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Abstract
In this paper, we propose the Self-Attention Gen-
erative Adversarial Network (SAGAN) which
allows attention-driven, long-range dependency
modeling for image generation tasks. Traditional
convolutional GANs generate high-resolution de-
tails as a function of only spatially local points
in lower-resolution feature maps. In SAGAN, de-
tails can be generated using cues from all feature
locations. Moreover, the discriminator can check
that highly detailed features in distant portions
of the image are consistent with each other. Fur-
thermore, recent work has shown that generator
conditioning affects GAN performance. Leverag-
ing this insight, we apply spectral normalization
to the GAN generator and find that this improves
training dynamics. The proposed SAGAN per-
forms better than prior work1, boosting the best
published Inception score from 36.8 to 52.52 and
reducing Fréchet Inception distance from 27.62 to
18.65 on the challenging ImageNet dataset. Visu-
alization of the attention layers shows that the gen-
erator leverages neighborhoods that correspond
to object shapes rather than local regions of fixed
shape.

1. Introduction
Image synthesis is an important problem in computer vi-
sion. There has been remarkable progress in this direc-
tion with the emergence of Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014). GANs based on
deep convolutional networks (Radford et al., 2016; Kar-
ras et al., 2018; Zhang et al.) have been especially suc-
cessful. However, by carefully examining the generated
samples from these models, we can observe that convo-
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1Brock et al. (2018), which builds heavily on this work, has
since improved those results substantially.

lutional GANs (Odena et al., 2017; Miyato et al., 2018;
Miyato & Koyama, 2018) have much more difficulty in
modeling some image classes than others when trained on
multi-class datasets (e.g., ImageNet (Russakovsky et al.,
2015)). For example, while the state-of-the-art ImageNet
GAN model (Miyato & Koyama, 2018) excels at synthe-
sizing image classes with few structural constraints (e.g.,
ocean, sky and landscape classes, which are distinguished
more by texture than by geometry), it fails to capture geo-
metric or structural patterns that occur consistently in some
classes (for example, dogs are often drawn with realistic
fur texture but without clearly defined separate feet). One
possible explanation for this is that previous models rely
heavily on convolution to model the dependencies across
different image regions. Since the convolution operator has
a local receptive field, long range dependencies can only be
processed after passing through several convolutional layers.
This could prevent learning about long-term dependencies
for a variety of reasons: a small model may not be able
to represent them, optimization algorithms may have trou-
ble discovering parameter values that carefully coordinate
multiple layers to capture these dependencies, and these
parameterizations may be statistically brittle and prone to
failure when applied to previously unseen inputs. Increasing
the size of the convolution kernels can increase the represen-
tational capacity of the network but doing so also loses the
computational and statistical efficiency obtained by using
local convolutional structure. Self-attention (Cheng et al.,
2016; Parikh et al., 2016; Vaswani et al., 2017), on the
other hand, exhibits a better balance between the ability to
model long-range dependencies and the computational and
statistical efficiency. The self-attention module calculates
response at a position as a weighted sum of the features at
all positions, where the weights – or attention vectors – are
calculated with only a small computational cost.

In this work, we propose Self-Attention Generative Adver-
sarial Networks (SAGANs), which introduce a self-attention
mechanism into convolutional GANs. The self-attention
module is complementary to convolutions and helps with
modeling long range, multi-level dependencies across image
regions. Armed with self-attention, the generator can draw
images in which fine details at every location are carefully
coordinated with fine details in distant portions of the image.
Moreover, the discriminator can also more accurately en-
force complicated geometric constraints on the global image
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Figure 1. The proposed SAGAN generates images by leveraging complementary features in distant portions of the image rather than local
regions of fixed shape to generate consistent objects/scenarios. In each row, the first image shows five representative query locations with
color coded dots. The other five images are attention maps for those query locations, with corresponding color coded arrows summarizing
the most-attended regions.

structure.

In addition to self-attention, we also incorporate recent
insights relating network conditioning to GAN perfor-
mance. The work by (Odena et al., 2018) showed that
well-conditioned generators tend to perform better. We pro-
pose enforcing good conditioning of GAN generators using
the spectral normalization technique that has previously
been applied only to the discriminator (Miyato et al., 2018).

We have conducted extensive experiments on the ImageNet
dataset to validate the effectiveness of the proposed self-
attention mechanism and stabilization techniques. SAGAN
significantly outperforms prior work in image synthe-
sis by boosting the best reported Inception score from
36.8 to 52.52 and reducing Fréchet Inception distance
from 27.62 to 18.65. Visualization of the attention layers
shows that the generator leverages neighborhoods that cor-
respond to object shapes rather than local regions of fixed
shape. Our code is available at https://github.com/
brain-research/self-attention-gan.

2. Related Work

Generative Adversarial Networks. GANs have achieved
great success in various image generation tasks, including
image-to-image translation (Isola et al., 2017; Zhu et al.,
2017; Taigman et al., 2017; Liu & Tuzel, 2016; Xue et al.,
2018; Park et al., 2019), image super-resolution (Ledig
et al., 2017; Snderby et al., 2017) and text-to-image syn-
thesis (Reed et al., 2016b;a; Zhang et al., 2017; Hong
et al., 2018). Despite this success, the training of GANs is
known to be unstable and sensitive to the choices of hyper-
parameters. Several works have attempted to stabilize the
GAN training dynamics and improve the sample diversity by
designing new network architectures (Radford et al., 2016;

Zhang et al., 2017; Karras et al., 2018; 2019), modifying
the learning objectives and dynamics (Arjovsky et al., 2017;
Salimans et al., 2018; Metz et al., 2017; Che et al., 2017;
Zhao et al., 2017; Jolicoeur-Martineau, 2019), adding reg-
ularization methods (Gulrajani et al., 2017; Miyato et al.,
2018) and introducing heuristic tricks (Salimans et al., 2016;
Odena et al., 2017). Recently, Miyato et al. (Miyato et al.,
2018) proposed limiting the spectral norm of the weight
matrices in the discriminator in order to constrain the Lip-
schitz constant of the discriminator function. Combined
with the projection-based discriminator (Miyato & Koyama,
2018), the spectrally normalized model greatly improves
class-conditional image generation on ImageNet.

Attention Models. Recently, attention mechanisms have
become an integral part of models that must capture global
dependencies (Bahdanau et al., 2014; Xu et al., 2015; Yang
et al., 2016; Gregor et al., 2015; Chen et al., 2018). In
particular, self-attention (Cheng et al., 2016; Parikh et al.,
2016), also called intra-attention, calculates the response at
a position in a sequence by attending to all positions within
the same sequence. Vaswani et al. (Vaswani et al., 2017)
demonstrated that machine translation models could achieve
state-of-the-art results by solely using a self-attention model.
Parmar et al. (Parmar et al., 2018) proposed an Image Trans-
former model to add self-attention into an autoregressive
model for image generation. Wang et al. (Wang et al., 2018)
formalized self-attention as a non-local operation to model
the spatial-temporal dependencies in video sequences. In
spite of this progress, self-attention has not yet been ex-
plored in the context of GANs. (AttnGAN (Xu et al., 2018)
uses attention over word embeddings within an input se-
quence, but not self-attention over internal model states).
SAGAN learns to efficiently find global, long-range depen-
dencies within internal representations of images.

https://github.com/brain-research/self-attention-gan
https://github.com/brain-research/self-attention-gan
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Figure 2. The proposed self-attention module for the SAGAN. The ⊗ denotes matrix multiplication. The softmax operation is performed
on each row.

3. Self-Attention Generative Adversarial
Networks

Most GAN-based models (Radford et al., 2016; Salimans
et al., 2016; Karras et al., 2018) for image generation are
built using convolutional layers. Convolution processes the
information in a local neighborhood, thus using convolu-
tional layers alone is computationally inefficient for model-
ing long-range dependencies in images. In this section, we
adapt the non-local model of (Wang et al., 2018) to intro-
duce self-attention to the GAN framework, enabling both
the generator and the discriminator to efficiently model rela-
tionships between widely separated spatial regions. We call
the proposed method Self-Attention Generative Adversarial
Networks (SAGAN) because of its self-attention module
(see Figure 2).

The image features from the previous hidden layer x ∈
RC×N are first transformed into two feature spaces f , g
to calculate the attention, where f(x) = Wfx, g(x) =
Wgx

βj,i =
exp(sij)∑N
i=1 exp(sij)

, where sij = f(xi)
Tg(xj), (1)

and βj,i indicates the extent to which the model attends to
the ith location when synthesizing the jth region. Here, C
is the number of channels and N is the number of feature
locations of features from the previous hidden layer. The out-
put of the attention layer is o = (o1,o2, ...,oj , ...,oN ) ∈
RC×N , where,

oj = v

(
N∑
i=1

βj,ih(xi)

)
, h(xi) = Whxi, v(xi) = Wvxi.

(2)

In the above formulation, Wg ∈ RC̄×C , Wf ∈ RC̄×C ,
Wh ∈ RC̄×C , and Wv ∈ RC×C̄ are the learned weight ma-
trices, which are implemented as 1×1 convolutions. Since

We did not notice any significant performance decrease
when reducing the channel number of C̄ to be C/k, where
k = 1, 2, 4, 8 after few training epochs on ImageNet. For
memory efficiency, we choose k = 8 (i.e., C̄ = C/8) in all
our experiments.

In addition, we further multiply the output of the attention
layer by a scale parameter and add back the input feature
map. Therefore, the final output is given by,

yi = γoi + xi, (3)

where γ is a learnable scalar and it is initialized as 0. In-
troducing the learnable γ allows the network to first rely
on the cues in the local neighborhood – since this is eas-
ier – and then gradually learn to assign more weight to the
non-local evidence. The intuition for why we do this is
straightforward: we want to learn the easy task first and then
progressively increase the complexity of the task. In the
SAGAN, the proposed attention module has been applied to
both the generator and the discriminator, which are trained
in an alternating fashion by minimizing the hinge version
of the adversarial loss (Lim & Ye, 2017; Tran et al., 2017;
Miyato et al., 2018),

LD = − E(x,y)∼pdata
[min(0,−1 +D(x, y))]

− Ez∼pz,y∼pdata
[min(0,−1−D(G(z), y))],

LG = − Ez∼pz,y∼pdata
D(G(z), y),

(4)

4. Techniques to Stabilize the Training of
GANs

We also investigate two techniques to stabilize the training
of GANs on challenging datasets. First, we use spectral
normalization (Miyato et al., 2018) in the generator as well
as in the discriminator. Second, we confirm that the two-
timescale update rule (TTUR) (Heusel et al., 2017) is effec-
tive, and we advocate using it specifically to address slow
learning in regularized discriminators.
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4.1. Spectral normalization for both generator and
discriminator

Miyato et al. (Miyato et al., 2018) originally proposed sta-
bilizing the training of GANs by applying spectral normal-
ization to the discriminator network. Doing so constrains
the Lipschitz constant of the discriminator by restricting
the spectral norm of each layer. Compared to other normal-
ization techniques, spectral normalization does not require
extra hyper-parameter tuning (setting the spectral norm of
all weight layers to 1 consistently performs well in practice).
Moreover, the computational cost is also relatively small.

We argue that the generator can also benefit from spectral
normalization, based on recent evidence that the condition-
ing of the generator is an important causal factor in GANs’
performance (Odena et al., 2018). Spectral normalization in
the generator can prevent the escalation of parameter magni-
tudes and avoid unusual gradients. We find empirically that
spectral normalization of both generator and discriminator
makes it possible to use fewer discriminator updates per
generator update, thus significantly reducing the computa-
tional cost of training. The approach also shows more stable
training behavior.

4.2. Imbalanced learning rate for generator and
discriminator updates

In previous work, regularization of the discriminator (Miy-
ato et al., 2018; Gulrajani et al., 2017) often slows down
the GANs’ learning process. In practice, methods using
regularized discriminators typically require multiple (e.g.,
5) discriminator update steps per generator update step dur-
ing training. Independently, Heusel et al. (Heusel et al.,
2017) have advocated using separate learning rates (TTUR)
for the generator and the discriminator. We propose using
TTUR specifically to compensate for the problem of slow
learning in a regularized discriminator, making it possible
to use fewer discriminator steps per generator step. Using
this approach, we are able to produce better results given
the same wall-clock time.

5. Experiments
To evaluate the proposed methods, we conducted extensive
experiments on the LSVRC2012 (ImageNet) dataset (Rus-
sakovsky et al., 2015). First, in Section 5.1, we present
experiments designed to evaluate the effectiveness of the
two proposed techniques for stabilizing GANs’ training.
Next, the proposed self-attention mechanism is investigated
in Section 5.2. Finally, our SAGAN is compared with state-
of-the-art methods (Odena et al., 2017; Miyato & Koyama,
2018) on the image generation task in Section 5.3.

Evaluation metrics. We choose the Inception score
(IS) (Salimans et al., 2016) and the Fréchet Inception dis-

tance (FID) (Heusel et al., 2017) for quantitative evaluation.
The Inception score (Salimans et al., 2016) computes the KL
divergence between the conditional class distribution and
the marginal class distribution. Higher Inception score indi-
cates better image quality. We include the Inception score
because it is widely used and thus makes it possible to com-
pare our results to previous work. However, it is important
to understand that Inception score has serious limitations—
it is intended primarily to ensure that the model generates
samples that can be confidently recognized as belonging to
a specific class, and that the model generates samples from
many classes, not necessarily to assess realism of details or
intra-class diversity. FID is a more principled and compre-
hensive metric, and has been shown to be more consistent
with human evaluation in assessing the realism and varia-
tion of the generated samples (Heusel et al., 2017). FID
calculates the Wasserstein-2 distance between the gener-
ated images and the real images in the feature space of an
Inception-v3 network. Besides the FID calculated over the
whole data distribution (i.e.., all 1000 classes of images in
ImageNet), we also compute FID between the generated
images and dataset images within each class (called intra
FID (Miyato & Koyama, 2018)). Lower FID and intra FID
values mean closer distances between synthetic and real data
distributions. In all our experiments, 50k samples are ran-
domly generated for each model to compute the Inception
score, FID and intra FID.

Network structures and implementation details. All
the SAGAN models we train are designed to generate
128×128 images. By default, spectral normalization (Miy-
ato et al., 2018) is used for the layers in both the generator
and the discriminator. Similar to (Miyato & Koyama, 2018),
SAGAN uses conditional batch normalization in the gen-
erator and projection in the discriminator. For all models,
we use the Adam optimizer (Kingma & Ba, 2015) with
β1 = 0 and β2 = 0.9 for training. By default, the learning
rate for the discriminator is 0.0004 and the learning rate for
the generator is 0.0001.

5.1. Evaluating the proposed stabilization techniques

In this section, experiments are conducted to evaluate the
effectiveness of the proposed stabilization techniques, i.e.,
applying spectral normalization (SN) to the generator and
utilizing imbalanced learning rates (TTUR). In Figure 3, our
models “SN on G/D” and “SN on G/D+TTUR” are com-
pared with a baseline model, which is implemented based
on the state-of-the-art image generation method (Miyato
et al., 2018). In this baseline model, SN is only utilized
in the discriminator. When we train it with 1:1 balanced
updates for the discriminator (D) and the generator (G), the
training becomes very unstable, as shown in the leftmost
sub-figures of Figure 3. It exhibits mode collapse very early
in training. For example, the top-left sub-figure of Figure 4
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Figure 3. Training curves for the baseline model and our models with the proposed stabilization techniques, “SN on G/D” and two-
timescale learning rates (TTUR). All models are trained with 1:1 balanced updates for G and D.

illustrates some images randomly generated by the baseline
model at the 10k-th iteration. Although in the the original
paper (Miyato et al., 2018) this unstable training behavior
is greatly mitigated by using 5:1 imbalanced updates for
D and G, the ability to be stably trained with 1:1 balanced
updates is desirable for improving the convergence speed
of the model. Thus, using our proposed techniques means
that the model can produce better results given the same
wall-clock time. Given this, there is no need to search for a
suitable update ratio for the generator and discriminator. As
shown in the middle sub-figures of Figure 3, adding SN to
both the generator and the discriminator greatly stabilized
our model “SN on G/D”, even when it was trained with
1:1 balanced updates. However, the quality of samples does
not improve monotonically during training. For example,
the image quality as measured by FID and IS is starting to
drop at the 260k-th iteration. Example images randomly
generated by this model at different iterations can be found
in Figure 4. When we also apply the imbalanced learning
rates to train the discriminator and the generator, the quality
of images generated by our model “SN on G/D+TTUR”
improves monotonically during the whole training process.
As shown in Figure 3 and Figure 4, we do not observe any
significant decrease in sample quality or in the FID or the
Inception score during one million training iterations. Thus,
both quantitative results and qualitative results demonstrate
the effectiveness of the proposed stabilization techniques

for GANs’ training. They also demonstrate that the effect
of the two techniques is at least partly additive. In the rest
of experiments, all models use spectral normalization for
both the generator and discriminator and use the imbalanced
learning rates to train the generator and the discriminator
with 1:1 updates.

5.2. Self-attention mechanism.

To explore the effect of the proposed self-attention mecha-
nism, we build several SAGAN models by adding the self-
attention mechanism to different stages of the generator and
the discriminator. As shown in Table 1, the SAGAN mod-
els with the self-attention mechanism at the middle-to-high
level feature maps (e.g., feat32 and feat64) achieve better
performance than the models with the self-attention mecha-
nism at the low level feature maps (e.g., feat8 and feat16).
For example, the FID of the model “SAGAN, feat8” is im-
proved from 22.98 to 18.28 by “SAGAN, feat32”. The rea-
son is that self-attention receives more evidence and enjoys
more freedom to choose conditions with larger feature maps
(i.e., it is complementary to convolution for large feature
maps), however, it plays a similar role as the local convo-
lution when modeling dependencies for small (e.g., 8×8)
feature maps. It demonstrates that the attention mechanism
gives more power to both the generator and the discrimi-
nator to directly model the long-range dependencies in the
feature maps. In addition, the comparison of our SAGAN
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Baseline: SN on D
(10k, FID=181.84)

SN on G/D
(10k, FID=93.52)

SN on G/D
(160k, FID=33.39)

SN on G/D
(260k, FID=72.41)

SN on G/D+TTUR
(10k, FID=99.04)

SN on G/D+TTUR
(160k, FID=40.96)

SN on G/D+TTUR
(260k, FID=34.62)

SN on G/D+TTUR
(1M, FID=22.96)

Figure 4. 128×128 examples randomly generated by the baseline model and our models “SN on G/D” and “SN on G/D+TTUR”.

Model
no

attention
SAGAN Residual

feat8 feat16 feat32 feat64 feat8 feat16 feat32 feat64
FID 22.96 22.98 22.14 18.28 18.65 42.13 22.40 27.33 28.82
IS 42.87 43.15 45.94 51.43 52.52 23.17 44.49 38.50 38.96

Table 1. Comparison of Self-Attention and Residual block on GANs. These blocks are added into different layers of the network. All
models have been trained for one million iterations, and the best Inception scores (IS) and Fréchet Inception distance (FID) are reported.
featk means adding self-attention to the k×k feature maps.

and the baseline model without attention (2nd column of
Table 1) further shows the effectiveness of the proposed
self-attention mechanism.

Compared with residual blocks with the same number of pa-
rameters, the self-attention blocks also achieve better results.
For example, the training is not stable when we replace the
self-attention block with the residual block in 8×8 feature
maps, which leads to a significant decrease in performance
(e.g., FID increases from 22.98 to 42.13). Even for the cases
when the training goes smoothly, replacing the self-attention
block with the residual block still leads to worse results in
terms of FID and Inception score. (e.g., FID 18.28 vs 27.33
in feature map 32× 32). This comparison demonstrates that
the performance improvement given by using SAGAN is
not simply due to an increase in model depth and capacity.

To better understand what has been learned during the gen-
eration process, we visualize the attention weights of the
generator in SAGAN for different images. Some sample
images with attention are shown in Figure 5 and Figure 1.

We observe that the network learns to allocate attention ac-
cording to similarity of color and texture, rather than just
spatial adjacency. For example, in the top-left cell of Fig-
ure 1, the red point attends mostly to the body of the bird
around it, however, the green point learns to attend to other
side of the image. In this way, the image has a consistent
background (i.e., trees from the left to the right though they
are separated by the bird). Similarly, the blue point allocates
the attention to the whole tail of the bird to make the gener-
ated part coherent. Those long-range dependencies could
not be captured by convolutions with local receptive fields.
We also find that although some query points are quite close
in spatial location, their attention maps can be very differ-
ent, as shown in the bottom-left cell. The red point attends
mostly to the background regions, whereas the blue point,
though adjacent to red point, puts most of the attention on
the foreground object. This also reduces the chance for the
local errors to propagate, since the adjacent position has
the freedom to choose to attend to other distant locations.
These observations further demonstrate that self-attention
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Figure 5. Visualization of attention maps. These images were generated by SAGAN. We visualize the attention maps of the last generator
layer that used attention, since this layer is the closest to the output pixels and is the most straightforward to project into pixel space
and interpret. In each cell, the first image shows three representative query locations with color coded dots. The other three images are
attention maps for those query locations, with corresponding color coded arrows summarizing the most-attended regions. We observe that
the network learns to allocate attention according to similarity of color and texture, rather than just spatial adjacency (see the top-left cell).
We also find that although some query points are quite close in spatial location, their attention maps can be very different, as shown in the
bottom-left cell. As shown in the top-right cell, SAGAN is able to draw dogs with clearly separated legs. The blue query point shows that
attention helps to get the structure of the joint area correct. See the text for more discussion about the properties of learned attention maps.

is complementary to convolutions for image generation in
GANs. As shown in the top-right cell, SAGAN is able to
draw dogs with clearly separated legs. The blue query point
shows that attention helps to get the structure of the joint
area correct.

5.3. Comparison with the state-of-the-art

Our SAGAN is also compared with the state-of-the-art GAN
models (Odena et al., 2017; Miyato & Koyama, 2018) for
class conditional image generation on ImageNet. As shown
in Table 2, our proposed SAGAN achieves the best Incep-
tion score, intra FID and FID. The proposed SAGAN sig-
nificantly improves the best published Inception score from
36.8 to 52.52. The lower FID (18.65) and intra FID (83.7)
achieved by the SAGAN also indicates that the SAGAN
can better approximate the original image distribution by
using the self-attention module to model the long-range
dependencies between image regions.

Figure 6 shows some comparison results and generated-
images for representative classes of ImageNet. We observe
that our SAGAN achieves much better performance (i.e.,
lower intra FID) than the state-of-the-art GAN model (Miy-

ato & Koyama, 2018) for synthesizing image classes with
complex geometric or structural patterns, such as goldfish
and Saint Bernard. For classes with few structural con-
straints (e.g., valley, stone wall and coral fungus, which
are distinguished more by texture than by geometry), our
SAGAN shows less superiority compared with the baseline
model (Miyato & Koyama, 2018). Again, the reason is
that the self-attention in SAGAN is complementary to the
convolution for capturing long-range, global-level depen-
dencies occurring consistently in geometric or structural
patterns, but plays a similar role as the local convolution
when modeling dependencies for simple texture.

6. Conclusion
In this paper, we proposed Self-Attention Generative Ad-
versarial Networks (SAGANs), which incorporate a self-
attention mechanism into the GAN framework. The self-
attention module is effective in modeling long-range de-
pendencies. In addition, we show that spectral normaliza-
tion applied to the generator stabilizes GAN training and
that TTUR speeds up training of regularized discrimina-
tors. SAGAN achieves the state-of-the-art performance on
class-conditional image generation on ImageNet.
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Model Inception Score Intra FID FID
AC-GAN (Odena et al., 2017) 28.5 260.0 /

SNGAN-projection (Miyato & Koyama, 2018) 36.8 92.4 27.62∗

SAGAN 52.52 83.7 18.65

Table 2. Comparison of the proposed SAGAN with state-of-the-art GAN models (Odena et al., 2017; Miyato & Koyama, 2018) for class
conditional image generation on ImageNet. FID of SNGAN-projection is calculated from officially released weights.

goldfish
(44.4, 58.1)

indigo
bunting

(53.0, 66.8)

redshank
(48.9, 60.1)

saint
bernard

(35.7, 55.3)

tiger
cat

(88.1, 90.2)

stone
wall

(57.5, 49.3)

geyser
(21.6, 19.5)

valley
(39.7, 26.0)

coral
fungus

(38.0, 37.2)

Figure 6. 128x128 example images generated by SAGAN for different classes. Each row shows examples from one class. In the leftmost
column, the intra FID of our SAGAN (left) and the state-of-the-art method (Miyato & Koyama, 2018)) (right) are listed.
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