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Abstract
In standard classification problems, the assump-
tion is that the entity making the decision (the
principal) has access to all the samples. How-
ever, in many contexts, she either does not have
direct access to the samples, or can inspect only a
limited set of samples and does not know which
are the most relevant ones. In such cases, she
must rely on another party (the agent) to either
provide the samples or point out the most relevant
ones. If the agent has a different objective, then
the principal cannot trust the submitted samples
to be representative. She must set a policy for how
she makes decisions, keeping in mind the agent’s
incentives. In this paper, we introduce a theoreti-
cal framework for this problem and provide key
structural and computational results.

1. Introduction
In standard classification problems, the common assumption
is that we have access to all the samples. However, in many
contexts, we either do not have direct access to the samples,
or we can inspect only a limited set of samples and do not
know which are the most relevant ones. In such cases, we
must rely on another party (the agent) to either provide
the samples or point out the most relevant ones. This agent
may have different incentives, which raises several concerns.
One is that the individual samples cannot even be trusted—
e.g., we ask for images but the agent manipulates the images
with editing software before sending them. This is an issue
that we do not consider in this paper; we assume that the
agent cannot modify samples or create fake samples. (In
the related research discussion below, we list some work
that does not make this assumption.) But even in a context
where the individual samples can be trusted (e.g., using
cryptographic tools like digital signatures (Goldwasser et al.,
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1988; Friedman, 1993)), there is still the concern that the
agent sends only a biased collection of samples. If we do
not know how many samples n the agent has available, then
we cannot know whether the agent has submitted all of them.
Moreover, we may have capacity to deal with only a fixed
number m of samples.

Consider the following scenario. A faculty member (the
agent) wishes to convince the chair of the department (the
principal) to interview a particular candidate, while the
chair wants to interview the strongest candidates.1 The
principal has time to read exactly three of the candidate’s
papers, and asks the agent, who is familiar with all of the
candidate’s work, which three she should read. Naturally,
the agent chooses the best three papers. The principal, when
reading them, then knows that these three papers may not be
representative of all the candidate’s work, and should make
her decision with this in mind.

In fact, it is not clear that the principal should just ask for the
three best papers according to a single metric. For example,
she could also say: “Of the three papers, at least one must
have at most two authors.” Or: “At least one of the papers
must introduce a new problem.” Or: “In at least one of
the papers, the 42nd letter must be a vowel.” They also do
not need to be hard constraints; she could just announce
that she would appreciate it if one of the papers has at most
two authors, but if that is not the case and the three papers
are spectacular she would still interview the candidate. In
general, the principal will set a policy for when she would
interview a candidate, and the agent will base his choice of
papers on this policy. 2

Similar examples abound where an agent aims to convince
a principal based on limited data. The above example can
be generalized to hiring in many other professions: for ex-
ample, in sports, high school coaches may want to convince
a college scout to come out and take a look at a player. As
before, the scout (the principal) has limited time, and she
must make a decision of taking the trip or not, based on the
limited video footage of that player provided by the coach

1Of course the decision may not rest with the chair (alone); if
so, we may think of the body of people that needs to be convinced
as the principal.

2Note that the candidate is not a strategic player; the candidate
takes no actions in the game.
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(the agent). The scout can specify a policy and the coach
will choose the footage accordingly. For example, the scout
may just wish to see the best moments, or have a policy
that she prefers to see footage of the player in multiple roles
(offense, defense, . . .). The decisions do not need to be
hiring decisions, of course. For example, a city may make a
bid to host an event based (in part) on a few selected pho-
tographs of the surroundings. The committee deciding on
the location will probably appreciate having photographs of
both the venue and of the nearby beach, rather than multiple
photographs of just one of these.

1.1. Our Results

In this section, we highlight some of our structural and
computational results.

We study the problem of designing an optimal classification
policy when the samples are provided by a strategic agent.
The agent has n samples, and while she cannot modify the
samples, she can choose which m samples to submit. Our
work is motivated by questions such as the following:

1. How does strategic sample selection affect the prin-
cipal’s classification problem? Is it easier or harder
compared to when she has direct access to m samples?

2. Are there conditions under which she should just ask
for the best m samples according to a single metric?
Are there conditions under which this is not optimal?

3. What is an optimal policy for the principal?

To answer question (1), we give two examples (Exam-
ples 1 and 2) that show that, depending on the instance,
classification based strategically selected samples could be
easier or harder for the principal compared to when she has
direct access to the samples.

For question (2), we prove several structural results. We
show that when a single sample is reported (m = 1) or
when all samples are reported (m = n), any optimal pol-
icy should accept reports whose good vs. bad likelihood
ratio (i.e., a single metric) exceeds a certain threshold (The-
orems 1 and 2). However, such a characterization fails to
hold for the general 1 < m < n case (Proposition 3).

For question (3), for the case of one good and one bad
distribution, we show that for any value ofm, we can design
a policy that has good behavior in the limit (Corollary 2
and Theorem 3). When there are multiple good and bad
distributions, we show that if m = 1 and the distributions
are piecewise constant, we can efficiently compute policies
with target accepting probabilities (Theorem 6).

1.2. Related Research

In other research, settings in which agents strategically ma-
nipulate the samples themselves have been studied. Dekel
et al. (2008) and Meir et al. (2012) consider the case where
a single hypothesis must be constructed based on data held
by multiple agents, and agents change the labels of their
own examples in order to change the hypothesis to their
benefit. Kephart & Conitzer (2015, 2016) and Hardt et al.
(2016) consider settings where we design a classifier, but
the entities being classified can, at some cost, change their
features to obtain a better classification.

In mechanism design with partial verification (Green &
Laffont, 1986; Yu, 2011), an agent reports a type, and the
set of types that the agent can misreport depends on the
agent’s true type (but misreporting does not come at any
cost). Our setting is similar in the sense that the set of reports
that the agent can (costlessly) make is also determined by
the agent’s true private information (i.e., the agent’s full set
of samples), though in our setting the agent can never report
the full private information. Our setting has much additional
structure that we exploit.

In Bayesian persuasion (Kamenica & Gentzkow, 2011;
Dughmi & Xu, 2016), a receiving agent (the receiver) must
choose among a set of actions, while a sending agent (the
sender) knows more information about the payoffs of both
players for each action. The sender seeks maximize his
own payoff by carefully reveal information to the receiver.
Our setting is different from Bayesian persuasion in several
ways: In Bayesian persuasion, the sender is able to commit
to a signaling strategy, while in our setting, it is the recip-
ient of the information that can commit to an acceptance
policy. Moreover, we have good and bad candidates where
the good candidates want to distinguish themselves from the
bad ones, while in Bayesian persuasion, the sender knows
the types of the candidates and (say) he wants to maximize
the overall probability of acceptance (possibly by mixing
together good and bad candidates).

In principle, one may try to align the agent’s incentives
with those of the principal by rewarding the agent, possibly
monetarily. If so, we may even consider dispensing with
the direct submission of samples and simply ask the agent,
who can inspect all the samples, for a probabilistic forecast
of the candidate’s future performance. We can then reward
the agent according to a proper scoring rule (Savage, 1971;
Gneiting & Raftery, 2007) to ensure incentives to report
truthfully. However, in many of the settings of interest,
monetary payments would be impractical, inappropriate, or
sufficiently limited in size by budget considerations that the
agent’s direct interest in the decision would outweigh the
monetary reward. In such cases, cheap-talk reports will not
help and we need to rely on the agent’s inability to forge
samples.
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Di Tillio et al. (2017) consider a setting closely related to
ours. They focus on a restricted case, where (1) there is one
good and one bad distribution on the real line, and moreover,
the two distributions are identical up to a constant shift, and
(2) only one sample is observed / reported (i.e., the m = 1
case in this paper). While they give a remarkable characteri-
zation for this restricted case, their assumptions drastically
simplify the problem. In this paper, in contrast, we consider
(possibly more than two) arbitrary distributions, and the
structure of the support essentially does not matter. We also
consider the case where multiple samples are reported.

2. Preliminaries
The principal is interested in the underlying type θ ∈ Θ of
the entity about which she is making the decision. For ex-
ample, in much of the paper we will consider a binary type
space Θ = {g, b} (“good” and “bad”). The entity generates
n samples from a sample space X ,3 where samples x are
drawn i.i.d. (so with replacement) according to P (x|θ). We
sometimes use the shorthand θ(x) = P (x|θ). These n sam-
ples constitute a multiset4 D which is the dataset available
to the agent. The agent must select a multiset R ⊆ D 5 with
|R| = m as his report to the principal. The principal must
decide to accept or reject, based on the report. She commits
to a policy. A randomized policy Πm : Rm → [0, 1] assigns
to each report a probability of acceptance. HereRm is the
set of all possible reports of size m. A deterministic policy
has Πm(R) ∈ {0, 1} for all R; it is equivalently defined by
the set of accepted reports, Sm = {R : Πm(R) = 1}.

The agent aims to maximize the probability of acceptance
regardless of the true type. He will choose to report some
R? in argmaxR⊆D Πm(R). The principal, taking into ac-
count the strategic behavior by the agent, chooses her pol-
icy Πm to attain her own objectives. For example, she
may have a utility u(θ) for accepting θ; when Θ = {g, b},
u(b) < 0 < u(g). When combined with a prior over Θ,
this creates a well-defined optimization problem for the
principal. Alternatively, she may have target acceptance
probabilities for each type; for example, she may want to
accept bwith probability at most pb and g with probability at
least pg (corresponding to limits on the two types of errors).
This does not require a prior over Θ.

For simplicity, we use the following notation in proofs in-
terchangeably. For one-sample policies (m = 1), we some-

3For simplicity, we assume the sample space X is in some
Euclidean space, i.e., X ⊆ Rd for some integer d > 0.

4Recall that a multiset is a set in which an element may occur
more than once. One could also think of this as a vector, but the
order of the elements does not matter in our context.

5We use “⊆” for the standard subset notion on multisets. For
multisets A and B, A ⊆ B iff cB(x) ≤ cA(x) for all x ∈ B,
where cS(x) is the number of occurrences of x in S.

times denote the policy by its accepted set of samples S
(instead of S , which is a family of singleton multisets). That
is, S = {x | {x} ∈ S}. For a type, e.g., g ∈ Θ, we abuse
notation and use g(S) to denote the total probability mass
of g on a set S ⊆ X . That is, g(S) = Prx∼g[x ∈ S].

2.1. Illustrative Examples

We now present a few examples that illustrate some of the
key issues. The first example illustrates that the strategic se-
lection sometimes helps the principal. In the language of our
motivating example, this is the case where the principal and
the agent can only classify papers as high- or low-quality,
and high-quality papers are rare.

Example 1. Let Θ = {g, b} and X = {0, 1}. Let g(1) =
0.05 and b(1) = 0.005. Let n = 50 andm = 1. The natural
policy is to accept iff the agent submits report {1}. In other
words, the agent can convince the principal to accept iff at
least one of the n papers has high-quality. The probability a
good type is accepted is 1− 0.9550 ≈ 0.92; for a bad type
it is 1 − 0.99550 ≈ 0.22. In this example, thanks to the
agent’s strategic selection, the principal can classify quite
effectively while only observing a single sample; in contrast,
if she had to observe samples directly, a single sample would
give her very little information.

However, the next example (where high-quality papers are
less rare) shows that the opposite can also happen. Strate-
gic selection can make it much harder for the principal to
distinguish between good and bad types.

Example 2. Let Θ = {g, b} and X = {0, 1}. Let g(1) =
0.95 and b(1) = 0.05. Let n = 50 and m = 1. Again, the
natural policy is to let the accepted iff the agent submits
{1}. The probability that a good type is accepted (has a
sample in the accepted set) is 1 − 0.0550 ≈ 1; for a bad
type it is 1− 0.9550 ≈ 0.92. In this example, the strategic
selection of samples by the agent makes it very difficult for
the principal to distinguish between g and b; in contrast, if
she could observe samples directly, a single sample would
allow her to classify quite effectively.

Fortunately, there’s a workaround: the principal can effec-
tively reduce n by specifying an irrelevant (i.e., uncorrelated
with the type) requirement, such as that the 42nd letter of
the paper should be a vowel.6 Since there will generally be
nearly infinitely many irrelevant attributes of the samples,
we assume that each sample is associated with a real number
drawn uniformly7 from (0, 1), representing the irrelevant
information.

6One may wonder whether this creates an incentive for candi-
dates to write their papers in a particular way; this can be avoided
by choosing this requirement close to the decision. In any case, we
do not consider the process that originally produces the n samples
as a strategic entity in this paper.

7Any continuous distribution can be transformed to a uniform
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Example 3. Let Θ = {g, b} and X = {0, 1} × (0, 1)
(where the first number represents the relevant informa-
tion and the second number the irrelevant information). Let
g({1} × (0, 1)) = 0.95 and b({1} × (0, 1)) = 0.05. Note
that this is the same example as Example 2, except for the
additional irrelevant information. Let n = 50 and m = 1.
Now consider the policy that accepts S = {{x} : x ∈
{1}×(0, 0.05)}. That is, the principal accepts only samples
with good relevant information and irrelevant information
that has a 1 in 20 chance of occurring. The probability that
a good type is accepted is 1− (1− 0.95 · 0.05)50 ≈ 0.92;
for a bad type it is 1 − (1 − 0.05 · 0.05)50 ≈ 0.12. Thus,
the addition of irrelevant information allows the principal to
classify much more effectively.

Example 3 illustrates that the difficulty of Example 2 is
primarily due to the discreteness of the sample space.

Our last example shows that with multiple bad distributions,
the optimal policy does not evaluate the quality of samples
individually, but rather considers them in combination. One
of the questions of interest later in this paper is under which
circumstances this can happen.

Example 4. Let Θ = {g, b1, b2} and X = {0, 1}. Let
g(1) = 0.5, b1(1) = 0.99, b2(1) = 0.01. Let n = 10 and
m = 2. Consider the policy that accepts S = {{0, 1}},
i.e., it accepts if both possible samples are reported. The
probability that a good type is accepted is 1− 2 · 0.510 ≈
0.998; the probability that a bad type is accepted is less than
1 − 0.9910 ≈ 0.10. In contrast, if we accept reports that
have the same sample twice, then one of the two bad types
is extremely likely to succeed.

3. Basic Results
In this section, we provide some basic results that justify
why we focus on deterministic policies in the rest of the
paper.

3.1. Deterministic vs. Randomized Policies

In this subsection, we discuss the relative power of deter-
ministic and randomized policies, justifying our focus on
deterministic policies in the rest of the paper.

We first show that in our setting, randomized policies can be
decomposed into a distribution over deterministic policies.

Proposition 1. Any randomized policy can be decomposed
into a distribution over deterministic policies, such that the
accepting probability of any report remains the same.

As a simple corollary, if the principal is trying to maximize
her utility, one of the deterministic policies must be optimal.

one, using the standard trick of applying the CDF to the drawn
number first.

Corollary 1. Assume there is a prior over Θ and the prin-
cipal has a utility u(θ) for accepting type θ ∈ Θ. If the
principal wishes to maximize her expected utility, there ex-
ists a deterministic policy that is optimal.

We defer the proofs of Proposition 1 and Corollary 1 to the
appendix.

It should be noted that Corollary 1 is generally not true in
mechanism design. For example, for designing revenue-
maximizing auctions, it is well-known that the optimal
mechanism may require randomization (Hart & Reny, 2015).
In fact, even in our problem, if the principal has target ac-
ceptance probabilities for each type, for example “I want
to accept at least 90% of good candidates and at most 10%
of bad candidates,” then it is possible that only randomized
policies obtain these goals simultaneously, as the following
example demonstrates.
Example 5. g(0) = 1/2, g(1) = 1/2, b(0) = 1, b(1) = 0,
and n = m = 1. If we wish to accept the good distribution
at least 3/4 of the time, and accept the bad distribution at
most 1/2 of the time, we have to use a randomized policy:
always accept {1} and accept {0} with probability 1/2.

On the other hand, this example heavily relies on the discrete
nature of the sample space; if we make the sample space
continuous—say, {0, 1} × (0, 1) where the second number
is drawn uniformly at random, as in Example 3—then we
can achieve the same result with a deterministic mecha-
nism, by effectively using the second number to generate
the randomness.

In practice, deterministic policies have several other ad-
vantages as well. They are straightforward to implement,
transparent, fair, and not subject to willful manipulation of
the random numbers. For all these reasons, we focus on
deterministic policies in the rest of this paper.

3.2. Continuous vs. Discrete Distributions

In this subsection, we compare continuous and discrete
distributions, justifying our focus on continuous distribu-
tions in the rest of the paper. As we will prove in the next
proposition, given our focus on deterministic policies, for
discrete distributions we face NP-hardness, simply due to
having to solve a knapsack problem. We defer the proof of
Proposition 2 to the appendix.
Proposition 2. Given two discrete distributions g and b,
and two target acceptance probabilities pg and pb, it is
NP-hard to decide if there exists a deterministic policy that
accepts g with probability at least pg and accepts b with
probability at most pb. This is true even when n = m = 1.

In contrast, Theorem 6 states that for continuous distribu-
tions, we can solve the decision problem of Proposition 2
efficiently in much more general settings.
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As we discussed in Example 3, in practice, we can often
make the distribution over the sample space effectively con-
tinuous, by considering irrelevant information. For example,
when considering video footage of an athlete, we may be
able to summarize all the relevant information in discrete
terms (did the athlete make the shot or not, etc.). Mean-
while, the background of the video provides almost unlim-
ited irrelevant information (is someone eating popcorn in
the background, etc.). Imagine that we can only watch a
single video clip of a basketball player. If our policy is to
only accept if the player (say) makes a 3-pointer, then even
mediocre players will be able to produce such a clip. But if
our policy is to only accept if the player makes a 3-pointer
while a girl is eating popcorn in the background, then only
players who frequently score 3-pointers are likely to be able
to produce such a clip. From a technical viewpoint, we can
assume that each sample is associated with a random real
number drawn uniformly from (0, 1), as in Example 3.

For all these reasons, we focus on continuous distributions
in the rest of this paper. We now move on to study strategic
sample selection in these more restricted settings.

4. One Good and One Bad Distribution
In this section, we consider the setting in which the type
space is binary: Θ = {g, b}.

4.1. One Sample

We first consider the special case where the agent submits
only one sample (m = 1). Our main structural result (The-
orem 1) states that any Pareto optimal policy takes the fol-
lowing form: accept all reports {x} such that the likelihood
ratio g(x)/b(x) is greater than some threshold.

As a corollary of Theorem 1, when the agent has sufficiently
many samples (m = 1 and n = 1), we can characterize the
optimal tradeoff between the accepting probabilities pg and
pb (Corollary 2). This tradeoff is quantitatively governed
by the maximum likelihood ratio max g(x)

b(x) over the entire
sample space x ∈ X . This is in contrast to the distribution
learning literature (Pearson, 1895; Batu et al., 2000; Chan
et al., 2014), where this tradeoff is often determined by some
global measure (e.g., total variation distance) between the
two distributions.

Let Π, Π′ be two policies that accept the good distribution
with probability pg and p′g, and accept the bad distribution
with probability pb and p′b respectively. We say Π′ is strictly
better than Π if p′g ≥ pg and p′b ≤ pb and at least one of the
two inequalities holds strictly. We say Π is Pareto optimal
if there is no other policy Π′ strictly better than Π.

Theorem 1. Supposem = 1 and we have continuous distri-
butions g and b. Consider any optimal deterministic policy

Π. Let S ⊆ X be the accepting region of Π. Then, for any
point x1 strictly inside S and any x2 strictly outside of S,

g(x1)/b(x1) ≥ g(x2)/b(x2).

Before proving Theorem 1, we first discuss its conditions
and implications. We can always change the policy on a
set of measure zero, and the resulting policy is equivalent
to the original one. Therefore, the condition in Theorem 1
only applies to the interior of S and X \ S. An immediate
consequence of Theorem 1 is that, if the principal’s utility
only depends on the accepting probabilities, and is strictly
monotonically increasing in pg and strictly monotonically
decreasing in pb, then the optimal policy must be Pareto op-
timal and hence it must satisfy the condition in Theorem 1.

Proof. Let pg, pb be the probabilities that Π accepts the
good and bad distributions respectively.

pg = Pr
D∼gn

[D ∩ S 6= ∅] = 1− (1− g(S))n,

pb = Pr
D∼bn

[D ∩ S 6= ∅] = 1− (1− b(S))n.

Suppose there are x1 strictly in S and x2 strictly outside S
where

g(x1)/b(x1) < g(x2)/b(x2).

Pick neighborhoods N1 and N2 of x1 and x2 in S and
X \ S respectively, such that g(N1) = g(N2) > 0 and
g(N1)/b(N1) < g(N2)/b(N2). Such neighborhoods ex-
ist because the likelihood ratio g(x)/b(x) is a continuous
function, and both x1 and x2 are not on the boundary of S.

We will show that a different policy Π′ with accepting region
S′ = (S \ N1) ∪ N2 is a better policy. Let p′g and p′b be
the accepting probabilities of Π′. Since g(S′) = g(S) and
b(S′) = b(S)− b(N1) + b(N2) < b(S), we have

p′g = 1− (1− g(S′))n = 1− (1− g(S))n = pg, and

p′b = 1− (1− b(S′))n < 1− (1− b(S))n = pb.

Corollary 2. Fix continuous distributions g and b. Let
r = supx∈X(g(x)/b(x)) be the maximum likelihood ratio
over the entire sample spaceX . 8 Whenm = 1 and n→∞,
any Pareto optimal deterministic policy Π satisfies

pg + (1− pb)r = 1,

where pg and pb are the probabilities that Π accepts g and
b respectively.

Proof. Fix any 0 < ε < 1. Because the likelihood ra-
tio function g(x)/b(x) is continuous and its supremum

8For simplicity, we assume the maximum likelihood ratio r =
supx(g(x)/b(x)) exists and is finite. A similar argument shows
that when r =∞, we can get policies with pg = 1 and pb = 0.
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is r, there exists a small neighborhood S ⊆ X such
that g(x)/b(x) ≥ (1 − ε)r for all x ∈ S. Recall that
g(S) = Prx∼g[x ∈ N ] > 0 is the probability that a random
sample from the good distribution x ∼ g is in S. By the
definition of S, we know that b(S) ≤ g(S)/(r(1− ε)).

Consider the policy that accepts iff the agent reports a sam-
ple in S. We will show that S is essentially optimal as
n → ∞. Let pg and pb denote the accepting probabilities
of S. For notational convenience let δ = g(S). We have

pg = (1− (1− g(S))n) = 1− (1− δ)n, and

pb = (1− (1− b(S))n) ≤ 1−
(

1− δ

r(1− ε)

)n
.

We can rewrite the inequality on pb by substituting δ. Be-
cause the inequality holds for any ε and n, we can let ε→ 0
and n→∞ and get

pb ≤ 1−
(

1− 1− (1− pg)1/n

r(1− ε)

)n
→ 1− (1− pg)1/r.

On the other hand, the upper bound on pb is tight when
ε = 0. This is because the acceptance region S′ of any
deterministic policy can have likelihood ratio at most r,
and thus b(S′) ≥ g(S′)/r and a similar calculation gives
the same lower bound on pb. Therefore, we can conclude
that for any Pareto optimal policy, pg + (1 − pb)r = 1 as
n→∞.

4.2. Multiple Samples

We now move on to the case where the agent submits m
samples (m > 1). We first generalize the notion of the
likelihood ratio to reports of multiple samples.

Definition 1. We define the likelihood ratio of a report R to
be the product of the samples’ likelihood ratios

∏
x∈R

g(x)
b(x) ,

as if the samples in R are drawn i.i.d. from the distribution.

The following theorem states that when m = n, any Pareto
optimal policy essentially accepts reports whose likelihood
ratio exceeds some threshold.

Theorem 2. Supposem = n and we have continuous distri-
butions g and b. Consider any Pareto optimal deterministic
policy Π which accepts all and only reports in S . Then, for
any report R1 strictly inside S and any R2 strictly outside
of S, we have∏

x∈R1

g(x)/b(x) ≥
∏
x∈R2

g(x)/b(x).

We defer the proof of Theorem 2 to the appendix.

Note that for the case m = 1, Theorem 1 states that in that
case, too, the agent should report the sample that maximizes

the likelihood ratio. Thus, it is natural to conjecture that this
continues to hold when m < n. This, however, is false. In
fact, we can show that the optimal policy does not admit
even the following weaker structural property.

Definition 2. A policy orders the sample space if there
exists an ordering on the elements of the sample space, such
that an optimal response for the agent is to always report his
highest samples in this ordering.

In the m = 1 and m = n cases, the optimal policy based on
the likelihood ratio clearly satisfies this property, ordering
the sample space by likelihood ratio. (In the m = n case,
this is because the likelihood ratio is the product of the
likelihood ratios of the individual samples, and this product
is maximized by choosing the samples that maximize that
ratio.) The following proposition shows that this does not
hold in general for 1 < m < n.

Proposition 3. When 1 < m < n, sometimes a Pareto
optimal policy does not order the sample space.

Proof. For simplicity, we present a counter example that
is a discrete distribution. It can be easily changed to a
continuous distribution without affecting any of the part
argument.

Let Θ = {g, b}, X = {0, 1, 2}, and

g(0) = 0, g(1) = 0.1, g(2) = 0.9, and
b(0) = 0.8, b(1) = 0.1, b(2) = 0.1.

Let m = 2 and n = 3, i.e., the agents has 3 i.i.d. samples
and chooses 2 of them to submit.

We claim a policy Π that accepts reports {1, 1} and {2, 2}
is Pareto optimal. First notice that Π accepts g with proba-
bility 1. Since an agent does not draw {0} from g, so by the
pigeonhole principle, among the n = 3 samples there must
be either two copies of {1} or two copies of {2}. On the
other hand, the principal must accept these two reports with
probability 1 if she wants to always accept g. This is be-
cause when θ = g, the agent’s data D could be {1, 1, 1} (or
{2, 2, 2}), in which case he is forced to report R = {1, 1}
(or resp. {2, 2}). Therefore, among all policies, Π has the
smallest probability of accepting b.

The above example rules out structural results in the form
of Theorems 1 and 2, because the report {1, 2} has higher
likelihood ratio than {1, 1}. Furthermore, note that any
policy that accepts {1, 1} and {2, 2} but not {1, 2} cannot
order the sample space; for example, if 1 were ordered at
least as high as 2, then an agent with data {1, 2, 2} can
report {1, 2} instead of {2, 2} according to the ordering, but
this is suboptimal because {1, 2} is rejected while {2, 2} is
accepted.
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It of course remains possible that there is an elegant way
to describe the optimal policy in this context, but Proposi-
tion 3 rules out many natural possibilities. However, if we
are willing to give up on exact optimality, then we can still
define a policy that performs reasonably well in the limit.
Theorem 3 gives a policy whose error probability (probabil-
ity of rejecting g or accepting b) decreases exponentially in
m. This error guarantee is similar to the setting where the
principal has direct access to m samples, in which case the
failing probability also decreases exponentially in m. The
difference is that, as in Corollary 2, the coefficient in the
exponent depends on the maximum likelihood ratio r rather
than (say) the total variation distance between g and b.

Theorem 3. Fix m ≥ 1 and two continuous distributions
g and b. Let r = supx

g(x)
b(x) > 1 denote the maximum likeli-

hood ratio. As n→∞, there is a deterministic policy whose
error probability is at most exp

(
− 1

2 (1− r−1/2)2m
)
.

The policy that achieves Theorem 3 focuses on a small
region S where g(S) � m/n and b(S) � m/n. This
way, for n samples drawn from g, in expectation, ng(S)�
m samples are from S; and for n samples drawn from b,
nb(S) � m samples are from S. Therefore, if we accept
all reports with m samples from S, we can distinguish g
from b. We defer the proof of Theorem 3 to the appendix.

5. One Good and Multiple Bad Distributions
For men are good in but one way, but bad in many.

— Aristotle, Nicomachean Ethics

We now consider the case where there are multiple bad
distributions, but still only a single good one.

5.1. One Sample

Again, we first investigate the single-sample case (m = 1).
We first show there are cases in which no policy can perform
well across all possible priors over Θ.

Example 6. Let Θ = {g, b1, b2} and X = {0, 1} × (0, 1).
Let g({0} × (0, 1)) = g({1} × (0, 1)) = 0.5, b1({0} ×
(0, 1)) = 1, and b2({1} × (0, 1)) = 1. There is no policy
which makes the right decision with probability larger than
0.5 against any prior. This is because any deterministic
policy has the following form: for some p, q ∈ [0, 1], the
policy accepts all reports in S = {{x} | x ∈ ({0}×(0, p))∪
({1} × (0, q))}. This is because to accept g w.p. larger than
1/2, we need p+ q > 1. W.l.o.g. assume p > 1/2, but then
the policy accepts b1 w.p. p > 1/2.

When there is a prior over Θ and the principal has utilities
for accepting each type θ ∈ Θ, the next theorem charac-
terizes the behavior of optimal policies in the limit. Note

that Theorem 4 does not hold if we have specific target
acceptance probabilities for individual bad distributions.

Theorem 4. Fix m = 1 and a partition of the sample space
X into t pieces. Let Θ = {g, b1, . . . , bk}. Assume every
distribution is constant on every piece, the principal has
utility u(θ) for accepting type θ, and there is a prior q
over Θ. Then, for sufficiently large n, there is a utility-
maximizing policy that accepts only reports in a subset
of one single piece (module accepting any report that has
measure zero).

Proof. Suppose the optimal policy accepts all reports in
S and S overlaps with multiple pieces P1, . . . , Pt. Let
(g(Sj), b1(Sj), . . . , bk(Sj)) denote the “cumulative” proba-
bilities of Sj = S∩Pj . Let αθi be the density of distribution
θ on Pi, and let βij = bi(Sj)/g(Sj) = αbij /α

g
j be the like-

lihood ratio bi(x)/g(x) on piece j. We argue that moving
all the mass, measured by g, to one of the k pieces achieves
at least the same probability of success. Since n is large
enough,

∑
j g(Sj) can be contained in any of the t pieces.

The expected utility of S is

qgu(g)

1−
(

1−
∑
j

g(Sj)
)n

+
∑
i

qbiu(bi)

1−
(

1−
∑
j

βijg(Sj)
)n .

Let βi = (βi1, . . . , βi`), γ = (g(S1), . . . , g(St)). The prin-
cipal’s expected utility can be written as

u(g)qg(1− (1−‖γ‖1)n) +
∑
i

u(bi)qbi(1− (1−β>i γ)n).

Note that since 0 ≤ β>i γ ≤ 1, (1−β>i γ)n is convex in γ for
any i. Fixing ‖γ‖1, Since qbi ≥ 0 and u(bi) < 0, the overall
utility is also convex in γ. Therefore, the maximum utility is
achieved when γ has only one non-zero entry. Equivalently,
the optimal policy should focus on a single piece.

Theorem 4 crucially relies on there being only a single good
distribution, as the following example demonstrates.

Example 7 (non-locality with multiple good distributions).
Let Θ = {g1, g2, b} andX = {0, 1, 2}×(0, 1). Let b({0}×
(0, 1)) = g1({1} × (0, 1)) = g2({2} × (0, 1)) = 1. Let
m = 1. Even as n → ∞, we will need to accept points
from both the pieces {1} × (0, 1) and {2} × (0, 1) in order
to accept both good distributions.

5.2. Multiple Samples

When m > 1 and there are multiple bad distributions, it
turns out that sometimes the agent faces an NP-hard prob-
lem. This is because an individual sample may rule out
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several bad distributions, and to convince the principal to
accept, the agent may have to judiciously choose his m re-
ported samples to cover all the bad distributions, in terms of
ruling them out. The following theorem makes this precise.

Theorem 5. With one good distribution and k bad distribu-
tions, it is NP-hard for the agent to determine, given dataset
D, whether it is possible to report R ⊆ D, such that the
optimal policy accepts R.

Proof. We reduce from the decision version of Set Cover.
Given a set cover instance with elements U , n′ sets
{Sj}j∈[n′], and a target number m′, we know it is NP-Hard
to decide whether all elements can be covered with m′ sets.

We construct a strategic sample selection instance as follows.
We partition the sample space into n′ pieces. Each piece Pj
corresponds to a set Sj in the set cover instance. The good
distribution g is the uniform distribution. For each element
i ∈ U , we create a bad distribution bi. We set the probability
density of bi to 0 on Pj if Sj 3 i, and set it equally on all
other pieces. (W.l.o.g., we can assume there is no element
that is contained in all sets.)

Consider an agent with n = n′ samples, one for each piece.
Let m = m′ be the number of samples he can report. Sup-
pose that the principal will accept if and only if she is sure
the underlying distribution is g (say she has very negative
utility for accepting a bad type).

Suppose a set cover of size m exists. Then, the agent can
report the corresponding samples. For each bi, there is a
sample in the report that has probability 0 under bi. Hence
the principal can rule out every bad distribution.

Conversely, suppose the agent has a report that will get ac-
cepted. For each bi, there must be a sample in the report that
has probability density 0 under bi; this sample corresponds
to some Sj 3 i. Hence, the agent’s report produces a set
cover of size m.

6. Multiple Good/Bad Distributions
We now allow multiple good and multiple bad distributions.
The hardness result from Theorem 5 still applies here when
m > 1, so we focus on m = 1. Even so, Example 7 shows
that we will get nonlocality in the optimal policy, so we
do not prove a structural result. This leaves the question
of whether we can efficiently compute policies with target
accepting probabilities when m = 1.

Theorem 6. Fix m = 1, n ≥ 1, and a partition of the
sample space X into t pieces. Assume we are given distribu-
tions g1, . . . , gk, and b1, . . . , b` such that every distribution
is constant on every piece. Then, given a vector of target
accepting probabilities (pg1 , . . . , pgk , pg1 , . . . , pb`), we can
decide in poly(k, `, t, n) time whether there is a policy that

can achieve these requirements.

We defer the proof of Theorem 6 to the appendix.

7. Conclusion
We have introduced the problem of designing an optimal
classification policy when the samples are selected by a
strategic agent who favors a specific outcome.

We proved several basic structural results. If the principal
aims to maximize expected utility, where she associated
utilities with individual outcomes, then there is no benefit to
randomization (Corollary 1). When distinguishing a single
good from a single bad distribution, if only a single sample
is reported, then the optimal policy is to accept samples
whose good/bad likelihood ratio exceeds some threshold
(Theorem 1). Moreover, in the limit as n→∞, our success
is determined by the highest likelihood ratio in the sample
space (Corollary 2). While a result similar to Theorem 1
holds when m = n (Theorem 2), unfortunately nothing like
it holds for the case 1 < m < n (Proposition 3). Still, we
can design a policy that has good behavior in the limit for
this case (Theorem 3). Moving on to the case of multiple
bad distributions, we show that for m = 1, in the limit our
optimal policy focuses on a single piece (Theorem 4)—but
this is not true with multiple good distributions (Example 7).

We also proved basic computational results. In the discrete,
deterministic case, determining whether a combination of
a given false positive and a given false negative rate can be
obtained is NP-hard even with m = n = 1 (Proposition 2).
However, if we restrict ourselves to piecewise-constant dis-
tributions, then we can obtain an efficient algorithm even
with multiple good and bad distributions (but still m = 1;
Theorem 6). When 1 < m < n and there are multiple bad
distributions, the agent’s problem of best-responding to the
optimal policy becomes NP-hard (Theorem 5).

There are several open questions. Perhaps the most sig-
nificant open questions are in the setting where there is a
single good and a single bad distribution, and 1 < m < n.
We have shown that for optimal policies in this case, it is
not always true that the agent should just report the “best”
samples according to a single criterion. Still, do optimal
policies in this case have some natural structure? Can they
be computed efficiently?
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A. Missing Proofs from Section 3
Proof of Proposition 1. For a randomized policy Πr, consider the following distribution Πd over deterministic policies: Let
Πd = Πd(q) where q ∼ U [0, 1] is a uniformly random number from [0, 1], and Πd(q) is a deterministic policy that accepts
the following reports

Sd(q) = {R | Πr(R) ≥ q}.
For any report R, PrΠd

(Πd(R) = 1) = Prq[R ∈ Sd(q)] = Πr(R). In other words, when the principal runs Πd, any report
R is accepted with probability Πr(R).

Proof of Corollary 1. Take any optimal policy Π?. If Π? is deterministic then we are done, otherwise we decompose Π?

into a distribution Πd over deterministic policies using Proposition 1. The distribution Πd is highly structured: every
deterministic policy in the support of Πd orders the space of reports by Πr(R), and accepts some prefix of this order. The
agent can best respond to all these deterministic policies simultaneously, by submitting the report R with the highest Πr(R).

This reporting strategy is optimal against all deterministic policies in the support of Πd. As a result, if the principal switches
from Π? to Πd, all reports are accepted with the same probability, and therefore, the principal’s expected utility remains the
same. Because the utility of Πd is a weighted average of the utilities of deterministic policies, one of these deterministic
policies must be optimal.

Proof of Proposition 2. Consider an instance of the Knapsack problem: we are given s items with weights w1, . . . , ws and
values v1, . . . , vs, a maximum weight W , and a minimum value V . We are asked whether there is a subset T of {1, . . . , s}
such that

∑
i∈T wi ≤W and

∑
i∈T vi ≥ V . By normalization, w.l.o.g, we may assume

∑s
i=1 wi =

∑s
i=1 vi = 1.

We reduce this to an instance of our problem with n = m = 1 as follows. Let the sample space be {1, . . . , s}. Let g(i) = vi
and b(i) = wi. Let pg = V and pb = W . A deterministic policy will accept a subset T ⊆ {1, . . . , s}. Then, the probability
that we accept g is

∑
i∈T vi and the probability that we accept b is

∑
i∈T wi. Hence, the two instances are equivalent.

B. Proof of Theorem 2
Proof of Theorem 2. Suppose there are two reports R1 ∈ S and R2 /∈ S, both are not on the boundary of S, such that∏

x∈R1

g(x)/b(x) <
∏
x∈R2

g(x)/b(x).

For notational convenience, in this proof we view a report as a sequence of samples (rather than a multiset). We consider
only policies that are permutation-invariant, i.e., if a policy accepts a vector, it also accepts any permutation of that vector.
Because a permutation-invariant vector-based policy is equivalent to a multiset-based policy and m = n, we can assume the
agent always submits her entire data in the order she receives them. It follows that the (conditional) density of a report R is
precisely

∏
x∈R θ(x), where θ ∈ {g, b}.

Suppose all entries of R1 and R2 are distinct.9 Pick neighborhoods N1 of R1 and N2 of R2, such that

Pr
R∼gm

[R ∈ N1] = Pr
R∼gm

[R ∈ N2] > 0,

Pr
R∼bm

[R ∈ N1] > Pr
R∼bm

[R ∈ N2],

and the permutations of all vectors in N1 (resp. N2) do not overlap. Such neighborhoods exist because of continuity of g
and b and our assumption on R1 and R2.

Now consider the permutation closures P1 of N1 (resp. P2 for N2)10. Because the permutations of N do not overlap, we
have Pr[R ∈ P1] = m! · Pr[R ∈ N1]. Therefore,

Pr
R∼gm

[R ∈ P1] = Pr
R∼gm

[R ∈ P2] > 0,

Pr
R∼bm

[R ∈ P1] > Pr
R∼bm

[R ∈ P2].

9By the continuity of g(x)/b(x), we can always pick R′
1 (resp. R′

2) in a small neighborhood of R1 (resp. R2), such that all conditions
specified in the theorem are satisfied and all entries of R′

1 (resp. R′
2) are distinct.

10The permutation closure ofN is the set of all permutations of all vectors inN .
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Note that the policy (S \ P1) ∪ P2 is permutation-invariant, since S, P1 and P2 are all permutation-invariant. A similar
argument as the one used in the proof of Theorem 1 shows that the policy (S \ P1) ∪ P2 is better than S.

C. Proof of Theorem 3
Proof of Theorem 3. Fix any 0 < ε < 1. Because g(x)/b(x) is a continuous function with supreme r, there exists some
S′ ⊆ X such that g(x)/b(x) ≥ (1−ε)r for all x ∈ S′. Let δ′ = g(S′). For sufficiently large n, we can pick a subset S ⊆ S′

such that δ = g(S) = m
√
r

n . Because S ⊆ S′, we know that b(S) ≤ δ/(r(1− ε)). Similar to the proof of Corollary 2, we
will eventually let ε→ 0, so for convenience we continue the proof assuming b(S) = δ/r = m√

rn
.

Consider the policy that accepts the report iff all m samples are in S. We chose the values of g(S) and b(S) so that in
expectation, if the agent takes n samples from g, m

√
r of them will be in S; and for n samples from b, (m/

√
r) of them

will be in S. The rest of the proof uses the (multiplicative) Chernoff bound to show that the actual number of samples in S
concentrations around its expectation.

We first consider the probability of rejecting g. Let Y1, . . . , Yn be binary random variables such that Yi = 1 iff the i-th sample
drawn from g is in S. Observe that Yi are i.i.d. Bernoulli random variable where Pr[Yi = 1] = δ and E [

∑n
i=1 Yi] = mr1/2.

By the Chernoff bound,

Pr[reject g] = Pr

[
n∑
i=1

Yi < m

]
= Pr

[
n∑
i=1

Yi < r−1/2 · E

[∑
i

Yi

]]
≤ exp

(
−1

2

(
1− r−1/2

)2

r1/2m

)
.

Similarly, for n samples drawn from b, let Z1, . . . , Zn be Bernoulli random variable where Zi = 1 iff the i-th sample is in
S. Note that Pr[Zi = 1] = δ/r and E [

∑n
i=1 Zi] = mr−1/2. Again by Chernoff bound,

Pr[accept b] = Pr

[
n∑
i=1

Zi ≥ m

]
= Pr

[
n∑
i=1

Zi ≥ r1/2 · E

[∑
i

Zi

]]
≤ exp

(
− 1

r1/2 + 1

(
r1/2 − 1

)2

r−1/2m

)
.

The theorem follows from taking the maximum of the two upper bounds on the error probability.

D. Proof of Theorem 6
Proof of Theorem 6. We use P1, . . . , Pt to denote the t pieces and assume w.l.o.g. that each piece has measure |Pi| = 1.
Let αθj be the density of distribution θ on Pj . For example, the “cumulative” probability of gi on a subset S ⊆ Pj is αgij |S|.

We will write a mathematical program to decide whether the target accepting probabilities are achievable. The variables xj
denote the fraction of piece j that a policy Π will accept. We can write out the accepting probabilities of Π explicitly, and
put constraints on them. 11

1−
(

1−
∑
j α

gi
j xj

)n
≥ pgi , ∀i ∈ [k],

1−
(

1−
∑
j α

bi
j xj

)n
≤ pbi , ∀i ∈ [`],

0 ≤ xj ≤ 1, ∀j ∈ [t].

Observe the above is equivalent to the following linear program (LP):

1−
∑
j α

gi
j xj ≤ (1− pgi)1/n, ∀i ∈ [k],

1−
∑
j α

bi
j xj ≤ (1− pbi)1/n, ∀i ∈ [`],

0 ≤ xj ≤ 1, j ∈ [t].

The theorem follows immediately from the fact that we can write down this LP and check its feasibility in poly(k, `, t, n)
time.

11we use [n] to denote the set of integers {1, . . . , n}.


