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1. Experiment Setup
1.1. Models

• CIFAR-10. We train a standard ResNet-18 (He et al.,
2016) architecture, it has 4 groups of residual layers
with filter sizes (64, 128, 256, 512) and 2 residual units.

• Caltech-256 & Tiny ImageNet. We use a ResNet-18
architecture using the code from pytorch(Paszke et al.,
2017). Note that for models on Caltech-256 & Tiny
ImageNet, we initialize them using ImageNet(Deng
et al., 2009) pre-trained weighs provided by pytorch.

We evaluate the robustness of all our models using a l∞
projected gradient descent adversary with ε = 8/255, step
size = 2 and number of iterations as 40.

1.2. Adversarial Training

We perform 9 types of adversarial training on each of the
dataset. 7 of the 9 kinds of adversarial training are against
a projected gradient descent (PGD) adversary(Madry et al.,
2018), the other 2 are against FGSM adversary(Goodfellow
et al., 2014).

1.2.1. TRAIN AGAINST A PROJECTED GRADIENT
DESCENT (PGD) ADVERSARY

We list value of ε for adversarial training of each dataset and
lp-norm. In all settings, PGD runs 20 iterations.

• l∞-norm bounded adversary. For all of the
three data set, pixel vaules range from 0 1, we
train 4 adversarially trained CNNs with ε ∈
{1/255, 2/255, 4/255, 8/255}, these four models are
denoted as PGD-inf:1, 2, 4, 8 respectively, and steps
size as 1/255, 1/255, 2/255, 4/255.
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• l2-norm bounded adversary. For Caltech-256 &
Tiny ImageNet, the input size for our model is 224×
224, we train three adversarially trained CNNs with
ε ∈ {4, 8, 12}, and these four models are denoted as
PGD-l2: 4, 8, 12 respectively. Step sizes for these
three models are 2/255, 4/255, 6/255. For CIFAR-10,
where images are of size 32× 32, the three adversari-
ally trained CNNs have ε ∈ {4/10, 8/10, 12/10}, but
they are denoted in the same way and have the same
step size as that in Caltech-256 & Tiny ImageNet.

1.2.2. TRAIN AGAINST A FGSM ADVERSARY

ε for these two adversarially trained CNNs are ε ∈
{4, 8}, and they are denoted as FGSM 4, 8 respectively.

2. Style-transferred test set
Following (Geirhos et al., 2019) we construct stylized test
set for Caltech-256 and Tiny ImageNet by applying the
AdaIn style transfer(Huang & Belongie, 2017) with a styl-
ization coefficient of α = 1.0 to every test image with
the style of a randomly selected painting from 1Kaggle’s
Painter by numbers dataset. we used source code provided
by(Geirhos et al., 2019).

3. Experiments on Fourier-filtered datasets
(Jo & Bengio, 2017) showed deep neural networks tend
to learn surface statistical regularities as opposed to high-
level abstractions. Following them, we test the performance
of different trained CNNs on the high-pass and low-pass
filtered dataset to show their tendencies.

3.1. Fourier filtering setup

Following (Jo & Bengio, 2017) We construct three types of
Fourier filtered version of test set.

• The low frequency filtered version. We use a radial
mask in the Fourier domain to set higher frequency
modes to zero.(low-pass filtering)

1https://www.kaggle.com/c/
painter-by-numbers/
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• The high frequency filtered version. We use a radial
mask in the Fourier domain to preserve only the higher
frequency modes.(high-pass filtering)

• The random filtered version. We use a random mask
in the Fourier domain to set each mode to 0 with prob-
ability p uniformly. The random mask is generated on
the fly during the test.

3.2. Results

We measure generalization performance (accuracy on cor-
rectly classified images) of each model on these three fil-
tered datasets from Caltech-256, results are listed in Ta-
ble 1. AT-CNNs performs better on Low-pass filtered dataset
and worse on High-pass filtered dataset. Results indicate
that AT-CNNs make their predictions depend more on low-
frequency information. This finding is consistent with our
conclusions since local features such as textures are often
considered as high-frequency information, and shapes and
contours are more like low-frequency.

4. Detailed results
We the detailed results for our quantitative experiments
here. Table 3, 2, 4 show the results of each models on
test set with different saturation levels. Table 6, 5 list all
the results of each models on test set after different path-
shuffling operations.

5. Additional Figures
We show additional sensitive maps in Figure 1. We also
compare the sensitive maps using Grad and SmoothGrad
in Figure 2.
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Table 1. “Accuracy on correctly classified images” for different models on three Fourier-filtered Caltech-256 test sets.
DATA SET THE LOW FREQUENCY FILTERED VERSION THE HIGH FREQUENCY FILTERED VERSION THE RANDOM FILTERED VERSION

STANDARD 15.8 16.5 73.5
UNDERFIT 14.5 17.6 62.2
PGD-l∞: 71.1 3.6 73.4

Table 2. “Accuracy on correctly classified images” for different models on saturated Caltech-256 test set. It is easily observed AT-CNNs
are much more robust to increasing saturation levels on Caltech-256.

SATURAION LEVEL 0.25 0.5 1 4 8 16 64 1024

STANDARD 28.62 57.45 85.20 90.13 65.37 42.37 23.45 20.03
UNDERFIT 31.84 63.36 90.96 84.51 57.51 38.58 26.00 23.08
PGD-l∞: 8 32.84 53.47 82.72 86.45 70.33 61.09 53.76 51.91
PGD-l∞: 4 31.99 57.74 85.18 87.95 70.33 58.38 48.16 45.45
PGD-l∞: 2 32.99 60.75 87.75 89.35 68.78 51.99 40.69 37.83
PGD-l∞: 1 32.67 61.85 89.36 90.18 69.07 50.05 37.98 34.80
PGD-l2: 12 31.38 53.07 82.10 83.89 67.06 58.51 52.45 50.75
PGD-l2: 8 32.82 56.65 85.01 86.09 68.90 58.75 51.59 49.30
PGD-l2: 4 32.82 58.77 86.30 86.36 67.94 53.68 44.43 41.98
FGSM: 8 29.53 55.46 85.10 86.65 69.01 55.64 45.92 43.42
FGSM: 4 32.68 59.37 87.22 87.90 66.71 51.13 41.66 38.78

Table 3. “Accuracy on correctly classified images” for different models on saturated Tiny ImageNet test set. It is easily observed AT-CNNs
are much more robust to increasing saturation levels on Tiny ImageNet.

SATURAION LEVEL 0.25 0.5 1 4 8 16 64 1024

STANDARD 7.24 25.88 72.52 72.73 25.38 8.24 2.62 1.93
UNDERFIT 7.34 25.44 69.80 60.67 18.01 6.72 3.16 2.65
PGD-l∞: 8 11.07 29.08 67.11 74.53 49.8 40.16 35.44 33.96
PGD-l∞: 4 12.44 33.53 72.94 75.75 46.38 32.12 24.92 22.65
PGD-l∞: 2 12.09 34.85 75.77 76.15 41.35 25.20 16.93 14.52
PGD-l∞: 1 11.30 35.03 76.85 78.63 40.48 21.37 12.70 10.81
PGD-l2: 12 11.30 29.48 66.94 75.22 52.26 42.11 37.20 35.85
PGD-l2: 8 12.42 32.78 71.94 75.15 47.92 35.66 29.55 27.90
PGD-l2: 4 12.63 34.10 74.06 77.32 45.00 28.73 20.16 18.04
FGSM: 8 12.59 32.66 70.55 81.53 41.83 17.52 7.29 5.82
FGSM: 4 12.63 34.10 74.06 75.05 42.91 29.09 22.15 20.14

Table 4. “Accuracy on correctly classified images” for different models on saturated CIFAR-10 test set. It is easily observed AT-CNNs are
much more robust to increasing saturation levels on CIFAR-10.

SATURAION LEVEL 0.25 0.5 1 4 8 16 64 1024

STANDARD 27.36 55.95 91.03 93.12 69.98 48.30 34.39 31.06
UNDERFIT 21.43 50.28 87.71 89.89 66.09 43.35 29.10 26.13
PGD-l∞: 8 26.05 46.96 80.97 89.16 75.46 69.08 58.98 64.64
PGD-l∞: 4 27.22 49.81 84.16 89.79 73.89 65.35 59.99 58.47
PGD-l∞: 2 28.32 53.12 86.93 91.37 74.02 62.82 55.25 52.60
PGD-l∞: 1 27.18 53.59 88.54 91.77 72.67 58.39 47.25 41.75
PGD-l2: 12 25.99 46.92 81.72 88.44 73.92 66.03 60.98 59.41
PGD-l2: 8 27.75 50.29 83.76 80.92 73.17 64.83 58.64 46.94
PGD-l2: 4 27.26 51.17 85.78 90.08 73.12 61.50 52.04 48.79
FGSM: 8 25.50 46.11 81.72 87.67 74.22 67.12 62.51 61.32
FGSM: 4 26.39 58.93 84.30 89.02 73.47 64.43 58.80 56.82
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Table 5. “Accuracy on correctly classified images” for different models on Patch-shuffled Caltech-256 test set. Results indicates that
AT-CNNs are more sensitive to Patch-shuffle operations on Caltech-256.

DATA SET 2× 2 4× 4 8× 8T

STANDARD 84.76 51.50 10.84
UNDERFIT 75.59 33.41 6.03
PGD-l∞: 8 58.13 20.14 7.70
PGD-l∞: 4 68.54 26.45 8.18
PGD-l∞: 2 74.25 30.77 9.00
PGD-l∞: 1 78.11 35.03 8.42
PGD-l2: 12 58.25 21.03 7.85
PGD-l2: 8 63.36 22.19 8.48
PGD-l2: 4 69.65 28.21 7.72
FGSM: 8 64.48 22.94 8.07
FGSM: 4 70.50 28.41 6.03

Table 6. “Accuracy on correctly classified images” for different models on Patch-shuffled Tiny ImageNet test set. Results indicates that
AT-CNNs are more sensitive to Patch-shuffle operations on Tiny ImageNet.

DATA SET 2× 2 4× 4 8× 8T

STANDARD 66.73 24.87 4.48
UNDERFIT 59.22 23.62 4.38
PGD-l∞: 8 41.08 16.05 6.83
PGD-l∞: 4 49.54 18.23 6.30
PGD-l∞: 2 55.96 19.95 5.61
PGD-l∞: 1 60.19 23.24 6.08
PGD-l2: 12 42.23 16.95 7.66
PGD-l2: 8 47.67 16.28 6.50
PGD-l2: 4 51.94 17.79 5.89
FGSM: 8 57.42 20.70 4.73
FGSM: 4 50.68 16.84 5.98
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Figure 1. Visualization of Salience maps generated from SmoothGrad (Smilkov et al., 2017) for all 11 models. From left to right,
Standard CNNs, underfitting CNNs, PGD-inf: 8, 4, 2, 1, PGD-L2: 12, 8, 4 and FGSM: 8, 4.
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Figure 2. Visualization of Salience maps generated from Grad for all 11 models. From left to right, Standard CNNs, underfitting CNNs,
PGD-inf: 8, 4, 2, 1, PGD-L2: 12, 8, 4 and FGSM: 8, 4. It’s easily observed that sensitivity maps generated from Grad are more noisy
compared with its smoothed variant SmoothGrad, especially for Standard CNNs and underfitting CNNs.


