt,k =
2

st,k + 1
where st,k =

t−1∑
τ=1

Kτ + k

Theorem 6. Consider the convex expectation minimization
template, and suppose that the assumptions in Section 3
for this template hold. Then, estimate yt,k of SPIDER-CGS
with the parameter choices described above satisfies

E[F (yt,k)]− F ? = O

(
LD2

s2
t,k

)

Corollary 6. The sfo and lmo complexities of SPIDER-CGS
for achieving ε-solution in convex expectation minimization
problems are as follows:

#(sfo) = O
(
σ2D2+L2D4

ε2

)
#(lmo) = O(LD

2

ε )

SPIDER-CGS: Non-convex finite-sum

We consider SPIDER-CGS with

Kt = K = d
√
ne.

Furthermore, we choose the sampling parameters as

St,k = K Qt = [n]

CndG subsolver parameters as

βt,k =
3

2
Lγ αt,k = LD2γ

and the learning rate parameter as

γt,k = γ =
1

√
sT,K

where sT,K = TK.

Theorem 7. Consider the non-convex finite-sum template,
and suppose that the assumptions in Section 3 for this tem-
plate hold. Denote by yout an iterate yt,k of SPIDER-CGS
chosen uniformly random over all (t, k) pairs up to (T,K).
Then, the following bound on the FW-gap holds:

E[G(yout)] = O
(
E + LD2

√
sT,K

)
Corollary 7. The ifo and lmo complexities of SPIDER-CGS
for achieving ε-solution in non-convex finite-sum are

#(ifo) = O
(√

n
ε2 (E2+L2D4)

)
#(lmo) = O

(
1
ε2 (E2+L2D4)

)

SPIDER-CGS: Non-convex expectation minimization

We consider SPIDER-CGS with

Kt = K = dσ/εe.

Furthermore, we choose the sampling parameters as

St,k = K Qt = d4(σ/ε)2e

CndG subsolver parameters as

βt,k =
3

2
Lγ αt,k = LD2γ

and the learning rate parameter as

γt,k = γ =
1

√
sT,K

where sT,K = TK.

Theorem 8. Consider the non-convex expectation minimiza-
tion template, and suppose that the assumptions in Section 3
for this template hold. Denote by yout an iterate yt,k of
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SPIDER-CGS chosen uniformly random over all (t, k) pairs
up to (T,K). Then, the following bound holds:

E[G(yout)] = O
(
E + LD2

√
sT,K

)
+
ε

2

Corollary 8. The sfo and lmo complexities of SPIDER-
CGS for achieving ε-solution in non-convex expectation
minimization problems are as follows:

#(sfo) = O
(
σ
ε3 (E2+L2D4)

)
#(lmo) = O

(
1
ε2 (E2+L2D4)

)
6. Comparison & Discussions
This section presents an extensive comparison of theoretical
aspects of FW methods. Table 1 compiles a summary of
this comparison.

6.1. Convex optimization camp

Batch setting. FW achieves an ε-solution after O(1/ε)
iterations. This complexity is optimal for a large class of
methods that construct the decision variable through convex
combination of lmo outputs (Lan, 2014). CGS, on the other
side, enjoys O(1/

√
ε) first order oracle complexity while

keeping the same O(1/ε) lmo complexity, by reusing the
same gradients over multiple iterations Lan & Zhou (2016).

Stochastic setting. Hazan & Kale (2012) propose Online-
FW for an online-learning setting, but as mentioned later
by Hazan & Luo (2016), these results can be translated to
the stochastic template via standard conversion approaches,
and getsO(1/ε4) andO(1/ε2) complexities for sfo and lmo
calls respectively.

A natural extension of FW for stochastic setting is described
by Hazan & Luo (2016), as shown in Algorithm 4. This
method (SFW) is shown to converge withO(1/k) rate when
the sample size Sk = Θ(k2), hence it provides an ε-solution
with O(1/ε3) sfo and O(1/ε) lmo complexities.

Algorithm 4 Stochastic Frank-Wolfe

Input: x1 ∈ Ω
for k = 1, 2, . . . ,K do

Draw Sk samples Sk
Compute wk ∈ lmoΩ (∇fSk(xk) )
Update xk+1 = xk + ηk (wk − xk)

end for

Lan & Zhou (2016) extend their CGS framework to the
stochastic setting by introducing SCGS in Section 3 of their
original work. While keeping the optimal O(1/ε) lmo com-
plexity, SCGS achievesO(1/ε2) sfo complexity, which even
gets O(1/ε) under strong convexity assumption.

Hazan & Luo (2016) introduce the stochastic variance re-
duced Frank-Wolfe method (SVRF) by adopting the vari-
ance reduction techniques from Johnson & Zhang (2013)
and Mahdavi et al. (2013). SVRF is explicitly designed
for the finite-sum setting, and it requires O(n ln(1/ε)) full
gradients as well as O(1/ε2) ifo and O(1/ε) lmo to get an
ε-solution.

To further improve ifo complexity of SVRF, Hazan & Luo
(2016) design a variant based on CGS. This variant, stochas-
tic variance reduced condition gradient sliding (STORC),
also requires O(n ln(1/ε)) full gradients and O(1/ε) lmo,
but it enjoys a reduced number of ifo calls at O(1/ε1.5).
Compared to SVRF, however, STORC additionally assumes
that F is Lipschitz continuous in domain Ω. Also remark
that STORC gets better rates under additional assumptions
such as strong-convexity.

Lu & Freund (2018) propose a stochastic FW variant which
requires O(1/ε) lmo and O(n+ 1/ε) ifo complexity for the
convex finite-sum. However, the proposed method relies
on a special structure of the objective function, that fi are
univariate functions of the fitted value 〈ai, x〉 for some
given data sample ai.

All stochastic FW variants we discussed up to know are
based on an increasing mini-batch size. Very recently,
Mokhtari et al. (2018) have proposed an alternative scheme
(SFW-1) for expectation minimization setting, which re-
quires a single sfo at each iteration. Nevertheless, SFW-1
has an arguably worse computational complexity compared
to SFW, with its O(1/ε3) calls of sfo and lmo. We empha-
size the applications of SFW-1 in submodular maximization,
but this is beyond the scope of our work.

For the convex finite-sum setting, SPIDER-FW and
SPIDER-CGS share the same complexities as SVRF.

6.2. Non-convex optimization camp

Batch setting. FW converges asymptotically to a stationary
point, see Section 2.2 in (Bertsekas, 1999). To our knowl-
edge, Yu et al. (2014) shows the first convergence rates for
FW in non-convex setting, and Lacoste-Julien (2016) proves
a non-asymptoticO(1/

√
k) rate in FW-gap for a FW variant

with line-search.

Stochastic setting. As shown by Reddi et al. (2016), SFW
achieves to an ε-solution with O(1/ε4) sfo and O(1/ε2)
lmo complexities. Moreover, they also analyze SVRF in the
non-convex setting (but they call it SVFW), and prove that it
takes O(1/ε10/3) sfo and O(1/ε2) lmo complexity for this
method to get an ε-solution. In the finite-sum setting, the
former is replaced by O(n+ n2/3/ε2) ifo calls.

Reddi et al. (2016) also propose a variant (SAGAFW) based
on the SAGA variance reduction technique described by
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convex non-convex

finite-sum expectation finite-sum expectation

(ifo) (lmo) (sfo) (lmo) (ifo) (lmo) (sfo) (lmo)

FW O(nε−1) O(ε−1) - - O(nε−2) O(ε−2) - -

CGS O(nε−1/2) O(ε−1) - - O(nε−2) O(ε−2) - -

SFW O(ε−3) O(ε−1) O(ε−3) O(ε−1) O(ε−4) O(ε−2) O(ε−4) O(ε−2)

SFW-1 O(ε−3) O(ε−3) O(ε−3) O(ε−3) - - - -

Online-FW O(ε−4) O(ε−2) O(ε−4) O(ε−2) - - - -

SCGS O(ε−2) O(ε−1) O(ε−2) O(ε−1) O(ε−4) O(ε−2) O(ε−4) O(ε−2)

SVRF / SVFW O(n ln(ε−1) + ε−2) O(ε−1) - - O(n+ n2/3ε−2) O(ε−2) O(ε−10/3) O(ε−2)

STORC† O(n ln(ε−1) + ε−3/2) O(ε−1) - - - - - -

SPIDER-FW O(n ln(ε−1) + ε−2) O(ε−1) O(ε−2) O(ε−1) O(n1/2ε−2) O(ε−2) O(ε−3) O(ε−2)

SPIDER-CGS O(n ln(ε−1) + ε−2) O(ε−1) O(ε−2) O(ε−1) O(n1/2ε−2) O(ε−2) O(ε−3) O(ε−2)

Table 1: Comparison of conditional gradient methods for stochastic optimization. Contribution of this work is highlighted with blue font.
See Section 6 for more details.
FW (Frank & Wolfe, 1956; Jaggi, 2013) , CGS (Lan & Zhou, 2016) , SFW (Hazan & Luo, 2016; Reddi et al., 2016) , SFW-1 (Mokhtari et al., 2018) , Online-FW (Hazan &
Kale, 2012) , SCGS (Lan & Zhou, 2016) , SVRF / SVFW (Hazan & Luo, 2016; Reddi et al., 2016) , STORC (Hazan & Luo, 2016)

Defazio et al. (2014). However, we omit SAGAFW be-
cause there is an issue in the analysis of this method (while
telescoping Eq.(14), in page 1249).

Qu et al. (2018) show the convergence rate for special in-
stances of CGS and SCGS in the non-convex setting. How-
ever, they consider a different convergence criterion based
on a proximal gradient mapping rather than the conventional
FW-gap. Consequently, their results are incomparable with
the rest of the literature. For the fact that we are running a
projection-free method, the FW-gap is a more natural choice
than the projection/proximal gradient norm.

We provide a parameter setting and a compact proof for
CGS and SCGS in the supplemental material. Note however
this setting simply gets the same guarantees as FW and SFW
respectively. Whether or not CGS can provide improved
oracle complexities compared to FW in the non-convex
setting, is an open problem.

For the non-convex setting, SPIDER-FW and SPIDER-CGS
have the same oracle complexities, superior to SVRF (which
is the state-of-the-art to our knowledge) for finite-sum and
expectation minimization problems.

6.3. Results from Concurrent Works

By the time we prepared this manuscript, the idea of com-
bining SPIDER with the FW analysis was not explored yet.
However, stochastic variance reduction methods and FW-
type algorithms are both very active research fields. In this
part, we discuss some results from a few concurrent works
that appeared after we submitted our paper for review.

The recent work by Shen et al. (2019) is very closely related
to our approach. They propose a class of methods based on
the CGM and various variance reduction techniques for the
non-convex finite-sum setting, including the SPIDER-FW.
Besides, they also propose extensions that use second-order
approximations. Finally, they provide simulation studies to
compare empirical performance of different variants. We
refer to this paper for a numerical comparison.

Hassani et al. (2019) introduce a novel variance reduced
CGM method, but their work focuses primarily on the sub-
modular maximization. Accordingly, they consider a more
general expectation minimization template (the so-called
non-oblivious setting) where the probability distribution de-
pends on the decision variable x and may change during the
optimization procedure. Therefore, the proposed method
requires some further assumptions and modifications involv-
ing computations with the Hessian approximation. Finally,
Zhang et al. (2019) consider a stochastic CGM approach
with SPIDER in the distributed and quantized settings.

7. Concluding Remarks
We have proposed two novel FW-type methods based on the
idea of blending the recent variance reduction technique SPI-
DER into FW and CGS frameworks. We have shown that
the resulting methods enjoy superior oracle complexities in
various convex and non-convex optimization templates. Ex-
tension of our framework for the strongly convex case is left
open. Developing a well-tuned implementation, including
one that incorporates parallel optimization, is an important
piece of future work.
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