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Appendix

A. Implementations on BCD methods
In this section, we provide several remarks to discuss the specific implementations of BCD methods. Reproducible PyTorch
codes can be found at: https://github.com/timlautk/BCD-for-DNNs-PyTorch or https://github.
com/yao-lab/BCD-for-DNNs-PyTorch.

Remark 1 (On the initialization of parameters) In practice, the weights {Wi}Ni=1 are generally initialized according to
some Gaussian distributions with small standard deviations. The bias vectors are usually set as all one vectors scaled by
some small constants. Given the weights and bias vectors, the auxiliary variables {Ui}Ni=1 and state variables {Vi}Ni=1 are
usually initialized by a single forward pass through the network.

Remark 2 (On the update order) We suggest such a backward update order in this paper due to the nested structure of
DNNs. Besides the update order presented in Algorithm 2, any arbitrary deterministic update order can be incorporated into
the BCD methods, and our proofs still go through.

Remark 3 (On the distributed implementation) One major advantage of BCD is that it can be implemented in distributed
and parallel manner like in ADMM. Specifically, given m servers, the total training data are distributed to these servers.
Denotes Sj as the subset of samples at server j. Thus, n =

∑m
j=1 ](Sj), where ](Sj) denotes the cardinality of Sj . For each

layer i, the state variable Vi is divided into m submatrices by column, i.e., Vi := ((Vi):S1
, . . . , (Vi):Sm), where (Vi):Sj

denotes the submatrix of Vi including all the columns in the index set Sj . The auxiliary variables Ui’s are decomposed
similarly. From Algorithm 2, the updates of {Vi}Ni=1 and {Ui}Ni=1 do not need any communication and thus, can be
computed in a parallel way. The difficult part is the update of weightWi, which is generally hard to parallelize. To deal
with this part, there are some effective strategies suggested in the literature like Taylor et al. (2016).

B. Proof of Proposition 1
PROOF We verify these special cases as follows.

On the loss function `: Since these losses are all nonnegative and continuous on their domains, they are proper lower
semicontinuous and lower bounded by 0. In the following, we only verify that they are either real analytic or semialgebraic.

(a1) If `(t) is the squared (t2) or exponential (et) loss, then according to Krantz & Parks (2002), they are real analytic.

(a2) If `(t) is the logistic loss (log(1 + e−t)), since it is a composition of logarithm and exponential functions which both
are real analytic, thus according to Lemma 3, the logistic loss is real analytic.

(a3) If `(u;y) is the cross-entropy loss, i.e., given y ∈ RdN , `(u;y) = − 1
dN

[〈y, log ŷ(u)〉 + 〈1 − y, log(1 − ŷ(u))〉],
where log is performed elementwise and (ŷ(u)i)1≤i≤dN :=

(
(1 + e−ui)−1

)
1≤i≤dN

for any u ∈ RdN , which can be
viewed as a linear combination of logistic functions, then by (a2) and Lemma 3, it is also analytic.

(a4) If ` is the hinge loss, i.e., given y ∈ RdN , `(u;y) := max{0, 1 − 〈u,y〉} for any u ∈ RdN , by Lemma 4(1), it is
semialgebraic, because its graph is cl(D), the closure of the set D, where

D = {(u, z) : 1− 〈u,y〉 − z = 0,1− u � 0} ∪ {(u, z) : z = 0, 〈u,y〉 − 1 > 0}.

On the activation function σi: Since all the considered specific activations are continuous on their domains, they are
Lipschitz continuous on any bounded set. In the following, we only need to check that they are either real analytic or
semialgebraic.

(b1) If σi is a linear or polynomial function, then according to Krantz & Parks (2002), σi is real analytic.

(b2) If σi(t) is sigmoid, (1 + e−t)−1, or hyperbolic tangent, tanh t := et−e−t
et+e−t , then the sigmoid function is a composition

g ◦ h of these two functions where g(u) = 1
1+u , u > 0 and h(t) = e−t (resp. g(u) = 1− 2

u+1 , u > 0 and h(t) = e2t

in the hyperbolic tangent case). According to Krantz & Parks (2002), g and h in both cases are real analytic. Thus,
according to Lemma 3, sigmoid and hyperbolic tangent functions are real analytic.

https://github.com/timlautk/BCD-for-DNNs-PyTorch
https://github.com/yao-lab/BCD-for-DNNs-PyTorch
https://github.com/yao-lab/BCD-for-DNNs-PyTorch
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(b3) If σi is ReLU, i.e., σi(u) := max{0, u}, then we can show that ReLU is semialgebraic since its graph is cl(D), the
closure of the set D, where

D = {(u, z) : u− z = 0, u > 0} ∪ {(u, z) : z = 0,−u > 0}.

(b4) Similar to the ReLU case, if σi is leaky ReLU, i.e., σi(u) = u if u > 0, otherwise σi(u) = au for some a > 0, then
we can similarly show that leaky ReLU is semialgebraic since its graph is cl(D), the closure of the set D, where

D = {(u, z) : u− z = 0, u > 0} ∪ {(u, z) : au− z = 0,−u > 0}.

(b5) If σi is polynomial as used in Liao & Poggio (2017), then according to Krantz & Parks (2002), it is real analytic.

(b6) If σi is softplus, i.e., σi(u) = 1
t log(1 + etu) for some t > 0, since it is a composition of two analytic functions

1
t log(1 + u) and etu, then according to Krantz & Parks (2002), it is real analytic.

On ri(Wi), si(Vi): By the specific forms of these regularizers, they are nonnegative, lower semicontinuous and continuous
on their domain. In the following, we only need to verify they are either real analytic and semialgebraic.

(c1) the squared `2 norm ‖ · ‖22: According to Bochnak et al. (1998), the `2 norm is semialgebraic, so is its square
according to Lemma 4(2), where g(t) = t2 and h(W ) = ‖W ‖2.

(c2) the squared Frobenius norm ‖ · ‖2F : The squared Frobenius norm is semiaglebraic since it is a finite sum of several
univariate squared functions.

(c3) the elementwise 1-norm ‖ · ‖1,1: Note that ‖W ‖1,1 =
∑
i,j |Wij | is the finite sum of absolute functions h(t) = |t|.

According to Lemma 4(1), the absolute value function is semialgebraic since its graph is the closure of the following
semialgebraic set

D = {(t, s) : t+ s = 0,−t > 0} ∪ {(t, s) : t− s = 0, t > 0}.

Thus, the elementwise 1-norm is semialgebraic.

(c4) the elastic net: Note that the elastic net is the sum of the elementwise 1-norm and the squared Frobenius norm. Thus,
by (c2), (c3) and Lemma 4(3), the elastic net is semialgebraic.

(c5) If ri or si is the indicator function of nonnegative closed half space or a closed interval (box constraints), by Lemma 4(1),
any polyhedral set is semialgebraic such as the nonnegative orthant Rp×q+ = {W ∈ Rp×q,Wij ≥ 0,∀i, j}, and the
closed interval. Thus, by Lemma 4(4), ri or si is semialgebraic in this case. 2

C. Proof of Theorem 1
To prove Theorem 1, we first show that the Kurdyka-Łojasiewicz (KŁ) property holds for the considered DNN training
models (see Proposition 2), then establish the function value convergence of the BCD methods (see Theorem 4), followed
by establishing their global convergence as well as the O(1/k) convergence rate to a critical point as shown in Theorem 5.
Combining Proposition 2, Theorems 4 and 5 yields Theorem 1.

C.1. The Kurdyka-Łojasiewicz Property in Deep Learning

Before giving the definition of the KŁ property, we first introduce some notions and notations from variational analysis,
which can be found in Rockafellar & Wets (1998).

The notion of subdifferential plays a central role in the following definition of the KŁ property. For each x ∈ dom(h), the
Fréchet subdifferential of h at x, written ∂̂h(x), is the set of vectors v ∈ Rp which satisfy

lim inf
y 6=x,y→x

h(y)− h(x)− 〈v,y − x〉
‖x− y‖

≥ 0.
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When x /∈ dom(h), we set ∂̂h(x) = ∅. The limiting-subdifferential (or simply subdifferential) of h introduced in
Mordukhovich (2006), written ∂h(x) at x ∈ dom(h), is defined by

∂h(x) := {v ∈ Rp : ∃xk → x, h(xk)→ h(x), vk ∈ ∂̂h(xk)→ v}. (C.1)

A necessary (but not sufficient) condition for x ∈ Rp to be a minimizer of h is 0 ∈ ∂h(x). A point that satisfies this
inclusion is called limiting-critical or simply critical. The distance between a point x to a subset S of Rp, written dist(x,S),
is defined by dist(x,S) = inf{‖x− s‖ : s ∈ S}, where ‖ · ‖ represents the Euclidean norm.

The KŁ property (Łojasiewicz, 1963; 1993; Kurdyka, 1998; Bolte et al., 2007a;b) plays a central role in the convergence
analysis of nonconvex algorithms (see e.g., Attouch et al., 2013; Xu & Yin, 2013; Wang et al., 2019). The following
definition is adopted from Bolte et al. (2007a).

Definition 3 (Kurdyka-Łojasiewicz property) A function h : Rp → R∪{+∞} is said to have the Kurdyka-Łojasiewicz
(KŁ) property at x∗ ∈ dom(∂h) if there exist a neighborhood U of x∗, a constant η, and a continuous concave function
ϕ(s) = cs1−θ for some c > 0 and θ ∈ [0, 1) such that the Kurdyka-Łojasiewicz inequality holds: For all x ∈ U ∩ dom(∂h)
and h(x∗) < h(x) < h(x∗) + η,

ϕ′(h(x)− h(x∗)) · dist(0, ∂h(x)) ≥ 1, (C.2)

where θ is called the KŁ exponent of h at x∗. Proper lower semi-continuous functions which satisfy the Kurdyka-Łojasiewicz
inequality at each point of dom(∂h) are called KŁ functions.

Note that we have adopted in the definition of the KŁ inequality (C.2) the following notational conventions: 00 = 1,∞/∞ =
0/0 = 0. Such property was firstly introduced by Łojasiewicz (1993) on real analytic functions (Krantz & Parks, 2002) for
θ ∈

[
1
2 , 1
)
, then was extended to functions defined on the o-minimal structure in Kurdyka (1998), and later was extended to

nonsmooth subanalytic functions in Bolte et al. (2007a).

By the definition of the KŁ property, it means that the function under consideration is sharp up to a reparametrization
(Attouch et al., 2013). Particularly, when h is smooth, finite-valued, and h(x∗) = 0, the inequality (C.2) can be rewritten

‖∇(ϕ ◦ h)(x)‖ ≥ 1,

for each convenient x ∈ Rp. This inequality may be interpreted as follows: up to the reparametrization of the values of h
via ϕ, we face a sharp function. Since the function ϕ is used here to turn a singular region—a region in which the gradients
are arbitrarily small—into a regular region, i.e., a place where the gradients are bounded away from zero, it is called a
desingularizing function for h. For theoretical and geometrical developments concerning this inequality, see Bolte et al.
(2007b). KŁ functions include real analytic functions (see Definition 1), semialgebraic functions (see Definition 2), tame
functions defined in some o-minimal structures (Kurdyka, 1998), continuous subanalytic functions (Bolte et al., 2007a;b)
and locally strongly convex functions (Xu & Yin, 2013).

In the following, we establish the KŁ properties13 of the DNN training models with variable splitting, i.e., the functions L
defined in (2.3) and L defined in (2.5).

Proposition 2 (KŁ properties of deep learning) Suppose that Assumption 1 hold. Then the functions L defined in (2.3),
and L defined in (2.5) when restricted to any closed set are KŁ functions.

This proposition shows that most of the DNN training models with variable splitting have some nice geometric properties,
i.e., they are amenable to sharpness at each point in their domains. In order to prove this theorem, we need the following
lemmas. The first lemma shows some important properties of real analytic functions.

Lemma 3 (Krantz & Parks, 2002) The sums, products, and compositions of real analytic functions are real analytic
functions.

Then we present some important properties of semialgebraic sets and mappings, which can be found in Bochnak et al.
(1998).

13It should be pointed out that we need to use the vectorization of the matrix variables involved in L, L and Lres in order to adopt the
existing definitions of KŁ property, real analytic functions and semialgebraic functions. We still use the matrix notation for the simplicity
of notation.
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Lemma 4 The following hold

(1) The finite union, finite intersection, and complement of semialgebraic sets are semialgebraic. The closure and the
interior of a semialgebraic set are semialgebraic (Bochnak et al., 1998, Proposition 2.2.2).

(2) The composition g ◦ h of semialgebraic mappings h : A→ B and g : B → C is semialgebraic (Bochnak et al., 1998,
Proposition 2.2.6).

(3) The sum of two semialgebraic functions is semialgebraic (can be referred to the proof of Bochnak et al. 1998,
Proposition 2.2.6).

(4) The indicator function of a semialgebraic set is semialgebraic (Bochnak et al., 1998).

Since our proof involves the sum of real analytic functions and semialgebraic functions, we still need the following lemma,
of which the claims can be found in or derived directly from Shiota (1997).

Lemma 5 The following hold:

(1) Both real analytic functions and semialgebraic functions (mappings) are subanalytic (Shiota, 1997).

(2) Let f1 and f2 are both subanalytic functions, then the sum of f1 + f2 is a subanalytic function if at least one of them
map a bounded set to a bounded set or if both of them are nonnegative (Shiota, 1997, p.43).

Moreover, we still need the following important lemma from Bolte et al. (2007a), which shows that the subanalytic function
is a KŁ function.

Lemma 6 (Bolte et al., 2007a, Theorem 3.1) Let h : Rp → R∪{+∞} be a subanalytic function with closed domain, and
assume that h is continuous on its domain, then h is a KŁ function.

PROOF (PROOF OF PROPOSITION 2) We first verify the KŁ property of L, and then similarly show that of L. From (2.5),

L({Wi}Ni=1, {Vi}Ni=1, {Ui}Ni=1)

:= Rn(VN ;Y ) +

N∑
i=1

ri(Wi) +

N∑
i=1

si(Vi) +
γ

2

N∑
i=1

[
‖Vi − σi(Ui)‖2F + ‖Ui −WiVi−1‖2F

]
,

which mainly includes the following types of functions, i.e.,

Rn(VN ;Y ), ri(Wi), si(Vi), ‖Vi − σi(Ui)‖2F , ‖Ui −WiVi−1‖2F .

To verify the KŁ property of the functionL, we consider the above functions one by one under the hypothesis of Proposition 2.

On Rn(VN ;Y ): Note that given the output data Y , Rn(VN ;Y ) := 1
n

∑n
j=1 `((VN ):j ,yj), where ` : RdN × RdN →

R+∪{0} is some loss function. If ` is real analytic (resp. semialgebraic), then by Lemma 3 (resp. Lemma 4(3)),Rn(VN ;Y )
is real-analytic (resp. semialgebraic).

On ‖Vi − σi(Ui)‖2F : Note that ‖Vi − σi(Ui)‖2F is a finite sum of simple functions of the form, |v − σi(u)|2 for any
u, v ∈ R. If σi is real analytic (resp. semialgebraic), then v − σi(u) is real analytic (resp. semialgebraic), and further by
Lemma 3 (resp. Lemma 4(2)), |v − σi(u)|2 is also real analytic (resp. semialgebraic) since |v − σi(u)|2 can be viewed as
the composition g ◦ h of these two functions where g(t) = t2 and h(u, v) = v − σi(u).

On ‖Ui −WiVi−1‖2F : Note that the function ‖Ui −WiVi−1‖2F is a polynomial function with the variables Ui,Wi and
Vi−1, and thus according to Krantz & Parks (2002) and Bochnak et al. (1998), it is both real analytic and semialgebraic.

On ri(Wi), si(Vi): All ri’s and si’s are real analytic or semialgebraic by the hypothesis of Proposition 2.

Since each part of the function L is either real analytic or semialgebraic, then by Lemma 5, L is a subanalytic function.
Furthermore, by the continuity hypothesis of Proposition 2, L is continuous in its domain. Therefore, L is a KŁ function
according to Lemma 6.
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Similarly, we can verify the KŁ property of L by checking each part is either real analytic or semialgebraic. The major task
is to check the KŁ properties of the functions ‖Vi − σi(WiVi−1)‖2F (i = 1, . . . , N ). This reduces to check the function
h : R × Rdi−1 × Rdi−1 → R, h(u,v,w) := |u − σi(〈w,v〉)|2. Similar to the case |v − σi(u)|2 for any u, v ∈ R in L,
h is real analytic (resp. semialgebraic) if σi is real analytic (resp. semialgebraic) by Lemma 3 (resp. Lemma 4(2)). As a
consequence, each part of the function L is either real analytic or semialgebraic, so L is a subanalytic function, and further
by the continuity hypothesis of Proposition 2, L is a KŁ function according to Lemma 6. This completes the proof. 2

C.2. Value convergence of BCD

We show the value convergence of both algorithms as follows.

Theorem 4 Let {Qk :=
(
{W k

i }Ni=1, {V k
i }Ni=1

)
}k∈N and {Pk :=

(
{W k

i }Ni=1, {V k
i }Ni=1, {Uk

i }Ni=1

)
}k∈N be the sequences

generated by Algorithms 1 and 2, respectively. Under Assumption 1 and finite initializations Q0 and P0, then for any
positive α and γ, {L(Qk)}k∈N (resp. {L(Pk)}k∈N) is nonincreasing and converges to some finite L∗ (resp. L∗).

In order to prove Theorem 4, we first show the convergence of Algorithm 2 and then show that of Algorithm 1 similarly. We
restate Lemma 1 precisely as follows.

Lemma 7 (Restate of Lemma 1) Let {Pk}k∈N be a sequence generated by the BCD method (Algorithm 2), then

L(Pk) ≤ L(Pk−1)− a‖Pk − Pk−1‖2F , (C.3)

where

a := min
{α

2
,
γ

2

}
(C.4)

for the case that VN is updated via the proximal strategy, or

a := min

{
α

2
,
γ

2
, α+

γ − LR
2

}
(C.5)

for the case that VN is update via the prox-linear strategy.

According to Algorithm 2, the decreasing property of the sequence {L(Pk)}k∈N is obvious. However, establishing the
sufficient descent inequality (C.3) for the sequence {L(Pk)}k∈N is nontrivial. To achieve this, we should take advantage of
the specific update strategies and also the form of L as shown in the following proofs.

PROOF The descent quantity in (C.3) can be developed via considering the descent quantity along the update of each block
variable. From Algorithm 2, each block variable is updated either by the proximal strategy with parameter α/2 (say, updates
of V k

N , {Uk
i }

N−1
i=1 , {W k

i }Ni=1-blocks in Algorithm 2) or by minimizing a strongly convex function14 with parameter γ > 0
(say, updates of {V k

i }
N−1
i=1 ,U

k
N -blocks in Algorithm 2), we will consider both cases one by one.

(a) Proximal update case: In this case, we take the W k
i -update case for example. By Algorithm 2, W k

i is updated
according to the following

W k
i ← argmin

Wi

{
ri(Wi) +

γ

2
‖Uk

i −WiV
k−1
i−1 ‖

2
F +

α

2
‖Wi −W k−1

i ‖2F
}
. (C.6)

Let hk(Wi) = ri(Wi) + γ
2 ‖U

k
i −WiV

k−1
i−1 ‖2F and h̄k(Wi) = ri(Wi) + γ

2 ‖U
k
i −WiV

k−1
i−1 ‖2F + α

2 ‖Wi −W k−1
i ‖2F .

By the optimality ofW k
i , the following holds

h̄k(W k−1
i ) ≥ h̄k(W k

i ),

which implies

hk(W k−1
i ) ≥ hk(W k

i ) +
α

2
‖W k

i −W k−1
i ‖2F . (C.7)

14The function h is called a strongly convex function with parameter γ > 0 if h(u) ≥ h(v) + 〈∇h(v), u− v〉+ γ
2
‖u− v‖2.
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Note that theW k
i -update (C.6) is equivalent to the following original proximal BCD update, i.e.,

W k
i ← argmin

Wi

L(W k−1
<i ,Wi,W

k
>i,V

k−1
<i ,V k

i ,V
k
>i,U

k−1
<i ,Uk

i ,U
k
>i) +

α

2
‖W k

i −W k−1
i ‖2F ,

where W<i := (W1,W2, . . . ,Wi−1), W>i := (Wi+1,Wi+1, . . . ,WN ), and V<i,V>i,U<i,U>i are defined similarly.
Thus, by (C.7), we establish the descent part along theWi-update (i = 1, . . . , N − 1), i.e.,

L(W k−1
<i ,W k−1

i ,W k
>i,V

k−1
<i ,V k

i ,V
k
>i,U

k−1
<i ,Uk

i ,U
k
>i)

≥ L(W k−1
<i ,W k

i ,W
k
>i,V

k−1
<i ,V k

i ,V
k
>i,U

k−1
<i ,Uk

i ,U
k
>i) +

α

2
‖W k

i −W k−1
i ‖2F . (C.8)

Similarly, we can establish the similar descent estimates of (C.8) for the other blocks using the proximal updates including
V k
N , {Uk

i }
N−1
i=1 andW k

N blocks.

Specifically, for the V k
N -block, the following holds

L({W k−1
i }Ni=1,V

k−1
i<N ,V

k−1
N , {Uk−1

i }Ni=1) ≥ L({W k−1
i }Ni=1,V

k−1
i<N ,V

k
N , {Uk−1

i }Ni=1) +
α

2
‖V k

N − V k−1
N ‖2F . (C.9)

For the {Uk
i }-block, i = 1, . . . , N − 1, the following holds

L(W k−1
<i ,W k−1

i ,W k
>i,V

k−1
<i ,V k

i ,V
k
>i,U

k−1
<i ,Uk−1

i ,Uk
>i)

≥ L(W k−1
<i ,W k−1

i ,W k
>i,V

k−1
<i ,V k

i ,V
k
>i,U

k−1
<i ,Uk

i ,U
k
>i) +

α+ γ

2
‖Uk

i −Uk−1
i ‖2F . (C.10)

For theW k
N -block, the following holds

L(W k−1
i<N ,W

k−1
N ,V k−1

i<N ,V
k
N ,U

k−1
i<N ,U

k
N ) ≥ L(W k−1

i<N ,W
k
N ,V

k−1
i<N ,V

k
N ,U

k−1
i<N ,U

k
N ) +

α

2
‖W k

N −W k−1
N ‖2F . (C.11)

(b) Minimization of a strongly convex case: In this case, we take V k
i -update case for example. From Algorithm 2, V k

i is
updated according to the following

V k
i ← argmin

Vi

{
si(Vi) +

γ

2
‖Vi − σi(Uk−1

i )‖2F +
γ

2
‖Uk

i+1 −W k
i+1Vi‖2F

}
. (C.12)

Let hk(Vi) = si(Vi) + γ
2 ‖Vi − σi(U

k−1
i )‖2F + γ

2 ‖U
k
i+1 −W k

i+1Vi‖2F . By the convexity of si, the function hk(Vi) is a
strongly convex function with modulus no less than γ. By the optimality of V k

i , the following holds

hk(V k−1
i ) ≥ hk(V k

i ) +
γ

2
‖V k

i − V k−1
i ‖2F . (C.13)

Noting the relation between hk(Vi) and L(W k−1
<i ,W k−1

i ,W k
>i,V

k−1
<i ,Vi,V

k
>i,U

k−1
<i ,Uk−1

i ,Uk
>i), and by (C.13), it

yields for i = 1, . . . , N − 1,

L(W k−1
<i ,W k−1

i ,W k
>i,V

k−1
<i ,V k−1

i ,V k
>i,U

k−1
<i ,Uk−1

i ,Uk
>i)

≥ L(W k−1
<i ,W k−1

i ,W k
>i,V

k−1
<i ,V k

i ,V
k
>i,U

k−1
<i ,Uk−1

i ,Uk
>i) +

γ

2
‖V k

i − V k−1
i ‖2F . (C.14)

Similarly, we can establish the similar descent estimates for the Uk
N -block, i.e.,

L(W k−1
<N ,W k−1

N ,V k−1
<N ,V k

N ,U
k−1
<N ,Uk−1

N ) ≥ L(W k−1
<N ,W k−1

N ,V k−1
<N ,V k

N ,U
k−1
<N ,Uk

N ) + γ‖Uk
N −Uk−1

N ‖2F . (C.15)

Summing (C.8)–(C.11) and (C.14)–(C.15) yields the descent inequality (C.3).

(c) Prox-linear case forVN , i.e., (3.2): From (3.2), similarly, we let hk(VN ) := sN (VN )+Rn(VN ;Y )+γ
2 ‖VN−U

k−1
N ‖2F

and h̄k(VN ) = sN (VN ) +Rn(V k−1
N ;Y ) + 〈∇Rn(V k−1

N ;Y ),VN − V k−1
N 〉+ α

2 ‖VN − V
k−1
N ‖2F + γ

2 ‖VN −U
k−1
N ‖2F .

By the optimality of V k
N and the strong convexity of h̄k(VN ) with modulus at least α+ γ, the following holds

h̄k(V k−1
N ) ≥ h̄k(V k

N ) +
α+ γ

2
‖V k

N − V k−1
N ‖2F .
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After some simplifications and noting the relation between hk(VN ) and h̄k(VN ), we have

hk(V k−1
N ) ≥ hk(V k

N )−
(
Rn(V k

N ;Y )−Rn(V k−1
N ;Y )− 〈∇Rn(V k−1

N ;Y ),V k
N − V k−1

N 〉
)

+
(
αN +

γ

2

)
‖V k

N − V k−1
N ‖2F ≥ hk(V k

N ) +

(
α+

γ − LR
2

)
‖V k

N − V k−1
N ‖2F , (C.16)

where the last inequality holds for the LR-Lipschitz continuity of∇Rn, i.e., the following inequality by Nesterov (2018),

Rn(V k
N ;Y ) ≤ Rn(V k−1

N ;Y ) + 〈∇Rn(V k−1
N ;Y ),V k

N − V k−1
N 〉+

LR
2
‖V k

N − V k−1
N ‖2F .

Summing (C.8)–(C.11), (C.14)–(C.15) and (C.9) yields the descent inequality (C.3). 2

PROOF (PROOF OF THEOREM 4) By (C.3), L(Pk) is monotonically nonincreasing and lower bounded by 0 since each
term of L is nonnegative, thus, L(Pk) converges to some nonnegative, finite L∗. Similarly, we can show the claims in
Theorem 4 holds for Algorithm 1. 2

Based on Lemma 7, we can obtain the following corollary.

Corollary 1 (Square summable) The following hold:

(a)
∑∞
k=1 ‖Pk − Pk−1‖2F <∞,

(b) 1
K

∑K
k=1 ‖Pk − Pk−1‖2F → 0 at the rate of O(1/K), and

(c) ‖Pk − Pk−1‖F → 0 as k →∞,

PROOF Summing (C.3) over k from 1 to∞ yields

∞∑
k=1

‖Pk − Pk−1‖2F ≤ L(P0) <∞,

which directly implies ‖Pk − Pk−1‖F → 0 as k →∞. Similarly, summing (C.3) over k from 1 to K yields

1

K

K∑
k=1

‖Pk − Pk−1‖2F ≤
1

K
L(P0),

which implies claim (b) of this corollary. 2

C.3. Global convergence of BCD

Theorem 4 implies that the quality of the generated sequence is gradually improving during the iterative procedure in the
sense of the descent of the objective value, and eventually achieves some level of objective value, then keeps stable. However,
the convergence of the generated sequence {Qk}k∈N (resp. {Pk}k∈N) itself is still unclear. In the following, we will show
that under some natural conditions, the whole sequence converges to some critical point of the objective, and further if the
initial point is sufficiently close to some global minimum, then the generated sequence can converge to this global minimum.

Theorem 5 (Global convergence and rate) Under the assumptions of Theorem 1, the following hold

(a) {Qk}k∈N (resp. {Pk}k∈N) converges to a critical point of L (resp. L).

(b) If further the initialization Q0 (resp. P0) is sufficiently close to some global minimum Q∗ of L (resp. P∗ of L), then
Qk (resp. Pk) converges to Q∗ (resp. P∗).

(c) Let θ be the KŁ exponent of L (resp. L) at Q∗ (resp. P∗). There hold: (a) if θ = 0, then {Qk}k∈N converges in a finite
number of steps; (b) if θ ∈

(
0, 12
]
, then ‖Qk −Q∗‖F ≤ Cτk for all k ≥ k0, for certain k0 > 0, C > 0, τ ∈ (0, 1);

and (c) if θ ∈ ( 1
2 , 1), then ‖Qk −Q∗‖F ≤ Ck−

1−θ
2θ−1 for k ≥ k0, for certain k0 > 0, C > 0. The same claims hold for

the sequence {Pk}.
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(d) 1
K

∑K
k=1 ‖gk‖2F → 0 at the rate O(1/K) where gk ∈ ∂L(Qk). Similarly, 1

K

∑K
k=1 ‖ḡk‖2F → 0 at the rate O(1/K)

where ḡk ∈ ∂L(Qk).

Our proof is mainly based on the Kurdyka-Łojasiewicz framework established in Attouch et al. (2013) (some other pioneer
work can be also found in Attouch et al., 2010). According to Attouch et al. (2013), three key conditions including the
sufficient decrease condition, the relative error condition and the continuity condition, together with the KŁ property at some
limiting point are required to establish the global convergence of a descent algorithm from the subsequence convergence,
where the sufficient decrease condition and the KŁ property restricted to any closed set have been established in Lemma 7
and Proposition 2, respectively. The relative error condition is developed in Lemma 8, while the continuity condition holds
naturally due to the continuity assumption. Particularly, the closed set assumption in Proposition 2 can be satisfied naturally
by the boundedness of the sequence as well as its limiting points, which is yielded by Lemma 7 and the coerciveness
assumption. By exploiting the boundedness, we only need to consider the KŁ property of the objective function restricted
to a large bounded, closed set including all limiting points, instead of the total real-valued set. In the following, we first
prove Theorem 5 under the subsequence convergence assumption, i.e., condition (a) of this theorem, and then show that
both condition (b) and condition (c) can imply the boundedness of the sequence (see Lemma 10), and thus the subsequence
convergence as required in condition (a). The rate of convergence results follow the same argument as in the proof of
Attouch & Bolte (2009, Theorem 2).

C.3.1. ESTABLISHING RELATIVE ERROR CONDITION

We restate Lemma 2 precisely as follows.

Lemma 8 (Restatement of Lemma 2) Under the conditions of Theorem 5, let B be an upper bound of Pk−1 and Pk for
any positive integer k, LB be a uniform Lipschitz constant of σi on the bounded set {P : ‖P‖F ≤ B}, and

b := max{γ, α+ γB, α+ γLB, γB + 2γB2, 2γB + γB2}, (C.17)

(or, for the prox-linear case, b := max{γ, LR + α+ γB, α+ γLB, γB+ 2γB2, 2γB+ γB2}), then for any positive integer
k, there holds,

dist(0, ∂L(Pk)) ≤ b
N∑
i=1

[‖W k
i −W k−1

i ‖F + ‖V k
i − V k−1

i ‖F + ‖Uk
i −Uk−1

i ‖F ] ≤ b̄‖Pk − Pk−1‖F , (C.18)

where b̄ := b
√

3N , dist(0,S) := infs∈S ‖s‖F for a set S , and

∂L(Pk) := ({∂Wi
L}Ni=1, {∂ViL}Ni=1, {∂UiL}Ni=1)(Pk).

PROOF The inequality (C.18) is established via bounding each term of ∂L(Pk). By the optimality conditions of all updates
in Algorithm 2, the following hold

0 ∈ ∂sN (V k
N ) + ∂Rn(V k

N ;Y ) + γ(V k
N −Uk−1

N ) + α(V k
N − V k−1

N ),

(or for prox-linear, 0 ∈ ∂sN (V k
N ) +∇Rn(V k−1

N ;Y ) + γ(V k
N −Uk−1

N ) + α(V k
N − V k−1

N ), )

0 = γ(Uk
N − V k

N ) + γ(Uk
N −W k−1

N V k−1
N−1),

0 ∈ ∂rN (W k
N ) + γ(W k

NV
k−1
N−1 −U

k
N )V k−1

N−1
>

+ α(W k
N −W k−1

N ),

for i = N − 1, . . . , 1,

0 ∈ ∂si(V k
i ) + γ(V k

i − σi(Uk−1
i )) + γW k

i+1

>
(W k

i+1V
k
i −Uk

i+1),

0 ∈ γ[(σi(U
k
i )− V k

i )� ∂σi(Uk
i )] + γ(Uk

i −W k−1
i V k−1

i−1 ) + α(Uk
i −Uk−1

i ),

0 ∈ ∂ri(W k
i ) + γ(W k

i V
k−1
i−1 −U

k
i )V k−1

i−1
>

+ α(W k
i −W k−1

i ),
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where V k
0 ≡ V0 = X for all k, and � is the Hadamard product. By the above relations, we have

− α(V k
N − V k−1

N )− γ(Uk
N −Uk−1

N ) ∈ ∂sN (V k
N ) + ∂Rn(V k

N ;Y ) + γ(V k
N −Uk

N ) = ∂VNL(Pk),(
or, (∇Rn(V k

N ;Y )−∇Rn(V k−1
N ;Y ))− α(V k

N − V k−1
N )− γ(Uk

N −Uk−1
N ) ∈ ∂VNL(Pk)

)
− γ(W k

N −W k−1
N )V k

N−1 − γW k−1
N (V k

N−1 − V k−1
N−1) = γ(Uk

N − V k
N ) + γ(Uk

N −W k
NV

k
N−1) = ∂UNL(Pk),

γW k
N

[
V k
N−1(V k

N−1 − V k−1
N−1)> + (V k

N−1 − V k−1
N−1)V k−1

N−1
>]− γUk

N (V k
N − V k−1

N )> − α(W k
N −W k−1

N )

∈ ∂rN (W k
N ) + γ(W k

NV
k
N−1 −Uk

N )V k
N−1

>
= ∂WN

L(Pk),

for i = N − 1, . . . , 1,

− γ(σi(U
k
i )− σi(Uk−1

i )) ∈ ∂si(V k
i ) + γ(V k

i − σi(Uk
i )) + γW k

i+1

>
(W k

i+1V
k
i −Uk

i+1) = ∂ViL(Pk),

− γW k−1
i (V k

i−1 − V k−1
i−1 )− γ(W k

i −W k−1
i )V k

i−1 − α(Uk
i −Uk−1

i )

∈ γ[(σi(U
k
i )− V k

i )� ∂σi(Uk
i )] + γ(Uk

i −W k
i V

k
i−1) = ∂UiL(Pk),

γW k
i

[
V k
i−1(V k

i−1 − V k−1
i−1 )> + (V k

i−1 − V k−1
i−1 )V k−1

i−1
>]− γUk

i (V k
i−1 − V k−1

i−1 )> − α(W k
i −W k−1

i )

∈ ∂ri(W k
i ) + γ(W k

i V
k
i−1 −Uk

i )V k
i−1
>

= ∂Wi
L(Pk).

Based on the above relations, and by the Lipschitz continuity of the activation function on the bounded set {P : ‖P‖F ≤ B}
and the bounded assumption of both Pk−1 and Pk, we have

‖GkVN ‖F ≤ α‖V
k
N − V k−1

N ‖F + γ‖Uk
N −Uk−1

N ‖F , GkVN ∈ ∂VNL(Pk),

(or, ‖GkVN ‖F ≤ (LR + α)‖V k
N − V k−1

N ‖F + γ‖Uk
N −Uk−1

N ‖F )

‖GkUN ‖F ≤ γB‖W
k
N −W k−1

N ‖F + γB‖V k
N−1 − V k−1

N−1‖F , GkUN ∈ ∂UNL(Pk),

‖GkWN
‖F ≤ 2γB2‖V k

N−1 − V k−1
N−1‖F + γB‖V k

N − V k−1
N ‖F + α‖W k

N −W k−1
N ‖F , GkWN

∈ ∂WN
L(Pk),

and for i = N − 1, . . . , 1,

‖GkVi‖F ≤ γLB‖U
k
i −Uk−1

i ‖F , GkVi ∈ ∂ViL(Pk),

‖GkUi‖F ≤ γB‖V
k
i−1 − V k−1

i−1 ‖F + γB‖W k
i −W k−1

i ‖F + α‖Uk
i −Uk−1

i ‖F , GkUi ∈ ∂UiL(Pk),

‖GkWi
‖F ≤ (γB2 + γB)‖V k

i−1 − V k−1
i−1 ‖F + α‖W k

i −W k−1
i ‖F , GkWi

∈ ∂WiL(Pk).

Summing the above inequalities and after some simplifications, we obtain (C.18). 2

C.3.2. PROOF OF THEOREM 5 UNDER CONDITION (A)

Based on Theorem 4 and under the hypothesis that L is continuous on its domain and there exists a convergent subsequence
(i.e., condition (a)), the continuity condition required in Attouch et al. (2013) holds naturally, i.e., there exists a subsequence
{Pkj}j∈N and P∗ such that

Pkj → P∗ and L(Pkj )→ L(P∗), as j →∞. (C.19)

Based on Lemmas 7 and 8, and (C.19), we can justify the global convergence of Pk stated in Theorem 5, following the
proof idea of Attouch et al. (2013). For the completeness of the proof, we still present the detailed proof as follows.

Before presenting the main proof, we establish a local convergence result of Pk, i.e., the convergence of Pk when P0 is
sufficiently close to some point P∗. Specifically, let (ϕ, η, U) be the associated parameters of the KŁ property of L at P∗,
where ϕ is a continuous concave function, η is a positive constant, and U is a neighborhood of P∗. Let ρ be some constant
such that N (P∗, ρ) := {P : ‖P − P∗‖F ≤ ρ} ⊂ U , B := ρ+ ‖P∗‖F , and LB be the uniform Lipschitz constant for σi,
i = 1, . . . , N − 1, within N (P∗, ρ). Assume that P0 satisfies the following condition

b̄

a
ϕ(L(P0)− L(P∗)) + 3

√
L(P0)

a
+ ‖P0 − P∗‖F < ρ, (C.20)

where b̄ = b
√

3N , b and a are defined in (C.17) and (C.4), respectively,
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Lemma 9 (Local convergence) Under the conditions of Theorem 5, suppose that P0 satisfies the condition (C.20), and
L(Pk) > L(P∗) for k ∈ N, then

k∑
i=1

‖Pi − Pi−1‖F ≤ 2

√
L(P0)

a
+
b̄

a
ϕ(L(P0)− L(P∗)), ∀k ≥ 1, (C.21)

Pk ∈ N (P∗, ρ), ∀k ∈ N. (C.22)

As k goes to infinity, (C.21) yields
∞∑
i=1

‖Pi − Pi−1‖F <∞,

which implies the convergence of {Pk}k∈N.

PROOF We will prove Pk ∈ N (P∗, ρ) by induction on k. It is obvious that P0 ∈ N (P∗, ρ). Thus, (C.22) holds for k = 0.
For k = 1, we have from (C.3) and the nonnegativeness of {L(Pk)}k∈N that

L(P0) ≥ L(P0)− L(P1) ≥ a‖P0 − P1‖2F ,

which implies ‖P0 − P1‖F ≤
√
L(P0)
a . Therefore,

‖P1 − P∗‖F ≤ ‖P0 − P1‖F + ‖P0 − P∗‖F ≤

√
L(P0)

a
+ ‖P0 − P∗‖F ,

which indicates P1 ∈ N (P∗, ρ).

Suppose that Pk ∈ N (P∗, ρ) for 0 ≤ k ≤ K. We proceed to show that PK+1 ∈ N (P∗, ρ). Since Pk ∈ N (P∗, ρ) for
0 ≤ k ≤ K, it implies that ‖Pk‖F ≤ B := ρ+ P∗ for 0 ≤ k ≤ K. Thus, by Lemma 8, for 1 ≤ k ≤ K,

dist(0, ∂L(Pk)) ≤ b̄‖Pk − Pk−1‖F ,

which together with the KŁ inequality (C.2) yields

1

ϕ′(L(Pk)− L(P∗))
≤ b̄‖Pk − Pk−1‖F . (C.23)

By (C.3), the above inequality and the concavity of ϕ, for k ≥ 2, the following holds

a‖Pk − Pk−1‖2F ≤ L(Pk−1)− L(Pk) = (L(Pk−1)− L(P∗))− (L(Pk)− L(P∗))

≤ ϕ(L(Pk−1)− L(P∗))− ϕ(L(Pk)− L(P∗))
ϕ′(L(Pk−1)− L(P∗))

≤ b̄‖Pk−1 − Pk−2‖F ·
[
ϕ(L(Pk−1)− L(P∗))− ϕ(L(Pk)− L(P∗))

]
,

which implies

‖Pk − Pk−1‖2F ≤ ‖Pk−1 − Pk−2‖F ·
b̄

a

[
ϕ(L(Pk−1)− L(P∗))− ϕ(L(Pk)− L(P∗))

]
.

Taking the square root on both sides and using the inequality 2
√
αβ ≤ α+ β, the above inequality implies

2‖Pk − Pk−1‖F ≤ ‖Pk−1 − Pk−2‖F +
b̄

a

[
ϕ(L(Pk−1)− L(P∗))− ϕ(L(Pk)− L(P∗))

]
.

Summing the above inequality over k from 2 to K and adding ‖P1 − P0‖F to both sides, it yields

‖PK − PK−1‖F +

K∑
k=1

‖Pk − Pk−1‖F ≤ 2‖P1 − P0‖F +
b̄

a

[
ϕ(L(P0)− L(P∗))− ϕ(L(PK)− L(P∗))

]
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which implies
K∑
k=1

‖Pk − Pk−1‖F ≤ 2

√
L(P0)

a
+
b̄

a
ϕ(L(P0)− L(P∗)), (C.24)

and further,

‖PK+1 − P∗‖F ≤ ‖PK+1 − PK‖F +

K∑
k=1

‖Pk − Pk−1‖F + ‖P0 − P∗‖F

≤

√
L(PK)− L(PK+1)

a
+ 2

√
L(P0)

a
+
b̄

a
ϕ(L(P0)− L(P∗)) + ‖P0 − P∗‖F

≤ 3

√
L(P0)

a
+
b̄

a
ϕ(L(P0)− L(P∗)) + ‖P0 − P∗‖F < ρ,

where the second inequality holds for (C.3) and (C.24), the third inequality holds for L(PK) − L(PK+1) ≤ L(PK) ≤
L(P0). Thus, PK+1 ∈ N (P∗, ρ). Therefore, we prove this lemma. 2

PROOF (PROOF OF THEOREM 5) We prove the whole sequence convergence stated in Theorem 5 according to the follow-
ing two cases.

Case 1: L(Pk0) = L(P∗) at some k0. In this case, by Lemma 7, Pk = Pk0 = P∗ holds for all k ≥ k0, which implies the
convergence of Pk to a limit point P∗.

Case 2: L(Pk) > L(P∗) for all k ∈ N. In this case, since P∗ is a limit point and L(Pk) → L(P∗), by Theorem 4,
there must exist an integer k0 such that Pk0 is sufficiently close to P∗ as required in Lemma 9 (see the inequality (C.20)).
Therefore, the whole sequence {Pk}k∈N converges according to Lemma 9. Since P∗ is a limit point of {Pk}k∈N, we have
Pk → P∗.

Next, we show P∗ is a critical point of L. By Corollary 1(c), limk→∞ ‖Pk − Pk−1‖F = 0. Furthermore, by Lemma 8,

lim
k→∞

dist(0, ∂L(Pk)) = 0,

which implies that any limit point is a critical point. Therefore, we prove the global convergence of the sequence generated
by Algorithm 2.

The convergence to a global minimum is a straightforward variant of Lemma 9.

The O(1/k) rate of convergence is a direct claim according to the proof of Lemma 8 and Corollary 1(c).

The proof of the convergence of Algorithm 1 is similar to that of Algorithm 2. We give a brief description about this. Note
that in Algorithm 1, all blocks of variables are updated via the proximal strategies (or, prox-linear strategy for VN -block).
Thus, it is easy to show the similar descent inequality, i.e.,

L(Qk−1)− L(Qk) ≥ a‖Qk −Qk−1‖2F , (C.25)

for some a > 0. Then similar to the proof of Lemma 8, we can establish the following inequality via checking the optimality
conditions of all subproblems in Algorithm 1, i.e.,

dist(0, ∂L(Qk)) ≤ b‖Qk −Qk−1‖F , (C.26)

for some b > 0. By (C.25), (C.26) and the KŁ property of L (by Proposition 2), the global convergence of Algorithm 1 can
be proved via a similar proof procedure of Algorithm 2. 2

C.3.3. CONDITION (B) OR (C) IMPLIES CONDITION (A)

Lemma 10 Under condition (b) or condition (c) of Theorem 5, Pk is bounded for any k ∈ N, and thus, there exists a
convergent subsequence.
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Algorithm 3 BCD for DNN Training with ResNets (3.3)

Samples: X ∈ Rd0×n, Y ∈ RdN×n, V k
0 ≡ V0 := X

Initialization: {W 0
i ,V

0
i ,U

0
i }Ni=1

Parameters: γ > 0, α > 0

for k = 1, . . . do
V k
N = argminVN

{sN (VN ) +Rn(VN ;Y ) + γ
2
‖VN − V k−1

N−1 −Uk−1
N ‖2F + α

2
‖VN − V k−1

N ‖2F }
Uk
N = argminUN

{ γ
2
(‖V k

N − V k−1
N−1 −UN‖2F + ‖UN −W k−1

N V k−1
N−1‖

2
F )}

W k
N = argminWN

{rN (WN ) + γ
2
‖Uk

N −WNV k−1
N−1‖

2
F + α

2
‖WN −W k−1

N ‖2F }
for i = N − 1, . . . , 1 do

V k
i = argminVi

{si(Vi) + γ
2
(‖Vi − V k−1

i−1 − σi(U
k−1
i )‖2F + ‖V k

i+1 − Vi − σi+1(U
k
i+1)‖2F + ‖Uk

i+1 −W k
i+1Vi‖2F )}

Uk
i = argminUi

{ γ
2
(‖V k

i − V k−1
i−1 − σi(Ui)‖2F + ‖Ui −W k−1

i V k−1
i−1 ‖

2
F ) +

α
2
‖Ui −Uk−1

i ‖2F }
W k

i = argminWi
{ri(Wi) +

γ
2
‖Uk

i −WiV
k−1
i−1 ‖

2
F + α

2
‖Wi −W k−1

i ‖2F }
end for

end for

PROOF We first show the boundedness of the sequence as well as the subsequence convergence under condition (b) of
Theorem 5, then under condition (c) of Theorem 5.

1. Condition (b) implies condition (a): We first establish the boundedness ofW k
i , i = 1, . . . , N . Then, recursively, we

establish the boundedness of Uk
i via the boudedness ofW k

i and V k
i−1 (noting that V k

0 ≡X), followed by that of V k
i

via the boundedness of Uk
i , i = 1, . . . , N .

(1) Boundedness of W k
i (i = 1, . . . , N): By Lemma 7, L(Pk) < ∞ for all k ∈ N. Noting that each term of

L is nonnegative, thus, 0 ≤ ri(W
k
i ) < ∞ for any k ∈ N and i = 1, . . . , N . By the coercivity of ri, W k

i is
boundedness for any k ∈ N and i = 1, . . . , N .
In the following, we establish the boundedness of Uk

i for any k ∈ N and i = 1, . . . , N .
(2) i = 1: Since L(Pk) < ∞, then ‖Uk

1 −W k
1X‖2F < ∞ for any k ∈ N. By the boundedness of W k

1 and the
coercivity of the function ‖ · ‖2F , we have the boundedness of Uk

1 for any k ∈ N. Then we show the boundedness
of V k

1 by the boundedness of Uk
1 . Since L(Pk) < ∞, then ‖V k

1 − σ1(Uk
1 )‖2F < ∞ for any k ∈ N. By the

Lipschitz continuity of σ1 and the boundedness of Uk
1 , σ1(Uk

1 ) is uniformly bounded for any k ∈ N. Thus, by
the coercivity of ‖ · ‖2F , V k

1 is bounded for any k ∈ N.
(3) i > 1: Recursively, we show that the boundedness ofW k

i and V k
i−1 implies the boundedness of Uk

i , and then the
boundedness of V k

i from i = 2 to N .
Now, we assume that the boundedness of V k

i−1 has been established. Similar to (2), the boundedness of Uk
i is

guaranteed by ‖Uk
i −W k

i V
k
i−1‖2F < ∞ and the boundedness of W k

i and V k
i−1. The boundedness of V k

i is
guaranteed by ‖V k

i − σi(Uk
i )‖2F <∞ and the boundedness of Uk

i , as well as the Lipschitz continuity of σi.
As a consequence, we prove the boundedness of {Pk}k∈N under condition (b), which implies the subsequence
convergent.

2. Condition (c) implies condition (a): By Lemma 7 and the finite initialization assumption, we have

L(Pk) ≤ L(P0) <∞,

which implies the boundedness of Pk due to the coercivity of L (i.e., condition (c)), and thus, there exists a convergent
subsequence.

This completes the proof of this lemma. 2

D. Proof of Theorem 3
The proof of Theorem 3 is very similar to those of Lemma 7 and Theorem 5, by noting that the updates are slightly different.
In the following, we present the proof of Theorem 3.

Lemma 7 still holds for Algorithm 3 via replacing L with Lres, which is stated as the following lemma.
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Lemma 11 Let {{W k
i ,V

k
i ,U

k
i }Ni=1}k∈N be a sequence generated by the BCD method (Algorithm 3) for the DNN training

with ResNets, then for any γ > 0, α > 0,

Lres

(
{W k

i ,V
k
i ,U

k
i }Ni=1

)
≤ Lres

(
{W k−1

i ,V k−1
i ,Uk−1

i }Ni=1

)
− a

N∑
i=1

[
‖W k

i −W k−1
i ‖2F + ‖V k

i − V k−1
i ‖2F + ‖Uk

i −Uk−1
i ‖2F

]
, (D.1)

and
{
Lres

(
{W k

i ,V
k
i ,U

k
i }Ni=1

)}
k∈N converges to some L∗res, where a := min

{
α
2 ,

γ
2

}
.

PROOF The proof of this lemma is the same as that of Lemma 7. 2

In the ResNets case, Lemma 8 should be revised as the following lemma.

Lemma 12 Let {{W k
i ,V

k
i ,U

k
i }Ni=1}k∈N be a sequence generated by Algorithm 3. Under Assumptions of Theorem 3, let

b̄ := max{α+ γL, α+ γB, 2γ(1 + B + B2), γ(1 + LB + 2B + 2B2)}, then

dist(0, ∂Lres({W k
i ,V

k
i ,U

k
i }Ni=1)) ≤ b̄

N∑
i=1

[
‖W k

i −W k−1
i ‖F + ‖V k

i − V k−1
i ‖F + ‖Uk

i −Uk−1
i ‖F

]
, (D.2)

where

∂Lres({W k
i ,V

k
i ,U

k
i }Ni=1) := ({∂Wi

Lres, ∂ViLres, ∂UiLres}Ni=1)({W k
i ,V

k
i ,U

k
i }Ni=1).

PROOF From updates of Algorithm 3,

0 ∈ ∂sN (V k
N ) + ∂Rn(V k

N ;Y ) + γ(V k
N − V k−1

N−1 −U
k−1
N ) + α(V k

N − V k−1
N ),

0 = γ(Uk
N + V k−1

N−1 − V
k
N ) + γ(Uk

N −W k−1
N V k−1

N−1),

0 ∈ ∂rN (W k
N ) + γ(W k

NV
k−1
N−1 −U

k
N )V k−1

N−1
>

+ α(W k
N −W k−1

N ),

for i = N − 1, . . . , 1,

0 ∈ ∂si(V k
i ) + γ(V k

i − V k−1
i−1 − σi(U

k−1
i ))− γ(V k

i+1 − V k
i − σi+1(Uk

i+1)) + γW k
i+1

>
(W k

i+1V
k
i −Uk

i+1),

0 ∈ γ[(σi(U
k
i ) + V k−1

i−1 − V
k
i )� ∂σi(Uk

i )] + γ(Uk
i −W k−1

i V k−1
i−1 ) + α(Uk

i −Uk−1
i ),

0 ∈ ∂ri(W k
i ) + γ(W k

i V
k−1
i−1 −U

k
i )V k−1

i−1
>

+ α(W k
i −W k−1

i ),

where V k
0 ≡ V0 = X , for all k, and � is the Hadamard product. By the above relations, we have

− α(V k
N − V k−1

N )− γ(V k
N−1 − V k−1

N−1)− γ(Uk
N −Uk−1

N )

∈ ∂sN (V k
N ) + ∂Rn(V k

N ;Y ) + γ(V k
N − V k

N−1 −Uk
N ) = ∂VNLres({W k

i ,V
k
i ,U

k
i }Ni=1),

− γ(W k
N −W k−1

N )V k
N−1 − γW k−1

N (V k
N−1 − V k−1

N−1) + γ(V k
N−1 − V k−1

N−1)

= γ(Uk
N + V k

N−1 − V k
N ) + γ(Uk

N −W k
NV

k
N−1) = ∂UNLres({W k

i ,V
k
i ,U

k
i }Ni=1),

γW k
N

[
V k
N−1(V k

N−1 − V k−1
N−1)> + (V k

N−1 − V k−1
N−1)V k−1

N−1
>]− γUk

N (V k
N−1 − V k−1

N−1)> − α(W k
N −W k−1

N )

∈ ∂rN (W k
N ) + γ(W k

NV
k
N−1 −Uk

N )V k
N−1

>
= ∂WN

Lres({W k
i ,V

k
i ,U

k
i }Ni=1),

For i = N − 1, . . . , 1, and ξki ∈ ∂σi(Uk
i ),

− γ(V k
i−1 − V k−1

i−1 )− γ(σi(U
k
i )− σi(Uk−1

i ))

∈ ∂si(V k
i ) + γ(V k

i − V k
i−1 − σi(Uk

i ))− γ(V k
i+1 − V k

i − σi+1(Uk
i+1)) + γW k

i+1

>
(W k

i+1V
k
i −Uk

i+1)

= ∂ViLres({W k
i ,V

k
i ,U

k
i }Ni=1),

− γW k−1
i (V k

i−1 − V k−1
i−1 )− γ(W k

i −W k−1
i )V k

i−1 − α(Uk
i −Uk−1

i ) + γ(V k
i−1 − V k−1

i−1 )� ξki
∈ γ[(σi(U

k
i ) + V k

i−1 − V k
i )� ∂σi(Uk

i )] + γ(Uk
i −W k

i V
k
i−1) = ∂UiLres({W k

i ,V
k
i ,U

k
i }Ni=1),
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γW k
i

[
V k
i−1(V k

i−1 − V k−1
i−1 )> + (V k

i−1 − V k−1
i−1 )V k−1

i−1
>]− γUk

i (V k
i−1 − V k−1

i−1 )> − α(W k
i −W k−1

i )

∈ ∂ri(W k
i ) + γ(W k

i V
k
i−1 −Uk

i )V k
i−1
>

= ∂WiLres({W k
i ,V

k
i ,U

k
i }Ni=1).

From the above relations, the uniform boundedness of the generated sequence (whose bound is B) and the Lipschitz
continuity of the activation function by the hypothesis of this lemma, we have ‖ξki ‖ ≤ LB, and further we get (D.2). 2

PROOF (PROOF OF THEOREM 3) The proof of this theorem is very similar to that of Theorem 5. First, similar to Proposi-
tion 2, it is easy to show that Lres is also a KŁ function. Then, based on Lemma 11 and Lemma 12, and the KŁ property of
Lres, we can prove this corollary by Attouch et al. (2013, Theorem 2.9). The other claims of this theorem follow from the
same proof of Theorem 5. When the prox-linear strategy is adopted for the VN -update, the claims of Theorem 3 can be
proved via following the same proof of Theorem 2. 2

E. Closed form solutions of some subproblems
In this section, we provide the closed form solutions to the ReLU involved subproblem and the hinge loss involved
subproblem.

E.1. Closed form solution to ReLU-subproblem

From Algorithm 2, when σi is ReLU, then the Uk
i -update actually reduces to the following one-dimensional minimization

problem,

u∗ = argmin
u

f(u) :=
1

2
(σ(u)− a)2 +

γ

2
(u− b)2, (E.1)

where σ(u) = max{0, u} and γ > 0. The solution to the above one-dimensional minimization problem can be presented in
the following lemma.

Lemma 13 The optimal solution to Problem (E.1) is shown as follows

prox 1
2γ (σ(·)−a)2

(b) =



a+ γb

1 + γ
, if a+ γb ≥ 0, b ≥ 0,

a+ γb

1 + γ
, if − (

√
γ(γ + 1)− γ)a ≤ γb < 0,

b, if − a ≤ γb ≤ −(
√
γ(γ + 1)− γ)a < 0,

min{b, 0}, if a+ γb < 0.

PROOF In the following, we divide this into two cases.

(a) u ≥ 0: In this case,

f(u) =
1

2
(u− a)2 +

γ

2
(u− b)2.

It is easy to check that

u∗ =


a+ γb

1 + γ
, if a+ γb ≥ 0

0, if a+ γb < 0
, (E.2)

and

f

(
a+ γb

1 + γ

)
=

γ

2(1 + γ)
(b− a)2, f(0) =

1

2
a2 +

γ

2
b2.

(b) u < 0: In this case,

f(u) =
1

2
a2 +

γ

2
(u− b)2.
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It is easy to check that

u∗ =

{
0, if b ≥ 0

b, if b < 0
, (E.3)

and
f(b) =

1

2
a2, f(0) =

1

2
a2 +

γ

2
b2.

Based on (E.2) and (E.3), we obtain the solution to Problem (E.1) by considering the following four cases.

1. a+ γb ≥ 0, b ≥ 0: In this case, we need to compare the values f
(
a+γb
1+γ

)
= γ

2(1+γ) (b− a)2 and f(0) = 1
2a

2 + γ
2 b

2.
It is obvious that

u∗ =
a+ γb

1 + γ
.

2. a+ γb ≥ 0, b < 0: In this case, we need to compare the values f
(
a+γb
1+γ

)
= γ

2(1+γ) (b− a)2 and f(b) = 1
2a

2. By the
hypothesis of this case, it is obvious that a > 0. We can easily check that

u∗ =


a+ γb

1 + γ
, if − (

√
γ(γ + 1)− γ)a ≤ γb < 0,

b, if − a ≤ γb ≤ −(
√
γ(γ + 1)− γ)a < 0.

3. a+ γb < 0, b ≥ 0: It is obvious that
u∗ = 0.

4. a+ γb < 0, b < 0: It is obvious that
u∗ = b.

Thus, the solution to Problem (E.1) is

prox 1
2γ (σ(·)−a)2

(b) =



a+ γb

1 + γ
, if a+ γb ≥ 0, b ≥ 0,

a+ γb

1 + γ
, if − (

√
γ(γ + 1)− γ)a ≤ γb < 0,

b, if − a ≤ γb ≤ −(
√
γ(γ + 1)− γ)a < 0,

min{b, 0}, if a+ γb < 0.

2

E.2. The closed form of the proximal operator of hinge loss

Consider the following optimization problem

u∗ = argmin
u

g(u) := max{0, 1− a · u}+
γ

2
(u− b)2, (E.4)

where γ > 0.

Lemma 14 The optimal solution to Problem (E.4) is shown as follows

hingeγ(a, b) =


b, if a = 0,

b+ γ−1a, if a 6= 0 and ab ≤ 1− γ−1a2,
a−1, if a 6= 0 and 1− γ−1a2 < ab < 1,

b, if a 6= 0 and ab ≥ 1.
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PROOF We consider the problem in the following three different cases: (1) a > 0, (2) a = 0 and (3) a < 0.

(1) a > 0: In this case,

g(u) =

1− au+
γ

2
(u− b)2, if u < a−1,

γ

2
(u− b)2, if u ≥ a−1.

It is easy to show that the solution to the problem is

u∗ =


b+ γ−1a, if a > 0 and b ≤ a−1 − γ−1a,
a−1, if a > 0 and a−1 − γ−1a < b < a−1,

b, if a > 0 and b ≥ a−1.
(E.5)

(2) a = 0: It is obvious that

u∗ = b. (E.6)

(3) a < 0: Similar to (1),

g(u) =

1− au+
γ

2
(u− b)2, u ≥ a−1,

γ

2
(u− b)2, u < a−1.

Similarly, it is easy to show that the solution to the problem is

u∗ =


b+ γ−1a, if a < 0 and b ≥ a−1 − γ−1a,
a−1, if a < 0 and a−1 < b < a−1 − γ−1a,
b, if a < 0 and b ≤ a−1.

(E.7)

Thus, we finish the proof of this lemma. 2

F. BCD vs. SGD for training ten-hidden-layer MLPs
In this experiment, we attempt to verify the capability of BCD for training MLPs with many layers. Reproducible PyTorch
codes can be found at: https://github.com/timlautk/BCD-for-DNNs-PyTorch or https://github.
com/yao-lab/BCD-for-DNNs-PyTorch.

Specifically, we consider the DNN training model (2.2) with ReLU activation, the squared loss, and the network architecture
being an MLPs with ten hidden layers, on the MNIST data set. The specific settings were summarized as follows:

(a) For the MNIST data set, we implemented a 784-(600×10)-10 MLPs (i.e., the input dimension d0 = 28× 28 = 784,
the output dimension d11 = 10, and the numbers of hidden units are all 600), and set γ = α = 1 for BCD. The sizes of
training and test samples are 60000 and 10000, respectively.

(b) The learning rate of SGD is 0.001 (a very conservative learning rate to see if SGD can train the DNNs). More greedy
learning rates such as 0.01 and 0.05 have also been used, and similar failure of training is also observed.

(c) For each experiment, we used the same mini-batch sizes (512) and initializations for all algorithms. Specifically, all the
weights {Wi}Ni=1 are initialized from a Gaussian distribution with a standard deviation of 0.01 and the bias vectors are
initialized as vectors of all 0.1, while the auxiliary variables {Ui}Ni=1 and state variables {Vi}Ni=1 are initialized by a
single forward pass.

Under these settings, we plot the curves of training accuracy (acc.) and test accuracy (acc.) of BCD and SGD as shown in
Figure 1. According to Figure 1, vanilla SGD usually fails to train such deeper MLPs since it suffers from the vanishing
gradient issue (Goodfellow et al., 2016), whereas BCD still works and achieves a moderate accuracy within a few epochs.

https://github.com/timlautk/BCD-for-DNNs-PyTorch
https://github.com/yao-lab/BCD-for-DNNs-PyTorch
https://github.com/yao-lab/BCD-for-DNNs-PyTorch

