Theoretically Principled Trade-off between Robustness and Accuracy

Hongyang Zhang 1 2 Yaodong Yu 3 Jiantao Jiao 4 Eric P. Xing 1 5 Laurent El Ghaoui 4 Michael I. Jordan 4

Abstract

We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by 11.41% in terms of mean ℓ_2 perturbation distance.

1. Introduction

In response to the vulnerability of deep neural networks to small perturbations around input data (Szegedy et al., 2013), adversarial defenses have been an imperative object of study in machine learning (Huang et al., 2017), computer vision (Song et al., 2018; Xie et al., 2017; Meng & Chen, 2017), natural language processing (Jia & Liang, 2017), and many other domains. In machine learning, study of adversarial defenses has led to significant advances in understanding and defending against adversarial threat (He et al., 2017). In computer vision and natural language processing, adversarial defenses serve as indispensable building blocks for a range of security-critical systems and applications, such as autonomous cars and speech recognition authorization. The problem of adversarial defenses can be stated as that of learning a classifier with high test accuracy on both natural and adversarial examples. The adversarial example for a given labeled data (x, y) is a data point x' that causes a classifier c to output a different label on x' than y, but is “imperceptibly similar” to x. Given the difficulty of providing an operational definition of “imperceptible similarity,” adversarial examples typically come in the form of restricted attacks such as ϵ-bounded perturbations (Szegedy et al., 2013), or unrestricted attacks such as adversarial rotations, translations, and deformations (Brown et al., 2018; Engstrom et al., 2017; Gilmer et al., 2018; Xiao et al., 2018; Aliafari et al., 2019; Zhang et al., 2019a). The focus of this work is the former setting, though our framework can be generalized to the latter.

Despite a large literature devoted to improving the robustness of deep-learning models, many fundamental questions remain unresolved. One of the most important questions is how to trade off adversarial robustness against natural accuracy. Statistically, robustness can be at odds with accuracy when no assumptions are made on the data distribution (Tsipras et al., 2019). This has led to an empirical line of work on adversarial defense that incorporates various kinds of assumptions (Su et al., 2018; Kurakin et al., 2017). On the theoretical front, methods such as relaxation based defenses (Kolter & Wong, 2018; Raghunathan et al., 2018a) provide provable guarantees for adversarial robustness. They, however, ignore the performance of classifier on the non-adversarial examples, and thus leave open the theoretical treatment of the putative robustness/accuracy trade-off.

The problem of adversarial defense becomes more challenging when computational issues are considered. For example, the straightforward empirical risk minimization (ERM) formulation of robust classification involves minimizing the robust 0-1 loss $\max_{\epsilon} \{c(x') \neq y\} \leq 1$ with a surrogate loss (Madry et al., 2018; Kurakin et al., 2017; Uesato et al., 2018). However, there is little theoretical guarantee on the tightness of this approximation.
1.1. Our methodology and results

We begin with an example that illustrates the trade-off between accuracy and adversarial robustness in Section 2.4, a phenomenon which has been demonstrated by Tsipras et al. (2019), but without theoretical guarantees. We constructed a toy example where the Bayes optimal classifier achieves natural error 0% and robust error 100%, while the trivial all-one classifier achieves both natural error and robust error 50% (Table 1). Despite a large literature on the analysis of robust error in terms of generalization (Schmidt et al., 2018; Cullina et al., 2018; Yin et al., 2018) and computational complexity (Bubeck et al., 2018b;a), the trade-off between the natural error and the robust error has not been a focus of theoretical study.

We show that the robust error can in general be bounded tightly using two terms: one corresponds to the natural error measured by a surrogate loss function, and the other corresponds to how likely the input features are close to the ϵ-extension of the decision boundary, termed as the boundary error. We then minimize the differentiable upper bound.

Our theoretical analysis naturally leads to a new formulation of adversarial defense which has several appealing properties; in particular, it inherits the benefits of scalability to large datasets exhibited by Tiny ImageNet, and the algorithm achieves state-of-the-art performance on a range of benchmarks while providing theoretical guarantees. For example, while the defenses overviewed in (Athalye et al., 2018) achieve robust accuracy no higher than $\sim 47\%$ under white-box attacks, our method achieves robust accuracy as high as $\sim 57\%$ in the same setting. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge where we won first place out of $\sim 2,000$ submissions, surpassing the runner-up approach by 11.41% in terms of mean ℓ_2 perturbation distance.

1.2. Summary of contributions

Our work tackles the problem of trading accuracy off against robustness and advances the state-of-the-art in multiple ways.

- Theoretically, we characterize the trade-off between accuracy and robustness for classification problems via decomposing the robust error as the sum of the natural error and the boundary error. We provide differentiable upper bounds on both terms using the theory of classification-calibrated loss, which are shown to be the tightest upper bounds uniform over all probability distributions and measurable predictors.

- Algorithmically, inspired by our theoretical analysis, we propose a new formulation of adversarial defense, TRADES, as optimizing a regularized surrogate loss. The loss consists of two terms: the term of empirical risk minimization encourages the algorithm to maximize the natural accuracy, while the regularization term encourages the algorithm to push the decision boundary away from the data, so as to improve adversarial robustness (see Figure 1).

- Experimentally, we show that our proposed algorithm outperforms state-of-the-art methods under both black-box and white-box threat models. In particular, the methodology won the final round of the NeurIPS 2018 Adversarial Vision Challenge.

2. Preliminaries

We illustrate our methodology using the framework of binary classification, but it can be generalized to other settings as well.

2.1. Notation

We will use bold capital letters such as X and Y to represent random vector, bold lower-case letters such as x and y to represent realization of random vector, capital letters such as X and Y to represent random variable, and lower-case letters such as x and y to represent realization of random variable. Specifically, we denote by $x \in X$ the sample instance, and by $y \in \{ -1, +1 \}$ the label, where $X \subseteq \mathbb{R}^d$ indicates the instance space. $\text{sign}(x)$ represents the sign of scalar x with $\text{sign}(0) = +1$. Denote by $f : X \rightarrow \mathbb{R}$ the score function which maps an instance to a confidence value associated with being positive. It can be parametrized, e.g., by deep neural networks. The associated binary classifier is $\text{sign}(f(\cdot))$. We will frequently use $1\{ \text{event} \}$, the 0-1 loss, to represent an indicator function that is 1 if an event happens and 0 otherwise. For norms, we denote by $\| \cdot \|$ a generic norm. Examples of norms include $\| x \|_\infty$, the infinity norm of vector x, and $\| x \|_2$, the ℓ_2 norm of...
vector x. We use $\mathcal{B}(x, \epsilon)$ to represent a neighborhood of x: $\{x' \in \mathcal{X} : \|x' - x\| \leq \epsilon\}$. For a given score function f, we denote by $\text{DB}(f)$ the decision boundary of f; that is, the set $\{x \in \mathcal{X} : f(x) = 0\}$. The set $\mathcal{B}(\text{DB}(f), \epsilon)$ denotes the neighborhood of the decision boundary of f: $\{x \in \mathcal{X} : \exists x' \in \mathcal{B}(x, \epsilon) \text{ s.t. } f(x)f(x') \leq 0\}$. For a given function $\psi(u)$, we denote by $\psi^*(v) := \sup_u \{u^T v - \psi(u)\}$ the conjugate function of ψ, by ψ^* the bi-conjugate, and by ψ^{-1} the inverse function. We will frequently use $\phi(\cdot)$ to indicate the surrogate of 0-1 loss.

2.2. Robust (classification) error

In the setting of adversarial learning, we are given a set of instances $x_1, \ldots, x_n \in \mathcal{X}$ and labels $y_1, \ldots, y_n \in \{-1, +1\}$. We assume that the data are sampled from an unknown distribution $(X, Y) \sim \mathcal{D}$. To characterize the robustness of a score function $f : \mathcal{X} \to \mathbb{R}$, Schmidt et al. (2018); Cullina et al. (2018); Bubeck et al. (2018b) defined robust (classification) error under the threat model of bounded ϵ perturbation:

$$R_{\text{rob}}(f) := \mathbb{E}_{(X, Y) \sim \mathcal{D}} \mathbb{1}\{\exists X' \in \mathcal{B}(X, \epsilon) \text{ s.t. } f(X')Y \leq 0\}.$$

This is in sharp contrast to the standard measure of classifier performance—the natural (classification) error $R_{\text{nat}}(f) := \mathbb{E}_{(X, Y) \sim \mathcal{D}} \mathbb{1}\{f(X)Y \leq 0\}$. We note that the two errors satisfy $R_{\text{rob}}(f) \geq R_{\text{nat}}(f)$ for all f; the robust error is equal to the natural error when $\epsilon = 0$.

2.3. Boundary error

We introduce the boundary error defined as $R_{\text{bdy}}(f) := \mathbb{E}_{(X, Y) \sim \mathcal{D}} \mathbb{1}\{X \in \mathcal{B}(\text{DB}(f), \epsilon), f(X)Y > 0\}$. We have the following decomposition of $R_{\text{rob}}(f)$:

$$R_{\text{rob}}(f) = R_{\text{nat}}(f) + R_{\text{bdy}}(f). \tag{1}$$

2.4. Trade-off between natural and robust errors

Our study is motivated by the trade-off between natural and robust errors. Tsipras et al. (2019) showed that training robust models may lead to a reduction of standard accuracy. To illustrate the phenomenon, we provide a toy example.

Example. Consider the case $(X, Y) \sim \mathcal{D}$, where the marginal distribution over the instance space is a uniform distribution over $[0, 1]$, and for $k = 0, 1, \ldots, \left\lfloor \frac{1}{2\epsilon} \right\rfloor - 1$,

$$\eta(x) := \Pr(Y = 1 | X = x) = \begin{cases} 0, & x \in [2ke, (2k + 1)e), \\ 1, & x \in ((2k + 1)e, (2k + 2)e]. \end{cases} \tag{2}$$

See Figure 2 for the visualization of $\eta(x)$. We consider two classifiers: a) the Bayes optimal classifier $\text{sign}(2\eta(x) - 1)$; b) the all-one classifier which always outputs “positive.”

Table 1 displays the trade-off between natural and robust errors: the minimal natural error is achieved by the Bayes optimal classifier with large robust error, while the optimal robust error is achieved by the all-one classifier with large natural error.

Our goal. In practice, one may prefer to trade-off between robustness and accuracy by introducing weights in (1) to bias more towards the natural error or the boundary error. Noting that both the natural error and the boundary error involve 0-1 loss functions, our goal is to devise tight differentiable upper bounds on both of these terms. Towards this goal, we utilize the theory of classification-calibrated loss.

2.5. Classification-calibrated surrogate loss

Definition. Minimization of the 0-1 loss in the natural and robust errors is computationally intractable and the demands of computational efficiency have led researchers to focus on minimization of a tractable surrogate loss, $R_\phi(f) := \mathbb{E}_{(X, Y) \sim \mathcal{D}} \phi(f(X)Y)$. We then need to find quantitative relationships between the excess errors associated with ϕ and those associated with 0-1 loss. We make a weak assumption on ϕ: it is classification-calibrated (Bartlett et al., 2006).

Formally, for $\eta \in [0, 1]$, define the conditional ϕ-risk by

$$H(\eta) := \inf_{\alpha \in \mathbb{R}} C_\eta(\alpha) := \inf_{\alpha \in \mathbb{R}} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha)), \tag{3}$$

and define $H^-(\eta) := \inf_{\alpha \in [2\eta - 1]} C_\eta(\alpha)$. The classification-calibrated condition requires that imposing the constraint that α has an inconsistent sign with the Bayes decision rule $\text{sign}(2\eta - 1)$ leads to a strictly larger ϕ-risk.

Assumption 1 (Classification-Calibrated Loss). We assume that the surrogate loss ϕ is classification-calibrated, meaning that for any $\eta \neq 1/2$, $H^-(\eta) > H(\eta)$.

We argue that Assumption 1 is indispensable for classification problems, since without it the Bayes optimal clas-
Table 2. Examples of classification-calibrated loss ϕ and associated ψ-transform. Here $\psi_{\log}(\theta) = \frac{1}{2}(1-\theta) \log_2(1-\theta) + \frac{1}{2}(1+\theta) \log_2(1+\theta)$.

<table>
<thead>
<tr>
<th>Loss</th>
<th>$\phi(\alpha)$</th>
<th>$\psi(\theta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge</td>
<td>$\max{1-\alpha, 0}$</td>
<td>θ</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>$1 - \tanh(\alpha)$</td>
<td>θ</td>
</tr>
<tr>
<td>Exponential</td>
<td>$\exp(-\alpha)$</td>
<td>$1 - \sqrt{1-\theta^2}$</td>
</tr>
<tr>
<td>Logistic</td>
<td>$\log_2(1+\exp(-\alpha))$</td>
<td>$\psi_{\log}(\theta)$</td>
</tr>
</tbody>
</table>

Classifier cannot be the minimizer of the ϕ-risk. Examples of classification-calibrated loss include hinge loss, sigmoid loss, exponential loss, logistic loss, and many others (see Table 2).

Properties. Classification-calibrated loss has many structural properties that one can exploit. We begin by introducing a functional transform of classification-calibrated loss ϕ which was proposed by Bartlett et al. (2006). Define the function $\psi: [0, 1] \to [0, \infty)$ by $\psi = \psi^\star$, where $\psi(\theta) := H - \frac{(1+\theta)}{2} - H \left(\frac{1+\theta}{2}\right)$. Indeed, the function $\psi(\theta)$ is the largest convex lower bound on $H - \frac{(1+\theta)}{2} - H \left(\frac{1+\theta}{2}\right)$. The value $H - \frac{(1+\theta)}{2} - H \left(\frac{1+\theta}{2}\right)$ characterizes how close the surrogate loss ϕ is to the class of non-classification-calibrated losses.

Below we state useful properties of the ψ-transform. We will frequently use the function ψ to bound $\mathcal{R}_\text{rob}(f) - \mathcal{R}_\text{nat}^*$. We now establish a lower bound on $\mathcal{R}_\text{rob}(f) - \mathcal{R}_\text{nat}^*$. Our lower bound matches our analysis of the upper bound in Section 3.1 up to an arbitrarily small constant.

Theorem 3.2. Suppose that $|X| \geq 2$. Under Assumption 1, for any non-negative loss function ϕ such that $\phi(x) \to 0$ as $x \to +\infty$, any $\xi > 0$, and any $\theta \in [0, 1]$, there exists a probability distribution on $X \times \{\pm 1\}$, a function $f: \mathbb{R}^d \to \mathbb{R}$, and a regularization parameter $\lambda > 0$ such that $\mathcal{R}_\text{rob}(f) - \mathcal{R}_\text{nat}^* = \theta$ and

$$\psi\left(\theta - \mathbb{E}_{X' \in \mathcal{B}(x, \xi)} \max_{X' \in \mathcal{B}(x, \xi)} \phi(f(X') f(X)/\lambda) \right) \leq \mathcal{R}_\phi(f) - \mathcal{R}_\phi^* - \xi.$$

Theorem 3.2 demonstrates that in the presence of extra conditions on the loss function, i.e., $\lim_{x \to +\infty} \phi(x) = 0$, the upper bound in Section 3.1 is tight. The condition holds for all the losses in Table 2.

4. Algorithmic Design for Defenses

Optimization. Theorems 3.1 and 3.2 shed light on algorithmic designs of adversarial defenses. In order to minimize $\mathcal{R}_\text{rob}(f) - \mathcal{R}_\text{nat}^*$, the theorems suggest minimizing

$$\min_{f} \mathbb{E}\left\{ \phi(f(X)) + \max_{X' \in \mathcal{B}(X, \xi)} \phi(f(X) f(X')/\lambda) \right\},$$

subject to accuracy and regularization for robustness.

1. We study the population form of the risk functions, and mention that by incorporating the generalization theory for classification-calibrated losses (Bartlett et al., 2006) one can extend the analysis to finite samples. We leave this analysis for future research.

2. For simplicity of implementation, we do not use the function ψ^{-1} and rely on λ to approximately reflect the effect of ψ^{-1}, the trade-off between the natural error and the boundary error, and the tight approximation of the boundary error using the corresponding surrogate loss function.
We name our method TRADES (TRadeoff-inspired Adversarial DEFense via Surrogate-loss minimization).

Intuition behind the optimization. Problem (3) captures the trade-off between the natural and robust errors: the first term in (3) encourages the natural error to be optimized by minimizing the “difference” between \(f(X) \) and \(Y \), while the second regularization term encourages the output to be smooth, that is, it pushes the decision boundary of classifier away from the sample instances via minimizing the “difference” between the prediction of natural example \(f(X) \) and that of adversarial example \(f(X') \). This is conceptually consistent with the argument that smoothness is an indispensable property of robust models (Cisse et al., 2017). The tuning parameter \(\lambda \) plays a critical role on balancing the importance of natural and robust errors. To see how the \(\lambda \) affects the solution in the example of Section 2.4, problem (3) tends to the Bayes optimal classifier when \(\lambda \to +\infty \), and tends to the all-one classifier when \(\lambda \to 0 \).

Comparisons with prior work. We compare our approach with several related lines of research in the prior literature. One of the best known algorithms for adversarial defense is based on robust optimization (Madry et al., 2018; Kolter & Wong, 2018; Wong et al., 2018; Raghunathan et al., 2018). Most results in this direction involve algorithms that approximately minimize

\[
\min_f \mathbb{E} \left\{ \max_{X' \in \mathcal{B}(X, \varepsilon)} \phi(f(X'))Y \right\},
\]

where the objective function in problem (4) serves as an upper bound of the robust error \(\mathcal{R}_{\text{rob}}(f) \). In complex problem domains, however, this objective function might not be tight as an upper bound of the robust error, and may not capture the trade-off between natural and robust errors.

A related line of research is adversarial training by regularization (Kurakin et al., 2017; Ross & Doshi-Velez, 2017; Zheng et al., 2016). There are several key differences between the results in this paper and those of (Kurakin et al., 2017; Ross & Doshi-Velez, 2017; Zheng et al., 2016). Firstly, the optimization formulations are different. In the previous works, the regularization term either measures the “difference” between \(f(X) \) and \(Y \) (Kurakin et al., 2017), or its gradient (Ross & Doshi-Velez, 2017). In contrast, our regularization term measures the “difference” between \(f(X) \) and \(f(X') \). While Zheng et al. (2016) generated the adversarial example \(X' \) by adding random Gaussian noise to \(X \), our method simulates the adversarial example by solving the inner maximization problem in Eqn. (3). Secondly, we note that the losses in (Kurakin et al., 2017; Ross & Doshi-Velez, 2017; Zheng et al., 2016) lack of theoretical guarantees. Our loss, with the presence of the second term in problem (3), makes our theoretical analysis significantly more subtle. Moreover, our algorithm takes the same computational resources as (Kurakin et al., 2017), which makes our method scalable to large-scale datasets. We defer the experimental comparisons of various regularization based methods to Table 5.

Heuristic algorithm. In response to the optimization formulation (3), we use two heuristics to achieve more general defenses: a) extending to multi-class problems by involving multi-class calibrated loss; b) approximately solving the minimax problem via alternating gradient descent. For multi-class problems, a surrogate loss is calibrated if minimizers of the surrogate risk are also minimizers of the 0-1 risk (Pires & Szepesvári, 2016). Examples of multi-class calibrated loss include cross-entropy loss. Algorithmically, we extend problem (3) to the case of multi-class classifications by replacing \(\phi \) with a multi-class calibrated loss \(\mathcal{L}(\cdot, \cdot) \):

\[
\min_f \mathbb{E} \left\{ \mathcal{L}(f(X), Y) + \max_{X' \in \mathcal{B}(X, \varepsilon)} \mathcal{L}(f(X), f(X'))/\lambda \right\},
\]

where \(f(X) \) is the output vector of learning model (with softmax operator in the top layer for the cross-entropy loss \(\mathcal{L}(\cdot, \cdot) \)), \(Y \) is the label-indicator vector, and \(\lambda > 0 \) is the regularization parameter. The pseudocode of adversarial training procedure, which aims at minimizing the empirical form of problem (5), is displayed in Algorithm 1.

The key ingredient of the algorithm is to approximately solve the linearization of inner maximization in problem (5) by the projected gradient descent (see Step 7). We note that \(x_i \) is a global minimizer with zero gradient to the objective function \(g(x_i) := \mathcal{L}(f(x_i), f(x_i')) \) in the inner problem. Therefore, we initialize \(x'_i \) by adding a small, random perturbation around \(x_i \) in Step 5 to start the inner optimizer.
The theoretically principled trade-off between robustness and accuracy.

Table 3. Theoretical verification on the optimality of Theorem 3.1.

<table>
<thead>
<tr>
<th>λ</th>
<th>$A_{\text{rob}}(f)$ (%)</th>
<th>$R_\phi(f)$</th>
<th>$\Delta = \Delta_{\text{RHS}} - \Delta_{\text{LHS}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>99.43</td>
<td>0.0006728</td>
<td>0.006708</td>
</tr>
<tr>
<td>3.0</td>
<td>99.41</td>
<td>0.0004067</td>
<td>0.005914</td>
</tr>
<tr>
<td>4.0</td>
<td>99.37</td>
<td>0.0003746</td>
<td>0.006757</td>
</tr>
<tr>
<td>5.0</td>
<td>99.34</td>
<td>0.0003430</td>
<td>0.005860</td>
</tr>
</tbody>
</table>

More exhaustive approximations of the inner maximization problem in terms of either optimization formulations or solvers would lead to better defense performance.

5. Experimental Results

In this section, we verify the effectiveness of TRADES by numerical experiments. We denote by $A_{\text{rob}}(f) = 1 - R_{\text{rob}}(f)$ the robust accuracy, and by $A_{\text{nat}}(f) = 1 - R_{\text{nat}}(f)$ the natural accuracy on test dataset. We release our code and trained models at https://github.com/yaodongyu/TRADES.

5.1. Optimality of Theorem 3.1

We verify the tightness of the established upper bound in Theorem 3.1 for binary classification problem on MNIST dataset. The negative examples are ‘1’ and the positive examples are ‘3’. Here we use a Convolutional Neural Network (CNN) with two convolutional layers, followed by two fully-connected layers. The output size of the last layer is 1. To learn the robust classifier, we minimize the regularized surrogate loss in Eqn. (3), and use the hinge loss in Table 2 as the surrogate loss ϕ, where the associated ψ-transform is $\psi(\theta) = \theta$.

To verify the tightness of our upper bound, we calculate the left hand side in Theorem 3.1, i.e.,

$$\Delta_{\text{LHS}} = R_{\text{rob}}(f) - R_{\text{nat}},$$

and the right hand side, i.e.,

$$\Delta_{\text{RHS}} = (R_{\phi}(f) - R_{\phi}^*) + \mathbb{E} \max_{X' \in B(X, \epsilon)} \phi(f(X')f(X)/\lambda).$$

As we cannot have access to the unknown distribution D, we approximate the above expectation terms by test dataset. We first use natural training method to train a classifier so as to approximately estimate R_{nat}^* and R_{ϕ}^*, where we find that the naturally trained classifier can achieve natural error $R_{\text{nat}} = 0\%$, and loss value $R_{\phi}^* = 0.0$ for the binary classification problem. Next, we optimize problem (3) to train a robust classifier f. We take perturbation $\epsilon = 0.1$, number of iterations $K = 20$ and run 30 epochs on the training dataset. Finally, to approximate the second term in Δ_{RHS}, we use FGSMk (white-box) attack (a.k.a. PGD attack) (Kurakin et al., 2017) with 20 iterations to approximately calculate the worst-case perturbed data X'.

The results in Table 3 show the tightness of our upper bound in Theorem 3.1. It shows that the differences between Δ_{RHS} and Δ_{LHS} under various λ's are very small.

5.2. Sensitivity of regularization hyperparameter λ

The regularization parameter λ is an important hyperparameter in our proposed method. We show how the regularization parameter affects the performance of our robust classifiers by numerical experiments on two datasets, MNIST and CIFAR10. For both datasets, we minimize the loss in Eqn. (5) to learn robust classifiers for multi-class problems, where we choose L as the cross-entropy loss.

MNIST setup. We use the CNN which has two convolutional layers, followed by two fully-connected layers. The output size of the last layer is 10. We set perturbation $\epsilon = 0.1$, perturbation step size $\eta_1 = 0.01$, number of iterations $K = 20$, learning rate $\eta_2 = 0.01$, batch size $m = 128$, and run 50 epochs on the training dataset. To evaluate the robust error, we apply FGSMk (white-box) attack with 40 iterations and the step size is 0.005. The results are in Table 4.

CIFAR10 setup. We apply ResNet-18 (He et al., 2016) for classification. The output size of the last layer is 10. We set perturbation $\epsilon = 0.031$, perturbation step size $\eta_1 = 0.007$, number of iterations $K = 10$, learning rate $\eta_2 = 0.1$, batch size $m = 128$, and run 100 epochs on the training dataset. To evaluate the robust error, we apply FGSMk (white-box) attack with 40 iterations and the step size is 0.003. The results are in Table 4.

We observe that as the regularization parameter $1/\lambda$ increases, the natural accuracy $A_{\text{nat}}(f)$ decreases while the robust accuracy $A_{\text{rob}}(f)$ increases, which verifies our theory on the trade-off between robustness and accuracy. Note that for MNIST dataset, the natural accuracy does not decrease too much as the regularization term $1/\lambda$ increases, which is different from the results of CIFAR10. This is probably because the classification task for MNIST is easier. Meanwhile, our proposed method is not very sensitive to the choice of λ. Empirically, when we set the hyperparameter $1/\lambda$ in $[1, 10]$, our method is able to learn classifiers with both high robustness and high accuracy. We will set $1/\lambda$ as either 1 or 6 in the following experiments.

5.3. Adversarial defenses under various attacks

Previously, Athalye et al. (2018) showed that 7 defenses in ICLR 2018 which relied on obfuscated gradients may easily break down. In this section, we verify the effectiveness of our method with the same experimental setup under both white-box and black-box threat models.

MNIST setup. We use the CNN architecture in (Carlini & Wagner, 2017) with four convolutional layers, followed by three fully-connected layers. We set perturbation $\epsilon = 0.3$, perturbation step size $\eta_1 = 0.01$, number of iterations $K = 40$, learning rate $\eta_2 = 0.01$, batch size $m = 128$, and run 100 epochs on the training dataset.

CIFAR10 setup. We use the same neural network architecture as (Madry et al., 2018), i.e., the wide residual network
WRN-34-10 (Zagoruyko & Komodakis, 2016). We set perturbation $\epsilon = 0.031$, perturbation step size $\eta_1 = 0.007$, number of iterations $K = 10$, learning rate $\eta_2 = 0.1$, batch size $m = 128$, and run 100 epochs on the training dataset.

5.3.1. White-box Attacks

We summarize our results in Table 5 together with the results from (Athalye et al., 2018). We also implement methods in (Zheng et al., 2016; Kurakin et al., 2017; Ross & Doshi-Velez, 2017) on the CIFAR10 dataset as they are also regularization based methods. For MNIST dataset, we apply FGSM\(^k\) (white-box) attack with 40 iterations and the step size is 0.01. For CIFAR10 dataset, we apply FGSM\(^k\) (white-box) attack with 20 iterations and the step size is 0.003, under which the defense model in (Madry et al., 2018) achieves 47.04\% robust accuracy. Table 5 shows that our proposed defense method can significantly improve the robust accuracy of models, which is able to achieve robust accuracy as high as 56.61\%. We also evaluate our robust model on MNIST dataset under the same threat model as in (Samangouei et al., 2018) (C\&W white-box attack Carlini & Wagner (2017)), and the robust accuracy is 99.46\%. See appendix for detailed information of models in Table 5.

5.3.2. Black-box Attacks

We verify the robustness of our models under black-box attacks. We first train models without using adversarial training on the MNIST and CIFAR10 datasets. We use the same network architectures that are specified in the beginning of this section, i.e., the CNN architecture in (Carlini & Wagner, 2017) and the WRN-34-10 architecture in (Zagoruyko & Komodakis, 2016). We denote these models by naturally trained models (Natural). The accuracy of the naturally trained CNN model is 99.50\% on the MNIST dataset. The accuracy of the naturally trained WRN-34-10 model is 95.29\% on the CIFAR10 dataset. We also implement the method proposed in (Madry et al., 2018) on both datasets. We denote these models by Madry’s models (Madry). The accuracy of Madry et al. (2018)’s CNN model is 99.36\% on the MNIST dataset. The accuracy of Madry et al. (2018)’s WRN-34-10 model is 85.49\% on the CIFAR10 dataset.

For both datasets, we use FGSM\(^k\) (black-box) method to attack various defense models. For MNIST dataset, we set perturbation $\epsilon = 0.3$ and apply FGSM\(^k\) (black-box) attack with 40 iterations and the step size is 0.01. For CIFAR10 dataset, we set $\epsilon = 0.031$ and apply FGSM\(^k\) (black-box) attack with 20 iterations and the step size is 0.003. Note that the setup is the same as the setup specified in Section 5.3.1. We summarize our results in Table 6 and Table 7. In both tables, we use two source models (noted in the parentheses) to generate adversarial perturbations: we compute the perturbation directions according to the gradients of the source models on the input images. It shows that our models are more robust against black-box attacks transferred from naturally trained models and Madry et al. (2018)’s models. Moreover, our models can generate stronger adversarial examples for black-box attacks compared with naturally trained models and Madry et al. (2018)’s models.

5.4. Case study: NeurIPS 2018 Adversarial Vision Challenge

Competition settings. In the adversarial competition, the adversarial attacks and defenses are under the black-box setting. The dataset in this competition is Tiny ImageNet, which consists of 550,000 data (with our data augmentation) and 200 classes. The robust models only return label predictions instead of explicit gradients and confidence scores. The task for robust models is to defend against adversarial examples that are generated by the top-5 submissions in the un-targeted attack track. The score for each defense model is evaluated by the smallest perturbation distance that makes the defense model fail to output correct labels.

Competition results. The methodology in this paper was applied to the competition, where our entry ranked the 1st place. We implemented our method to train ResNet models. We report the mean ℓ_2 perturbation distance of the top-6 entries in Figure 3. It shows that our method outperforms other approaches with a large margin. In particular, we surpass the runner-up submission by 11.41\% in terms of mean ℓ_2 perturbation distance.

6. Conclusions

In this paper, we study the problem of adversarial defenses against structural perturbations around input data. We focus on the trade-off between robustness and accuracy, and show an upper bound on the gap between robust error and optimal natural error. Our result advances the state-of-the-art work and matches the lower bound in the worst-case scenario. The bounds motivate us to minimize a new form of regularized surrogate loss, TRADES, for adversarial training.
Table 5. Comparisons of TRADES with prior defense models under white-box attacks.

<table>
<thead>
<tr>
<th>Defense</th>
<th>Defense type</th>
<th>Under which attack</th>
<th>Dataset</th>
<th>Distance</th>
<th>$A_{nat}(f)$</th>
<th>$A_{rob}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buckman et al. (2018)</td>
<td>gradient mask</td>
<td>Athalye et al. (2018)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Ma et al. (2018)</td>
<td>gradient mask</td>
<td>Athalye et al. (2018)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>-</td>
<td>5%</td>
</tr>
<tr>
<td>Dhillon et al. (2018)</td>
<td>gradient mask</td>
<td>Athalye et al. (2018)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Song et al. (2018)</td>
<td>gradient mask</td>
<td>Athalye et al. (2018)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>-</td>
<td>9%</td>
</tr>
<tr>
<td>Na et al. (2017)</td>
<td>robust opt.</td>
<td>FGSMAO (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>27.07%</td>
<td>23.54%</td>
</tr>
<tr>
<td>Wong et al. (2018)</td>
<td>robust opt.</td>
<td>FGSMAO (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>87.30%</td>
<td>47.04%</td>
</tr>
<tr>
<td>Madry et al. (2018)</td>
<td>robust opt.</td>
<td>FGSMAO (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>94.64%</td>
<td>1.05%</td>
</tr>
<tr>
<td>Zheng et al. (2016)</td>
<td>regularization</td>
<td>FGSMAO (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>85.25%</td>
<td>45.89%</td>
</tr>
<tr>
<td>Kurakin et al. (2017)</td>
<td>regularization</td>
<td>FGSMAO (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>95.34%</td>
<td>0%</td>
</tr>
<tr>
<td>Ross & Doshi-Velez (2017)</td>
<td>regularization</td>
<td>FGSMAO (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>88.64%</td>
<td>49.14%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 1.0$)</td>
<td>regularization</td>
<td>FGSMAO (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>FGSMAO (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>DeepFool (ℓ_{∞})</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>DeepFool (ℓ_{∞})</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>LBFGSAttack</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>LBFGSAttack</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>MI-FGSMAO</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>MI-FGSMAO</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>C&W</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>C&W</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_{∞})</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
<tr>
<td>Samangouei et al. (2018)</td>
<td>gradient mask</td>
<td>Athalye et al. (2018)</td>
<td>MNIST</td>
<td>0.005 (ℓ_2)</td>
<td>-</td>
<td>55%</td>
</tr>
<tr>
<td>Madry et al. (2018)</td>
<td>robust opt.</td>
<td>FGSMAO (PGD)</td>
<td>MNIST</td>
<td>0.005 (ℓ_2)</td>
<td>-</td>
<td>55%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>FGSMAO (PGD)</td>
<td>MNIST</td>
<td>0.005 (ℓ_2)</td>
<td>-</td>
<td>55%</td>
</tr>
<tr>
<td>TRADES ($1/\lambda = 6.0$)</td>
<td>regularization</td>
<td>C&W</td>
<td>MNIST</td>
<td>0.005 (ℓ_2)</td>
<td>-</td>
<td>55%</td>
</tr>
</tbody>
</table>

Table 6. Comparisons of TRADES with prior defenses under black-box FGSM20 attack on the MNIST dataset. The models inside parentheses are source models which provide gradients to adversarial attacks. We provide the average cross-entropy loss value $\mathcal{L}(f(X), Y')$ of each defense model in the bracket. The defense model ‘Madry’ is the same model as in the antepenultimate line of Table 5. The defense model ‘TRADES’ is the same model as in the penultimate line of Table 5.

<table>
<thead>
<tr>
<th>Defense Model</th>
<th>Robust Accuracy $A_{rob}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madry</td>
<td>97.43% [0.0078484] (Natural)</td>
</tr>
<tr>
<td>TRADES</td>
<td>97.63% [0.0075324] (Natural)</td>
</tr>
<tr>
<td>Madry</td>
<td>97.38% [0.0084962] (Ours)</td>
</tr>
<tr>
<td>TRADES</td>
<td>97.66% [0.0073532] (Madry)</td>
</tr>
</tbody>
</table>

Table 7. Comparisons of TRADES with prior defenses under black-box FGSM20 attack on the CIFAR10 dataset. The models inside parentheses are source models which provide gradients to adversarial attacks. We provide the average cross-entropy loss value of each defense model in the bracket. The defense model ‘Madry’ is implemented based on (Madry et al., 2018), and the defense model ‘TRADES’ is the same model as in the 11th line of Table 5.

<table>
<thead>
<tr>
<th>Defense Model</th>
<th>Robust Accuracy $A_{rob}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madry</td>
<td>84.39% [0.0519784] (Natural)</td>
</tr>
<tr>
<td>TRADES</td>
<td>87.60% [0.0380258] (Natural)</td>
</tr>
<tr>
<td>Madry</td>
<td>66.00% [0.125262] (Ours)</td>
</tr>
<tr>
<td>TRADES</td>
<td>70.14% [0.0885364] (Madry)</td>
</tr>
</tbody>
</table>

Experiments on real datasets and adversarial competition demonstrate the effectiveness of our proposed algorithms. It would be interesting to combine our methods with other related line of research on adversarial defenses, e.g., feature denoising technique (Xie et al., 2018) and network architecture design (Cisse et al., 2017), to achieve more robust learning systems.

Acknowledgements. We thank Maria-Florina Balcan and Avrim Blum for valuable discussions. Part of this work was done while H. Z. was visiting Simons Institute for the Theory of Computing, and Y. Y. was an intern at Petuum.
Theoretically Principled Trade-off between Robustness and Accuracy

References

Theoretically Principled Trade-off between Robustness and Accuracy

Theoretically Principled Trade-off between Robustness and Accuracy

