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Abstract
In this supplementary material, we give the formu-
lation of our incremental randomized sketching,
the detailed proofs of the lemmas and theorems
in the section “Theoretical Analysis”, and more
experimental results. Our main theoretical results
include:

• The inner product preserving property
(Lemma 2).
• The matrix product preserving property

(Lemma 3).
• The low-rank approximation property (The-

orem 1).
• The regret bound for online kernel learning

(Theorem 2).

1. Formulation of Incremental Randomized
Sketching

In this section, we construct the incremental randomized
sketches of the kernel matrix, formulate the incremental
maintenance for the incremental randomized sketches, and
build the time-varying explicit feature mapping.

In the online setting, at round t + 1, a new example xt+1

arrives and the kernel matrixK(t+1) can be represented as
a bordered matrix as follows:

K(t+1) =

[
K(t) ψ(t+1)

ψ(t+1)ᵀ ξ(t+1)

]
∈ R(t+1)×(t+1),

where ξ(t+1) = κ(xt+1,xt+1) and

ψ(t+1) = [κ(xt+1,x1), κ(xt+1,x2), . . . , κ(xt+1,xt)]
ᵀ
.

First, we approximate the kernel matrix incrementally. Let
S

(t+1)
p ∈ R(t+1)×sp be an SJLT and S(t+1)

m ∈ R(t+1)×sm
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be a sub-sampling matrix. We use S(t+1)
p and S(t+1)

m for
reducing the complexity of the problem (2) and the size
of the approximate kernel matrix, respectively, and then
formulate the incremental randomized sketches ofK(t+1)

as follows:

Φ(t+1)
pm = S(t+1)ᵀ

p C(t+1)
m and Φ(t+1)

pp = S(t+1)ᵀ
p C(t+1)

p ,

where

C(t+1)
p = K(t+1)S(t+1)

p and C(t+1)
m = K(t+1)S(t+1)

m .

ThenK(t+1) can be approximated by

K
(t+1)
sk = C(t+1)

m F
(t+1)
sk C(t+1)ᵀ

m ≈K(t+1), (1)

where F (t+1)
sk ∈ Rsm×sm is obtained by solving the follow-

ing sketched matrix approximation problem at round t+ 1

F
(t+1)
sk = arg min

F

∥∥∥S(t+1)ᵀ
p E

(t+1)
F S(t+1)

p

∥∥∥2
F

=
(
Φ(t+1)

pm

)†
Φ(t+1)

pp

(
Φ(t+1)ᵀ

pm

)†
,

(2)

where E(t+1)
F is the approximation error at round t+ 1

E
(t+1)
F = C(t+1)

m FC(t+1)ᵀ
m −K(t+1).

We partition the sketch matrices into block matrices as

S(t+1)
p =

[
S(t)ᵀ
p , s(t+1)

p

]ᵀ
, S(t+1)

m =
[
S(t)ᵀ
m , s(t+1)

m

]ᵀ
,

where s(t+1)
p ∈ Rsp contains d nonzero entries that are

determined by d different hash mappings in SJLT. Then
the two incremental randomized sketches of the kernel ma-
trix K(t+1) can be computed incrementally by by rank-1
modifications as follows:

1) Sketch Φ
(t+1)
pm
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The sketch Φ
(t+1)
pm can be maintained as

Φ(t+1)
pm

= S(t+1)ᵀ
p C(t+1)

m

= S(t+1)ᵀ
p K(t+1)S(t+1)

m

= [S(t)ᵀ
p , s(t+1)

p ]

[
K(t) ψ(t+1)

ψ(t+1)ᵀ ξ(t+1)

][
S

(t)
m

s
(t+1)ᵀ
m

]

=

[
S

(t)ᵀ
p K(t) + s

(t+1)
p ψ(t+1)ᵀ

S
(t)ᵀ
p ψ(t+1) + ξ(t+1)s

(t+1)
p

]ᵀ [
S

(t)
m

s
(t+1)ᵀ
m

]
= S(t)ᵀ

p K(t)S(t)
m +R(t+1)

pm +R(t+1)ᵀ
mp + T (t+1)

pm

= Φ(t)
pm +R(t+1)

pm +R(t+1)ᵀ
mp + T (t+1)

pm ,

where the modifications are performed using the follow-
ing three rank-1 matrices

R(t+1)
pm = s(t+1)

p ψ(t+1)ᵀS(t)
m ,

R(t+1)
mp = s(t+1)

m ψ(t+1)ᵀS(t)
p ,

T (t+1)
pm = ξ(t+1)s(t+1)

p s(t+1)ᵀ
m .

2) Sketch Φ
(t+1)
pp

For sketch Φ
(t+1)
pp , we have

Φ(t+1)
pp

= S(t+1)ᵀ
p C(t+1)

p

= S(t+1)ᵀ
p K(t+1)S(t+1)

p

= [S(t)ᵀ
p , s(t+1)

p ]

[
K(t) ψ(t+1)

ψ(t+1)ᵀ ξ(t+1)

][
S

(t)
p

s
(t+1)ᵀ
p

]

=

[
S

(t)ᵀ
p K(t) + s

(t+1)
p ψ(t+1)ᵀ

S
(t)ᵀ
p ψ(t+1) + ξ(t+1)s

(t+1)
p

]ᵀ [
S

(t)
p

s
(t+1)ᵀ
p

]
= S(t)ᵀ

p K(t)S(t)
p +R(t+1)

pp +R(t+1)ᵀ
pp + T (t+1)

pp ,

= Φ(t)
pp +R(t+1)

pp +R(t+1)ᵀ
pp + T (t+1)

pp ,

where the modifications are done by the following two
rank-1 matrices

R(t+1)
pp = s(t+1)

p ψ(t+1)ᵀS(t)
p ,

T (t+1)
pp = ξ(t+1)s(t+1)

p s(t+1)ᵀ
p .

Finally, we construct the time-varying explicit feature map-
ping using the incremental randomized sketches. We decom-
pose Φ

(t+1)
pp via the rank-k singular value decomposition

(SVD) as follows:

Φ(t+1)
pp ≈ V (t+1)Σ(t+1)V (t+1)ᵀ,

where V (t+1) ∈ Rsp×k, Σ(t+1) ∈ Rk×k and rank k ≤ sp.

Low-Rank 
Approximation Property

Inner Product 
Preserving Property

Matrix Product 
Preserving Property

Regret Bound

Figure 1. The dependence structure of our theoretical results.

Then F (t+1)
sk is approximated by

F
(t+1)
sk ≈ Qt+1Q

ᵀ
t+1,

where

Qt+1 =
(
Φ(t+1)

pm

)†
V (t+1)

(
Σ(t+1)

) 1
2

,

which yields the approximate kernel matrix from (1)

K
(t+1)
sk ≈

(
C(t+1)

m Qt+1

)(
C(t+1)

m Qt+1

)ᵀ
.

Thus, the kernel function value between the i-th example xi
and the j-th example xj can be approximated by

κ(xi,xj)

≈
([
C(t+1)

m

]
i∗
Qt+1

)([
C(t+1)

m

]
j∗
Qt+1

)ᵀ

,

and the explicit feature mapping can be updated at round
t+ 1 by

φt+2(·) = ([κ(·, x̃1), . . . , κ(·, x̃sm)]Qt+1)
ᵀ
,

where {x̃i}smi=1 are the sampled examples obtained by
S

(t+1)
m .

2. Detailed Proofs in Theoretical Analysis
Figure 1 describes the dependence structure of our theo-
retical results. For convenience, in this section, we de-
note S(T )

p , S
(T )
m , C

(T )
m , F

(T )
sk and K(T ) by Sp, Sm, Cm,

Fsk and K, respectively. We first give some extra nota-
tions. Let Um ∈ RT×sm be the first sm left singular vectors
of Cm ∈ RT×sm . We denote a matrix with orthonormal
columns by U⊥m ∈ RT×(T−sm) which satisfies

UmU
ᵀ
m +U⊥m (U⊥m )ᵀ = IT and Uᵀ

mU
⊥
m = O.
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Then,

U⊥m (U⊥m )ᵀK = K −UmU
ᵀ
mK = K −CmC

†
mK.

The Count Sketch matrix has been used as a specific random
projection technique due to the unbiasedness and efficiency
while approximating the inner product of two vectors.

Lemma 1 (Lemma 2 from (Pham & Pagh, 2013)). Given
two points x,y ∈ RT , we denote by S ∈ RT×s the Count
Sketch matrix. Then,

E [〈Sᵀx,Sᵀy〉] = 〈x,y〉,

Var[〈Sᵀx,Sᵀy〉] ≤ 1

s

(
〈x,y〉2 + ‖x‖22‖y‖22

)
.

We first provide the analysis of the expectation and vari-
ance while approximating the inner product using Sp in the
proposed incremental randomized sketches.

Lemma 2 (Inner Product Preserving Property). Given two
points x,y ∈ RT , we denote by S ∈ RT×s the sketch
matrix Sp in the proposed incremental randomized sketches.
Then,

E [〈Sᵀx,Sᵀy〉] = 〈x,y〉,

Var[〈Sᵀx,Sᵀy〉] ≤ 1

s

(
〈x,y〉2 + ‖x‖22‖y‖22

)
.

Proof. Since

Sᵀx = [Sᵀ
1x; · · · ;Sᵀ

dx],

we have

〈Sᵀx,Sᵀy〉
= [(Sᵀ

1x)ᵀ, . . . , (Sᵀ
dx)ᵀ][Sᵀ

1y; · · · ;Sᵀ
dy]

=

d∑
i=1

〈Sᵀ
i x,S

ᵀ
i y〉.

(3)

Let S̃i =
√
dSi that is a Count Sketch matrix. By (3) and

Lemma 1, we have

E[〈Sᵀx,Sᵀy〉] =

d∑
i=1

E[〈Siᵀx,Siᵀy〉]

=
1

d

d∑
i=1

E[〈S̃ᵀ
i x, S̃

ᵀ
i y〉] = 〈x,y〉.

Similarly, we have

Var[〈Sᵀx,Sᵀy〉] =
1

d2

d∑
i=1

Var[〈S̃ᵀ
i x, S̃

ᵀ
i y〉]

and then the result for the variance holds by Lemma 1.

Then we demonstrate the unbiasedness of Sp while approx-
imating matrix products, which shows that our sketched
kernel matrix approximation problem is an unbiased esti-
mate of the modified Nyström kernel matrix approximation
problem.

Lemma 3 (Matrix Product Preserving Property). LetA ∈
RT×m, B ∈ Rp×T . If S ∈ RT×s is the sketch matrix Sp

in the proposed incremental randomized sketches, then,

1) E
[
‖SᵀA‖2F

]
= ‖A‖2F, Var

[
‖SᵀA‖2F

]
≤ 2

s
‖A‖4F.

2) E [BSSᵀA] = BA.

3) E
[
‖BA−BSSᵀA‖2F

]
≤ 2

s
‖B‖2F‖A‖2F.

Proof. 1) It is obvious that

E
[
‖SᵀA‖2F

]
= E

[
m∑
i=1

Xi

]
=

m∑
i=1

E [Xi] ,

where Xi = ‖Sᵀ[A]∗i‖22.

Using Lemma 2, we have

E [Xi] = ‖[A]∗i‖22 ,

and then

E
[
‖SᵀA‖2F

]
=

m∑
i=1

‖[A]∗i‖22 = ‖A‖2F.

We can observe that

E
[
‖SᵀA‖4F

]
= E

( m∑
i=1

Xi

)2


= E

 m∑
i,j=1

XiXj


=

m∑
i,j=1

E [XiXj ] .

(4)

By Lemma 2, we obtain

Var [Xi] ≤
2

s
‖[A]∗i‖42 ,

and thus

E [XiXj ] = Cov [Xi, Xj ] + E [Xi] E [Xj ]

≤
√

Var [Xi] Var [Xj ] + E [Xi] E [Xj ]

=
s+ 2

s
‖[A]∗i‖22 ‖[A]∗j‖22 .

(5)
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From (4) and (5), we have

E
[
‖SᵀA‖4F

]
≤ s+ 2

s

m∑
i,j=1

(
‖[A]∗i‖22 ‖[A]∗j‖22

)
=
s+ 2

s
‖A‖4F.

Consequently,

Var
[
‖SᵀA‖2F

]
= E

[
‖SᵀA‖4F

]
− E2

[
‖SᵀA‖2F

]
≤ s+ 2

s
‖A‖4F − ‖A‖4F

=
2

s
‖A‖4F.

2) Since

[BSSᵀA]ij = [B]ᵀi∗SS
ᵀ[A]∗j = 〈Sᵀ[B]i∗,S

ᵀ[A]∗j〉,

by Lemma 2 we can obtain

E [[BSSᵀA]ij ] = 〈[B]i∗, [A]∗j〉 = [BA]ij . (6)

3) Let Yij = [BA − BSSᵀA]ij . By (6) we have
E [Yij ] = 0. Then,

E
[
Y 2
ij

]
= Var [Yij ] + E2 [Yij ] = Var [Yij ] .

By Lemma 2 and the Cauchy-Schwarz inequality we
obtain

E
[
Y 2
ij

]
= Var [Yij ]

= Var [[BSSᵀA]ij ]

= Var [〈Sᵀ[B]i∗,S
ᵀ[A]∗j〉]

≤ 1

s

(
〈[B]i∗, [A]∗j〉2 + ‖[B]i∗‖22‖[A]∗j‖22

)
≤ 2

s
‖[B]i∗‖22‖[A]∗j‖22.

Thus

E

∑
ij

Y 2
ij

 =
∑
ij

E
[
Y 2
ij

]
≤ 2

s
‖B‖2F‖A‖2F.

The following lemma provides that all singular values of
SᵀU lie in [1− ε0, 1 + ε0] with high probability.

Lemma 4 ((Nelson & Nguyên, 2013)). Let U ∈ RT×c be
a matrix with orthonormal columns, S ∈ RT×s the sketch
matrix Sp in the proposed incremental randomized sketches.
Set d = Θ(ε−10 log3(cδ−10 )) for S. For ε0 ∈ (0, 1), with
probability at least 1− δ0 all singular values of SᵀU

σi(S
ᵀU) = 1± ε0

as long as

s ≥
c log8

(
cδ−10

)
ε20

.

Further, this holds if the hash function h and σ defining the
S is Ω

(
log(cδ−10 )

)
-wise independent.

Then we demonstrate that the proposed incremental ran-
domized sketching is nearly as accurate as the modified
Nyström for kernel matrix approximation, which shows that
the proposed incremental randomized sketching achieves a
relative-error bound for kernel matrix approximation, for the
modified Nyström is a 1 + ε′ relative-error approximation
with respect to the best rank-k approximation.

Theorem 1 (Low-Rank Approximation Property). LetK ∈
RT×T be a symmetric matrix, ε0 ∈ (0, 1). Fsk ∈ Rsm×sm ,
Cm ∈ RT×sm are matrices defined in (1). If Sp ∈ RT×sp
is the sketch matrix in the proposed incremental random-
ized sketches with d = Θ

(
log3(sm)

)
, let τ = sm/sp and

assume

sp = Ω
(
sm polylog

(
smδ

−1
0

)
/ε20
)
,

then with probability at least 1− δ0 all singular values of
Sᵀ
pUm are 1± ε0, and with probability at least 1− δ

‖CmFskC
ᵀ
m −K‖2F ≤ (1 + ε)‖CmFmodC

ᵀ
m −K‖2F,

where

√
ε = 2τ

√
T

δ1δ2
+

√
2τ

δ2

(
ε20 + 2ε0 + 2

)
,

δi is the failure probability of matrix product preserving as

Pr

{
‖BiAi −BiSpSp

ᵀAi‖2F
‖Bi‖2F‖Ai‖2F

>
2

δisp

}
≤ δi, i = 1, 2,

A1 = Um, B1 = IT , A2 = U⊥m (Um
⊥)

ᵀ
K, B2 = Uᵀ

m,
and δ = δ0 + δ1 + δ2.

Proof. Let A ∈ RT×m, B ∈ Rp×T . By 3) in Lemma 3
and the Markov’s inequality, with probability at least 1− δ̂

‖BA−BSpSp
ᵀA‖2F ≤

2

δ̂sp
‖B‖2F‖A‖2F. (7)

From (7) with probability at least 1− δ1

‖ITSpS
ᵀ
pUm‖2 ≤ ‖ITSpS

ᵀ
pUm − ITUm‖2 + ‖ITUm‖2

≤ ‖ITSpS
ᵀ
pUm − ITUm‖F + 1

≤

√
2

δ1sp
‖IT ‖F‖Um‖F + 1

=

√
2Tsm
δ1sp

+ 1,
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and with probability at least 1− δ2

‖(Sᵀ
pUm)ᵀSᵀ

pU
⊥
m (U⊥m )

ᵀ
K‖F

= ‖(Sᵀ
pUm)ᵀSᵀ

pU
⊥
m (Um

⊥)
ᵀ
K −Uᵀ

mU
⊥
m (Um

⊥)
ᵀ
K‖F

≤

√
2

δ2sp
‖Um‖F‖U⊥m (Um

⊥)
ᵀ
K‖F

=

√
2sm
δ2sp
‖U⊥m (Um

⊥)
ᵀ
K‖F.

Assume sp ≥ sm log8(smδ
−1
0 )/ε20. By Lemma 4, with

probability at least 1− δ0

σ2
max(SpUm) ≤ (1 + ε0)2.

Let E = CmFmodC
ᵀ
m −K. According to the above dis-

cussion, by Lemma 17 from (Wang et al., 2015), with prob-
ability at least 1− (δ0 + δ1 + δ2)

‖(Sᵀ
pUm)ᵀSᵀ

pESp(Sᵀ
pUm)‖F

≤
(
‖ITSpS

ᵀ
pUm‖2 + σ2

max(SpUm)
)

‖(Sᵀ
pUm)ᵀSᵀ

pU
⊥
m (U⊥m )

ᵀ
K‖F

≤
√
ε‖U⊥m (Um

⊥)
ᵀ
K‖F,

where

√
ε = 2τ

√
T

δ1δ2
+

√
2τ

δ2

(
ε20 + 2ε0 + 2

)
.

It finally follows from Lemma 17 in (Wang et al., 2015) that
with probability at least 1− (δ0 + δ1 + δ2)

‖CmFskC
ᵀ
m −K‖2F

≤ ‖E‖2F + σ−8min(SpUm)‖(Sᵀ
pUm)ᵀSᵀ

pESp(Sᵀ
pUm)‖2F

≤ ‖E‖2F + ε‖U⊥m (Um
⊥)

ᵀ
K‖2F

= ‖E‖2F + ε‖K −CmC
†
mK‖2F

≤ (1 + ε)‖E‖2F.

Denote the hypothesis at round t using the updated explicit
feature mapping φt+1(·) by

f̄t(xt) = 〈w̄t,φt+1(xt)〉 . (8)

We can obtain w̄t by setting f̄t(xt) = ft(xt), which yields

w̄ᵀ
t = ft(xt)φt+1(xt)

† = ft(xt)
φt+1(xt)

ᵀ

‖φt+1(xt)‖22
.

Then we update the hypothesis f̄t(·) = 〈w̄t,φt+1(·)〉 in (8)
as follows:

wt+1 = w̄t − η∇Lt(w̄t), (9)

where

`t(w̄t) = `t(f̄t) = `(f̄t(xt), yt)

and

Lt(w̄t) = `t(w̄t) +
λ

2
‖w̄t‖22.

Let KB,ρ ∈ R(B+b(T−B)/ρc)×(B+b(T−B)/ρc) be the inter-
section matrix of K which is constructed by B + b(T −
B)/ρc examples, µ(KB,ρ) be the coherence ofKB,ρ as

µ(KB,ρ) =
B + b(T −B)/ρc

rank(KB,ρ)
max
i
‖(UB,ρ)i,:‖22 ,

where UB,ρ is the singular vector matrix of KB,ρ. We
finally obtain the following regret bound for online kernel
learning1.
Theorem 2 (Regret Bound). Let K ∈ RT×T be a kernel
matrix with κ(xi,xj) ≤ 1, ε0 ∈ (0, 1), δi (i = 0, 1, 2)
be the failure probabilities defined in Theorem 1, and k
(k ≤ sp) be the rank in the incremental randomized sketches.
Set the update cycle ρ = bθ(T −B)c, θ ∈ (0, 1),

d = Θ(log3(sm)) and τ = sm/sp,

for the sketch matrixSp ∈ RT×sp in the proposed incremen-
tal randomized sketches. Assume `t is a convex loss function
that is Lipschitz continuous with the Lipschitz constant L,
and the eigenvalues of K decay polynomially with decay
rate β > 1. Let wt, t ∈ [T ] be the sequence of hypotheses
generated by (9), satisfying

|ft(xt)| = |〈wt,φt(xt)〉| ≤ Cf , t ∈ [T ].

For the optimal hypothesis f∗ that minimizes

L(f) =
λ

2
‖f‖2Hκ

+
1

T

T∑
t=1

`t(f),

in the original reproducing kernel Hilbert spaceHκ, if

sp = Ω
(
sm polylog(smδ

−1
0 )/ε20

)
,

sm = Ω(µ(KB,ρ)k log k),

then with probability at least 1− δ
T∑
t=1

(Lt(wt)− Lt(f∗))

≤
C2
f + ‖w∗Z‖22

2θη
+
ηL2T

2
+

1

λ(β − 1)

(
3

2
− B + 1/θ

T

)
+

√
1 + ε

λ
O(
√
B),

1In the theoretical analysis, we assume T0 = B and omit
KOGD used at the first stage that enjoys a O(

√
B) regret bound.
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where δ = δ0 + δ1 + δ2,w∗t is the optimal hypothesis on the
incremental randomized sketches over the first t instances
and Z = arg maxi∈[T ] ‖w∗i ‖2,

√
ε = 2τ

√
T

δ1δ2
+

√
2τ

δ2

(
ε20 + 2ε0 + 2

)
.

Proof. By Theorem 2 in (Yang et al., 2012), we have

L(w∗)− L(f∗) ≤ 1

2Tλ
‖K(T )

sk −K‖2,

where w∗ is the optimal hypothesis on the incremental ran-
domized sketches in hindsight, which yields

T∑
t=1

(Lt(w∗)− Lt(f∗))

≤ 1

2λ

∥∥∥∥̂[K(T )
sk ]

B,ρ
−K

∥∥∥∥
2

≤ 1

2λ

(∥∥∥∥̂[K(T )
sk ]

B,ρ
− K̂B,ρ

∥∥∥∥
2

+
∥∥∥K̂B,ρ −K

∥∥∥
2

)
=

1

2λ

(∥∥∥[K
(T )
sk ]B,ρ −KB,ρ

∥∥∥
2

+
∥∥∥K̂B,ρ −K

∥∥∥
2

)
(10)

where KB,ρ ∈ R(B+b(T−B)/ρc)×(B+b(T−B)/ρc) is the in-
tersection matrix ofK which is constructed by B + b(T −
B)/ρc examples, [K

(T )
sk ]B,ρ is the approximate matrix for

KB,ρ using the proposed incremental randomized sketch-
ing with rank parameter k, O is a zero matrix of size
(T −B − b(T −B)/ρc)× (T −B − b(T −B)/ρc) and

K̂B,ρ = diag {KB,ρ, O} ∈ RT×T ,
̂
[K

(T )
sk ]

B,ρ
= diag

{
[K

(T )
sk ]B,ρ, O

}
∈ RT×T .

Since the eigenvalues of the kernel matrix decay polyno-
mially with decay rate β > 1, the following bound holds

‖K̂B,ρ −K‖2

≤ T −B − b(T −B)/ρc
T

T∑
i=1

i−β

≤ T −B − b(T −B)/ρc
T

∫ T

1

i−βdi

=
T −B − b(T −B)/ρc

T

1

β − 1

(
1− 1

T β−1

)
≤ 1

β − 1

(
1− B + b(T −B)/ρc

T

)
.

(11)

From Theorem 1, with probability at least 1− δ,∥∥∥[K
(T )
sk ]B,ρ −KB,ρ

∥∥∥
2

≤
√

1 + ε ‖[CmFmodC
ᵀ
m]B,ρ −KB,ρ‖F,

(12)

where [CmFmodC
ᵀ
m]B,ρ is the approximate matrix for

KB,ρ using the modified Nyström approach with rank pa-
rameter k.

Denote the best rank-k approximation ofA by (A)k. Since
the eigenvalues of K decay polynomially with decay rate
β > 1, there exists β > 1 such that λi(K) = O(i−β),
which yields

‖KB,ρ − (KB,ρ)k‖F
=
√
B + b(T −B)/ρc − k · (k + 1)−β

= O(
√
B).

(13)

Given ε′ ∈ (0, 1), when sm = Ω(µ(KB,ρ)k log k), the
following bound holds (Wang et al., 2016)

‖[CmFmodC
ᵀ
m]B,ρ −KB,ρ‖F

≤
√

1 + ε′ ‖KB,ρ − (KB,ρ)k‖F,
(14)

where µ(KB,ρ) is the coherence ofKB,ρ. Combining (12),
(13) with (14), we obtain∥∥∥[K

(T )
sk ]B,ρ −KB,ρ

∥∥∥
2
≤
√

1 + ε O(
√
B). (15)

Substituting (11) and (15) into (10), we have

T∑
t=1

(Lt(w∗)− Lt(f∗))

≤ 1

2λ(β − 1)

(
1− B + b(T −B)/ρc

T

)
+

√
1 + ε

2λ
O(
√
B).

(16)

Then we analyze the regret caused by hypothesis updating
on the incremental randomized sketches. We first decom-
pose Lt(wt)− Lt(w∗) into two terms as follows:

Lt(wt)− Lt(w∗)
= Lt(wt)− Lt(w∗t )︸ ︷︷ ︸

Optimization error

+Lt(w∗t )− Lt(w∗)︸ ︷︷ ︸
Estimation error

,

where f∗t (·) = 〈w∗t ,φt(·)〉 is the optimal hypothesis on the
incremental randomized sketches over the first t instances,
andw∗ is the optimal hypothesis on the incremental random-
ized sketches in hindsight. The optimization error measures
the discrepancy between the hypothesis generated by our
sketched online gradient descent and the optimal hypothesis
on the incremental randomized sketches at each round, and
the estimation error measures the difference between the
optimal hypotheses on the incremental randomized sketches
over the first t instances and all the T instances respectively.
For the optimization error, by the convexity of loss function,
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we have

T∑
t=1

(Lt(wt)− Lt(w∗t ))

≤
b(T−B)/ρc∑

i=1

‖w̄B+(i−1)ρ −w∗B+iρ‖22
2η

+
ηL2T

2

≤
b(T−B)/ρc∑

i=1

‖w̄B+(i−1)ρ‖22 + ‖w∗B+iρ‖22
2η

+
ηL2T

2

≤
b(T−B)/ρc∑

i=1

|fB+(i−1)ρ(xB+(i−1)ρ)|2 + ‖w∗B+iρ‖22
2η

+

ηL2T

2

≤
⌊
T −B
ρ

⌋
C2
f + ‖w∗Z‖22

2η
+
ηL2T

2
, (17)

where w̄B = wT0+1, Z = arg maxi∈[T ] ‖w∗i ‖2 and
|ft(xt)| ≤ Cf , t ∈ [T ]. For the estimation error, we obtain
the following upper bound

T∑
t=1

(Lt(w∗t )− Lt(w∗))

≤ 1

2λ

∥∥∥K(T0)
sk −K(T )

sk

∥∥∥
2

≤ 1

2λ

(∥∥∥K(T0)
sk −K(T0)

∥∥∥
2

+
∥∥∥K(T0) −K

∥∥∥
2

+∥∥∥K(T )
sk −K

∥∥∥
2

)
≤ 1

2λ

[√
1 + ε̃ O(

√
B) +

1

β − 1

(
1− B

T

)
+∥∥∥K(T )

sk −K
∥∥∥
2

]
.

(18)

Finally, the three inequalities (16), (17) and (18) combined
give the following bound

T∑
t=1

(Lt(wt)− Lt(f∗))

≤
⌊
T −B
ρ

⌋
C2
f + ‖w∗Z‖22

2η
+
ηL2T

2
+

1

λ(β − 1)

(
3

2
− B + b(T −B)/ρc

T

)
+

√
1 + ε

λ
O(
√
B).

3. More Experimental Results
To further analyze the convergence of the compared algo-
rithms and SkeGD, we give the convergence curves in terms

of the mistake rates on a9a and cod-rna. As the re-
sults shown in Figure 2, the mistake rates of our SkeGD
converge much faster than the other online kernel learning
algorithms, which demonstrates the efficiency and effec-
tiveness of SkeGD. In Figure 2 (b), the growing mistake
rates of the compared algorithms indicate that the buffer
of support vectors cannot retain the key information with
a small budget. Whereas SkeGD has a decreasing mistake
rate, which demonstrates the effectiveness of the proposed
incremental randomized sketches.
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Figure 2. The average mistake rates of RBP, Forgetron, Projectron,
Projectron++, BPA-S, BOGD, NOGD and our SkeGD.

Table 1 shows the experimental results on the adversarial
datasets spambase-1 and spambase-2. As the same
adversarial settings in german-1 and german-1, we con-
struct these two datasets using the benchmark spambase,
and set kb = 500, kr = 10 in spambase-1 and kb = 500,
kr = 20 in spambase-2. From the results, we can ob-
serve that our SkeGD achieves the highest accuracy in ad-
versarial environments, and is much more efficient than the
second-order algorithm PROS-N-KONS, while having a
comparable efficiency to the other first-order online kernel
learning algorithms. Besides, an appropriate update cycle
results in better performances with respect to the accuracy,
which conforms to Remark 2.

Table 1. Comparison of online kernel learning algorithms in adver-
sarial environments w.r.t. the mistake rates (%) and the running
time (s), where ρ = bθ(T −B)c is the update cycle of SkeGD.

Algorithm
spambase-1 spambase-2

Mistake rate Time Mistake rate Time
FOGD 39.793± 0.140 0.235 29.257± 0.186 0.478
NOGD 44.714± 0.001 0.468 40.586± 0.002 0.938
PROS-N-KONS 35.953± 0.423 265.26 26.800± 0.802 696.39
SkeGD (θ = 0.1) 29.034± 1.584 0.344 16.879± 3.779 0.646
SkeGD (θ = 0.01) 25.367± 1.134 0.494 14.700± 0.338 0.743
SkeGD (θ = 0.005) 25.170± 0.847 0.682 14.733± 2.562 0.848
SkeGD (θ = 0.001) 25.626± 0.966 2.337 14.845± 1.766 2.890
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