
Supplementary Material

Yunbo Zhang Wenhao Yu Greg Turk

A. TNB Hyperparameters
We use L = 45 and G = 3 for segmenting the rollouts
into training data for autoencoders. We used G = 2 for
the Reacher and 4-Way Maze environments as exceptions
because the best policy takes on average less than 45 steps.
When computing the novelty reward using Equation 3 in the
main text, we use wnovel = 2 across all examples.

B. Autoencoder Training
For all of our examples, we use autoencoders that are rep-
resented by fully connected neural network with 11 hidden
layers consisting of {1024, 512, 256, 128, 64, 32, 64, 128,
256, 512, 1024} nodes. We use ReLUs as activation func-
tions for the hidden layers, and linear activation for the
output layer. The intuition behind using such a large neural
network architecture is that we want the autoencoders to be
slightly overfitted to the training data so that it will not ac-
cidentally generalize to behaviors that we may deem novel.
Each of the autoencoder takes 200 epochs to train with a
batch size of 1024 samples, and the training is optimized
using the Adam optimizer with learning rate of 10−3.

For each policy generated by TNB, we take 10 policies from
the last 50 iterations of policy training to generate data for
training the autoencoders. For each of these policies, we
collect 100 rollouts for data parsing.

C. PPO Training
For all experiments in the paper, we use fully connected
neural network policies with three 64-unit hidden layers
using tanh nonlinearities. During each PPO iteration, we
collect 12, 000 steps from the current policy and update the
policy parameters using Adam for 3 epochs, with a mini-
batch size of 64. The learning rate of Adam is set to 0.003.
As suggested in the OpenAI Baselines (Dhariwal et al.,
2017) implementation, we use 0.2 as the clip parameter
and 0 for the entropy term in the surrogate loss. For the
parameters in the GAE (Schulman et al., 2015), we also use
the default values in their implementation where γ = 0.99,
and λ = 0.95.

Table 1. D-Maze with different weights

WEIGHTS AVG # SUCC POLICIES # SUCC TRIALS

100 0.4 1/5
200 0.6 3/5
500 0.6 3/5
1000 0.4 2/5

D. SAC Training
We used the OpenAI Spinning Up implementation for the
Soft-Actor-Critic algorithm. For a fair comparison, we used
the same number of samples per iterations as in PPO. In
particular, we set the replay buffer size to 106, and α = 0.2
for all tasks.

E. 4-Way Maze Reward Details
In the 4-Way Maze environment, the agent is given the
task to reach one of the four red goals, thus there are four
possible solutions to this task. Furthermore, we design a
reward function such that different solutions yield different
expected rewards. This helps test to see if an algorithm
strikes the right balance between finding a novel behavior
and obtaining the highest reward. Specifically, the reward
signal for reaching a floor cell and a goal cell are formulated
as follows:

rfloori = 50 ∗ (5− i
4

)3 (1)

rgoali = 500 ∗ (5− i
4

)3, (2)

where i corresponds to the path that has the ith highest ex-
pected reward. The cubic order decrease in the reward value
aims to create an obvious separation of rewards between
paths, so that certain paths are more easily found by an
algorithm. In addition to the path rewards, the environment
also gives an alive penalty ralive = −1 and a penalty of
rwall = −10 when the agent runs into the wall. An illustra-
tion of the 4-way Maze environment is shown in Figure 1,
where higher reward paths are assigned brighter colors.

F. More Results for Weighted Sum Reward
For the weighted sum methods, we test multiple weights and
report the best performing one. Specifically, we used 100,



Supplementary Material

Figure 1. Paths in 4-Way Maze are labeled in the decreasing order
of rewards.

Table 2. D-Reacher with different weights

WEIGHTS AVG # SUCC POLICIES # SUCC TRIALS

100 1.4 3/5
200 1.2 4/5
500 1.2 3/5
1000 1.2 3/5

Table 3. 4-Way Maze with different weights

WEIGHTS AVG # PATHS EXPLORED # TRIALS IN ORDER

100 3.8 3/5
200 4 2/5
500 4 0/5
1000 4 0/5

200, 500, and 1000 as our weights to the novelty reward
term. We picked this range so that the two rewards shares
comparable magnitudes. The bold weights shown in Table 1,
Table 2, Table 3 are the weights used for comparison in the
paper.

References
Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,

M., Radford, A., Schulman, J., Sidor, S., and Wu, Y.
Openai baselines. GitHub, GitHub repository, 2017.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015.


