
Learning Novel Policies For Tasks

Yunbo Zhang 1 Wenhao Yu 1 Greg Turk 1

Abstract
In this work, we present a reinforcement learning
algorithm that can find a variety of policies (novel
policies) for a task that is given by a task reward
function. Our method does this by creating a sec-
ond reward function that recognizes previously
seen state sequences and rewards those by novelty,
which is measured using autoencoders that have
been trained on state sequences from previously
discovered policies. We present a two-objective
update technique for policy gradient algorithms in
which each update of the policy is a compromise
between improving the task reward and improving
the novelty reward. Using this method, we end
up with a collection of policies that solves a given
task as well as carrying out action sequences that
are distinct from one another. We demonstrate
this method on maze navigation tasks, a reaching
task for a simulated robot arm, and a locomotion
task for a hopper. We also demonstrate the ef-
fectiveness of our approach on deceptive tasks in
which policy gradient methods often get stuck.

1. Introduction
Deep Reinforcement Learning (DRL) has shown great po-
tential in solving problems in various domains such as game
playing, maze navigation, and robotic control. Often times
it is sufficient to find a single policy that solves the given
task. In some cases, however, it may be desirable to find
several different policies that solve the problem in different
ways. If, for instance the goal is to produce a locomotion
policy for a legged robot, there may be several ways in
which the robot may coordinate its limbs, leading to various
styles of walking. Similarly, there might be several ways
in which a robot arm can reach a given target, and some of
these reaching motions may prove more useful than others

1School of Interactive Computing, Georgia Insti-
tute of Technology, USA. Correspondence to: Yunbo
Zhang <yzhang3027@gatech.edu>, Wenhao Yu <wen-
haoyu@gatech.edu>, Greg Turk <turk@cc.gatech.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

in different situations.

The goal of our work is to provide reinforcement learning
framework for finding not just a single policy for a given
task, but instead find a variety of distinct policies, each of
which also solves the task at hand. We will refer to each
of these various policies for a given task as a novel policy.
Our method of finding novel policies draws upon the recent
success of policy gradient approaches to solving continuous
control problems, such as PPO (Schulman et al., 2017),
TRPO (Schulman et al., 2015), and DDPG (Lillicrap et al.,
2015). A given policy gradient algorithm is guided towards
producing a policy by a provided reward function, and the
algorithm seeks a policy that maximizes the cumulative
reward. If a particular policy that has been produced by a
policy gradient algorithm is somehow insufficient for a given
task, or if further variation is desired, there are typically two
alternatives. One possibility is to run the algorithm again
using a different random number seed, and hope that this
will result in a different policy. The second option is to
modify or augment the reward function so that the policy
gradient algorithm is guided towards a different policy. Our
method offers a different approach to finding novel policies
that does not rely on chance or reward tuning.

We formulate the problem of finding novel policies as a
multi-objective optimization problem. First, we create an
autoencoder that recognizes the sequence of states that pre-
vious policies typically generate. We use this autoencoder to
create a function that rewards novelty, that is, that rewards
sequences of actions that are significantly different than
those of the previous policies. We then solve a reinforce-
ment learning problem in which there are two objectives: 1)
solve the given task (guided by the task reward function),
and 2) perform sequences of actions that are novel when
compared to previous policies (guided by a novelty reward
function). There are several ways in which a policy gradient
algorithm may solve such a multi-objective problem. One
way is to create a new reward term that is simply a weighted
sum of the task reward and the novelty reward. Another
possibility is to examine the policy gradient with respect
to each of these reward functions, and update the policy in
a way that attempts to follow both these gradients. We ex-
plore both these methods, and in particular we demonstrate
that using an angle bisector between the task and novelty
gradients is an effective approach across a variety of tasks.

Learning Novel Policies For Tasks

We demonstrate our approach on several problems, includ-
ing a maze with multiple goals, a reacher task for a simulated
robot arm, and a hopper. We also demonstrate the applica-
tion of our approach to two deceptive problems (deceptive
maze, deceptive reacher), for which most algorithms get
stuck in a poor local minimum. Our approach finds poli-
cies that avoid the behaviour of earlier failed policies, thus
making it easier to learn a policy that achieves the given
task.

In this work we make the following contributions:

� We formulate the problem of finding novel policies, in
which the goal is to sequentially produce policies that
both solve a given task and that do so in a manner that
is distinct from prior policies.

� We show how to measure the novelty of a given pol-
icy’s behavior using the output of an autoencoder that
examines the recent history of a policy. This measure-
ment of novelty can then be used to find multiple novel
policies for a given task.

� We present a method called the Task-Novelty Bisector
(TNB) that produces novel policies that solve a given
task. We demonstrate TNB when it is used together
with PPO, but our method is applicable to any policy
gradient method.

2. Related Work
Our method builds on top of the basic policy gradient ap-
proach for reinforcement learning (Sutton & Barto, 2018).
There have been a number of recent policy gradient algo-
rithms that have been used to create neural network poli-
cies for continuous control such as PPO (Schulman et al.,
2017), TRPO (Schulman et al., 2015), DDPG (Lillicrap
et al., 2015).

Our work has some relation to the problem of finding op-
tions (Sutton et al., 1999). An option is a course of actions
that are determined by a policy. Usually options are used in
a hierarchical setting, in which a high level policy selects
from a variety of possible options over the course of solving
a higher level problem. Some prior works have studied on
option learning (Gregor et al., 2016; Bacon et al., 2017;
Hausman et al., 2018). In particular, Gregor et al. (2016)
maximizes the mutual information between options and the
final states of a trajectory to encourage the discovery of
different intrinsic options. Bacon et al. (2017) uses a hierar-
chical structure of policies in which options are created by
learning a set of intra-option policies, termination functions,
and an policy over options simultaneously. However, neither
of these methods have been used to solve continuous robotic
control problems.

Some other work on options, including DIAYN (Eysenbach
et al., 2018) and VALOR (Achiam et al., 2018), address
problems in robotics control. DIAYN (Eysenbach et al.,
2018) encourages the diversity of a policy by maximizing
the mutual information between options and states while
minimizing the mutual information between options and
actions conditioned on states. VALOR (Achiam et al., 2018)
uses an LSTM variational autoencoder for option discovery
where a universal policy conditioned on an option serves as
the encoder, and a bidirectional LSTM serves as the decoder.
Neither DIAYN nor VALOR use a task-relevant reward
term, and they solely maximize behaviour discovery. Both
methods aim to create a set of policies that can be used as
initial policies for later task relevant training, often to be
used as a low-level controller in a hierarchical setting. In
the same spirit of encouraging diversity over an entire trajec-
tory, work from the evolutionary algorithms community has
applied Novelty Search (Lehman & Stanley, 2011a;b; Pugh
et al., 2016; Mouret & Doncieux, 2009) to solve various
problems.

Our work is also related to encouraging exploration in re-
inforcement learning. Some research uses the approach
of curiosity-driven exploration (Schmidhuber, 1991; Sun
et al., 2011; Conti et al., 2018) and applies these techniques
to reinforcement learning (Houthooft et al., 2016; Hester
& Stone, 2017). For example, to encourage exploration,
VIME (Houthooft et al., 2016) uses variational inferences to
derives an intrinsic reward objective that maximizes the in-
formation gain about the environment dynamics. Haarnoja
et al. (2018a; 2017; 2018b) add an entropy term in the ob-
jective function so that exploration is encouraged through
maximizing entropy for visited states. GEP-PG (Colas et al.,
2018) tried to decouple exploration and exploitation by fo-
cus in one or the other in stages to encourage exploration.
Although these methods encourage policy discovery with
more exploration, they are not used to intentionally generate
multiply distinct policies that solve a given task.

3. Preliminaries
3.1. Deep Reinforcement Learning

Deep Reinforcement Learning solves problems that are mod-
eled as Markov Decision Processes (MDPs), defined by a
tuple (S;A; T ; r; �0;
), where S is the state space, A is
the action space, T : S �A 7! S is the transition function,
r : S �A 7! R is the reward function, �0 is the initial state
distribution, and
 2 [0; 1] is a discount factor. The goal of
RL is to find a policy �� : S 7! A parameterized by � that
maximizes the expected return:

J(�) = Es0;a0;:::;sT

"
TX
t=0

tr(st; at)

#
; (1)

Learning Novel Policies For Tasks

wheres0 � � 0(�), at = � � (st) andst +1 = T (st ; at).

3.2. Policy Gradient Methods

Policy gradient methods are a class of RL algorithms that
estimate the gradient of the expected return with respect
to the policy parameters� . The gradient estimation of the
returnR(�) can be expressed as:

@J
@�

= Es0 ;a 0 ;:::;s T

"
TX

t =0

r log � � (at jst)Q(st ; at)

#

; (2)

whereQ(st ; at) is the Q function that measures the expected
return of taking actionat atst and following the policy� �

thereafter.

4. Methods

In this work, we propose an algorithm that incrementally
build a set ofnovel policiesthat solve a given task while
exhibiting distinct behaviors to each other. At each itera-
tion of our method, we train a new policy for which the
learning agent is rewarded for both solving the task and
demonstrating novel behaviors compared to the previously
trained policies. We de�ne novelty as dissimilarity between
state sequences visited by the policies, and this is computed
using autoencoders represented by neural networks. To
achieve balanced learning progress between solving the task
and seeking novel behavior, we propose a two-objective
update method for policy gradient algorithms. After the
policy is trained, it is expected to solve the task while also
being novel in comparison to all of the previous policies. We
then train an autoencoder for this newly generated policy to
recognize behaviors similar to it and update the autoencoder
set. This process is repeated until the desired amount of
novel policies have been trained.

4.1. Measuring Novelty

Given a rollout generated by the current policy of interest,
we want to measure how novel it is compared to rollouts gen-
erated from previously trained policies. To do this, we need
to de�ne a metric for measuring novelty between rollouts.
One possible approach would be using nearest-neighbour
based approch as in (Zhao & Saligrama, 2009; Liao & Ve-
muri, 2002) to measure the difference between the newly
generated rollout and the rollouts from previous policies and
aggregate them to obtain a novelty measurement. However,
such methods can be computationally expensive as more
rollouts are generated for comparison. Alternatively, one
can use a count based novelty detection as as in (Bellemare
et al., 2016; Tang et al., 2017; Strehl & Littman, 2005) to
measure how frequently each state is visited by previous
policies and compare that to the new rollout. However,
this approach is dif�cult to scale to problems with high di-

mensional continuous state space such as the ones in our
experiments.

To generalize across a variety of problems, using neural
network for novelty detection as in (Hawkins et al., 2002;
Richter & Roy, 2017; Ruff et al., 2018) becomes a more
desired approach. In this work, we train autoencoders to
measure the novelty of a rollout given a set of existing roll-
outs. The key idea is that if an autoencoder is trained on
data from a particular distribution, it will be good at recon-
structing data from that distribution, while it will perform
poorly if the data is from a different distribution, i.e. when
the data is novel as compared to the training data. To mea-
sure novelty of a rollout, we train one autoencoder for each
trained policy in the sequence. There are two potential pit-
falls if we were to use just a single autoencoder for all of
the policies that have been found so far. First, if we used a
single autoencoder, we would need to retain or regenerate
the training rollouts for the earlier policies in the sequence
when a new policy is trained, in order that the autoencoder
does not forget the rollouts from previous policies. Second,
when a single autoencoder is trained on data from multi-
ple policies with distinct behaviors, it may generalize to
data that has not been seen in the training data, potentially
leading to under-estimated novelty for a novel rollout.

To fully capture the characteristics of the policy, it may be
tempting to use the entire rollout as input to the autoencoder.
However, such model only measures the novelty at the end
of each rollout, leading to a sparse and delayed learning
signal. In our method, we instead use a sub-sampled partial
rollout as input to the autoencoder. Speci�cally, during
the training of autoencoder, we divide each rollout into
multiple �xed-length segments of lengthL and sub-sample
them with a stride ofG to obtain the training data, each
of lengthL=G. In addition, we use only the states of each
segment and ignore the actions, as we are more interested
in state sequences that are novel. More details regarding
autoencoder training can be found in the supplementary
material.

Given a state sequences = (st ; st + G ; st +2 G ; : : : ; st + L)
and a set of autoencodersD = fD i g trained for previous
policies, we measure its novelty as:

r novel = � exp
�

� wnovel min
D2 D

jjD � (s) � sjj2
�

; (3)

where the exponential function bounds the range of the
novelty reward andwnovel > 0 modulates the sensitivity of
of the reward to the autoencoder reconstruction error (higher
wnovel means more sensitive). During the training of a new
policy, we use Equation 3 to compute thenovelty rewardfor
each step in the rollout. Note that for the �rstL steps we
set the novelty reward to zero as there is insuf�cient data.
Once stepL has been reached, we can compute the novelty

Learning Novel Policies For Tasks

reward, and we have found this to provide a suf�cient signal
for learning novel behaviors.

4.2. Two-Objective Optimization

Since we want to learn policies that solves the task and
that behaves differently than previous policies, we want
to optimize the two reward functionsr task and r novelty

simultaneously. A straightforward way to do this would be
to use a weighted average of the two reward functions as
a single reward. However, this requires �ne-tuning of the
weights for blending the two reward functions.

In this work, we propose a two-objective update method to
optimize both rewards at the same time, without the need
to tune the relative weights. We will refer to our method as
theTask-Novelty Bisector(TNB) approach. Using the two
reward functions, we can formulate two objective functions
Jtask (�) andJnovel (�):

Jtask (�) = Es0 ;a 0 ;:::;s T

"
TX

t =0

 t r task (st ; at)

#

Jnovel (�) = Es0 ;a 0 ;:::;s T

"
TX

t =0

 t r novel (st ; at)

#

;

and use Equation 2 to estimate their gradient with respect to
the policy parameters:

gtask =
@Jtask

@�
(4)

gnovel =
@Jnovel

@�
: (5)

When taking a weighted average of the two reward functions
directly, it is similar to taking the weighted average of the
corresponding gradientsgtask andgnovel . However, when
the two gradients are notably different in magnitude, this
may result in updates that are biased toward one reward and
thus requires weight tuning. We propose to instead update
the policy in the direction of the angular bisector of the
two gradients as illustrated in Figure 1 (a). For calculating
the magnitude of the resulting update, we project both gra-
dients onto the direction of the angular bisector and take
the mean of the projected gradient magnitude. This results
in an update direction that is independent of the scales of
the two reward functions and is expected to improve the
objective functions of both tasks. This scheme works well
when thegtask andgnovel are pointing in the similar direc-
tion. However, when the gradients are pointing in opposite
directions, i.e.gtask � gnovel < 0, taking the angular bisector
direction may result in an update that improves the objective
functions little or not at all for either rewards. To address
this issue, we propose a second component to our update

Algorithm 1 Task Novelty Policy Learning

1: Input: AutoencodersD = fD 1; D2; � � � ; Dn g, Learn-
ing rate�

2: Initialize: Policy weights�
3: for iteration =1; 2; � � � do
4: Collect trajectories� using� �

5: Assign rewards to steps in� usingr task andr novel

6: for eachepochdo
7: Compute the gradientgf inal using Algorithm 2
8: � = � + �g f inal

9: end for
10: end for

Algorithm 2 Task-Novelty Bisector Gradient

1: Input: Task policy gradientgtask and Novelty policy
gradientgnovel

2: if gtask � gnovel > 0 then
3: gf inalDir = bisector (gtask ;gnovel)

kbisector (gtask ;gnovel)k

4: gf inal =
� gtask + gnovel

2 � gf inalDir
�

gf inalDir

5: else
6: gf inal = gtask � gtask �gnovel

kgnovel k gnovel

7: end if

scheme. Whengtask � gnovel < 0, we projectgtask onto
the hyperplane that is perpendicular tognovel and use the
projected vector as the �nal gradient, as shown in Figure 1
(b). The idea is that when the two gradients do not agree
with each other, we want to prioritize solving the task over
seeking novel behaviors. Algorithm 2 shows how we com-
pute the �nal policy gradientgf inal from the two gradients
and Algorithm 1 describes how we use the proposed method
for learning a new policy.

(a)gtask � gnovel > 0 (b) gtask � gnovel < 0

Figure 1.Final update gradient that improves both the novelty and
task objectives.

5. Experiments

We use �ve environments to evaluate our method: 4-
Way Maze, Reacher, Hopper, Deceptive Maze (D-
Maze), and Deceptive Reacher (D-Reacher). The vi-
sualizations of each environment are shown in Fig-
ure 2. We provide videos of these environments at
https://sites.google.com/view/learningnovelpolicy/home.

Learning Novel Policies For Tasks

Figure 2.(a) - (e) are 4-Way Maze, Reacher, Hopper, D-Maze, and D-Reacher environments

5.1. Implementation Details

Our TNB method of two-objective update is built on top of
the PPO (Schulman et al., 2017) implementation in OpenAI
Baselines (Dhariwal et al., 2017). We implement both the
4-Way Maze and D-Maze environments in OpenAI Gym
(Brockman et al., 2016). For the physics simulation of the
Reacher, Hopper and Deceptive Reacher, we use the DART
physics engine (Lee et al., 2018). Each rollout for each of
the environments has a horizon of 500 control steps unless
it triggers an early termination criterion.

For each newly trained policy, we used the �nal policy and
a few policies before convergence to generate the data for
the autoencoder. Details are given in the supplementary
material.

5.2. Algorithm Comparisons

In the �ve experiments below, we compare the Task-Novelty
Bisector (TNB) algorithm of Section 4 to four other meth-
ods: 1) regular PPO with different random seeds, 2)
Weighted Sum of task and novelty rewards (WSR), and 3) a
simpli�ed Task-Novelty Bisector that always uses bisector,
and does not perform projections whengtask andgnovel are
pointing in opposite direction (TNB-NoProj). Speci�cally
for the WSR method, we evaluated it on a set of weights
and report the best performing one. The detailed results for
different weights are given in the supplementary material.
We compare to plain PPO with random seeds because, as
discussed in Henderson et al. (2017), different random seeds
can produce signi�cantly different policies. In addition, for
both deceptive problems and the 4-Way Maze problem, we
compare our method with Soft-Actor-Critic (SAC) using
different random seeds.

In this section, we use the termtrial to denotek sequential
runs of a given algorithm, i.e. one trial producesk distinct
policies. Regardless of method, the �rst policy is created
using regular PPO, without any novelty reward. For WSR,
TNB, and TNB-NoProj, the second policy is trained using
a novelty reward based on the �rst policy. The third policy
is trained using a novelty reward from the �rst two policies,
and so on. For these three algorithms, we use the same

Table 1.Experiments in 4-Way Maze measure the average number
of path explored in each trial, and the number of trials that explore
the paths in the order of total rewards.

METHODS AVG # PATHS FOUND # TRIALS IN ORDER

SAC 1 0/5
PPO 1.4 0/5
WSR 3.8 3/5
TNB-NOPROJ 4 3/5
TNB 4 4/5

random seed to initialize all of thek policies for a single
trial. In this way, the amount of novelty in a trial cannot be
attributed to a difference in random seeds. For a given PPO
or SAC trial, we use different random seeds to initialize
each of thek policies.

5.2.1. 4-WAY MAZE

Our �rst experiment is the 4-Way Maze, a simple 2D navi-
gation environment for a point mass. The agent is placed in
the center, and has easy access to the four arms of the maze
that each lead to a goal. The observation space of the agent
contains the position and velocity of the point mass, and the
action space is the 2-dimensional force applied on the point
mass.

For calculating the reward, the map is discretized in grid
cells, and different color of the cell represents different re-
ward when the agent steps on. Floors are gray-scaled cells
and goals are red cells with various brightness. The magni-

Figure 3.4-Way Maze: Trajectories from a trial of PPO (left) and
TNB (right). The colors of the trajectories indicate where in the
sequence the corresponding policy is from (�rst to last): blue,
orange, green, red.

Learning Novel Policies For Tasks

tude of reward signals for a cell depends on the brightness
of the color on the cell. Brighter cells will provide more
rewards, and darker cells will provide less rewards. The
detail of the reward function design are described in the sup-
plementary material. The agent receives a one-time small
reward when stepping on any �oor cells, and it receives a
large reward when it steps on a goal cell, followed by the
termination of the rollout.

In the case of the 4-Way Maze, we setk = 4 so that four
policies are created per trial. We run �ve such trials using
different random seeds in order to evaluate each algorithm,
and thus create5 � 4 = 20 policies for one algorithm. We
evaluate the diversity of policies using two criteria: 1) The
number of paths out of four that are explored in a trial, and
2) Whether the paths in a trial are discovered in descending
order of rewards receiving on the path. The �rst criterion
shows whether novel policies are found during training,
and the second criterion evaluates whether each subsequent
policy is the next best possible solution.

Figure 3 gives a visual comparison of PPO and TNB, show-
ing several rollouts for each of the four policies that were
created using PPO or TNB. For the trials shown, PPO with
random seeds only explores two paths, whereas the TNB
policies explore all four paths in order.

Table 1 shows the results of the 4-Way Maze trials. The
values for average number of paths explored shows that
both plain PPO and SAC had dif�culty �nding paths along
multiple maze arms. Each of the three variations that use
the novelty reward term was able to �nd all four paths in
each trial. The rightmost column shows how many of the
�ve trials found the four possible paths in increasing order
of dif�culty. Since PPO and SAC never produced all four
paths, they scored zero out of �ve. In most of the trials,
WSR, TNB-NoProj and TNB found all four paths in order,
with TNB scoring the highest.

5.2.2. REACHER

To test our method on a continuous robotic control problem,
we use a variant of the classic 3D-Reacher environment. In
this problem, a 3-linked robot arm attempts to move its end
effector to a �xed target. The reacher has total of 5-DOFs,
one universal joint at the base, one revolute joint connecting
the �rst and second links, and one universal joint connecting
the second and the end effector. The observation space is
a 26D vector consist of the position of the target, a vector
pointing from the arm tip to the target, the sine and cosine
of each DOF, and the angleq and angular velocity•q for all
DOF's. The action space is a 5D vector representing the
torque on each of the DOF. The reward function is designed
as the distance from the end effector to the target minus the
scaled sum of torques on each DOF. In addition, a rollout
will be terminated, and a large reward will be added when

Figure 4.Reacher: End effector trajectories from a trial for each
of the four methods. Policies were trained in this order: blue,
orange, green, red, purple.

the reacher touches the target.

For evaluating the reacher environment, we setk = 5 in
each trial for each of PPO, WSR, TNB-NoProj and TNB.
As shown in Figure 4, we can judge the novelty of policies
visually. To produce this �gure, we plot the trail of the
reacher's end effector. For different random PPO trials, we
see few variations on the trajectories, and in fact three of
the policies end up �nding nearly the same solution. WSR
and TNB both generate policies that are novel solutions
to the reaching task. For TNB-NoProj, on the other hand,
some policies fail to solve the task of reaching the target
(e.g. the purple curve in Figure 4 (c)). This is possibly due
to the relative gradient directions between the task reward
and the novelty reward being too different. Always using
the bisector as gradient update (in TNB-NoProj) may have
the effect of too little improvement in task performance,
hence leading to a policy that fails to solve the task. See the
provided video to view the reacher motions.

5.2.3. HOPPER

We show that our method is useful for complex locomotion
control problems by evaluating our method on the hopper
environment. The observation space is a 11D vector con-
taining the linear position and velocity, and all joint angles
and velocities. The action space is a 3D vector representing
the torque exerted on the three joints.

We run �ve trials for each of the methods withk = 5 , which
gives us 25 policies. As a result, most policies trained with
plain PPO generate trajectories that show very little varia-
tion. With novelty reward, on the other hand, the hopper is
able to hop forward with variation of styles such as bending
the torso backwards. Figure 5 shows three policies in a se-
quence trained using TNB, and all three policies are clearly
distinct to one another. More results of different seeds are
shown in the video.

5.2.4. DECEPTIVEMAZE

In Deceptive Maze environment (D-Maze), the same obser-
vations and actions are used as in the 4-Way Maze problem.
In D-Maze, the agent is initially placed inside of an open
box, and the goal is placed outside the box. The reward
function penalizes the distance between the agent and the

