
Metric-Optimized Example Weights

Sen Zhao * 1 Mahdi Milani Fard * 1 Harikrishna Narasimhan 1 Maya Gupta 1

Abstract
Real-world machine learning applications often
have complex test metrics, and may have train-
ing and test data that are not identically dis-
tributed. Motivated by known connections be-
tween complex test metrics and cost-weighted
learning, we propose addressing these issues by
using a weighted loss function with a standard
loss, where the weights on the training examples
are learned to optimize the test metric on a valida-
tion set. These metric-optimized example weights
can be learned for any test metric, including black
box and customized ones for specific applications.
We illustrate the performance of the proposed
method on diverse public benchmark datasets and
real-world applications. We also provide a gener-
alization bound for the method.

1. Introduction
In machine learning, each example is usually weighted
equally during training. Such uniform weighting delivers
satisfactory performance when training and test examples
are independent and identically distributed (IID), and the
training loss matches the test metric. However, these re-
quirements are often violated in real-world applications, as
the real-world goals for a model are often quite complicated.
If the training loss does not correlate sufficiently with the
test metric, inferior test performance can result (Cortes &
Mohri, 2004; Perlich et al., 2003; Davis & Goadrich, 2006).

If the test metric has a sufficiently nice structure, and the
train and test distributions are IID, it may be possible to spec-
ify a useful example-weighted training loss, and train for it
(Koyejo et al., 2014; Parambath et al., 2014; Narasimhan
et al., 2015b;a). In this paper, we extend the strategy of
using training example weights to arbitrary test metrics, by
learning a function to weight the examples that best op-

*Equal contribution 1Google AI, 1600 Amphitheatre Parkway,
Mountain View, CA 94043, USA. Correspondence to: Sen Zhao
<senzhao@google.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

timizes the test metric on a validation set. Our proposal,
metric-optimized example weights (MOEW) is applicable
for any test metric. MOEW can address non-IID test sam-
ples if there is available a small set of labeled validation
examples that are IID with the test examples. By learning a
weighting function, MOEW effectively rescales the loss on
each training example, and reshapes the overall loss such
that its optima better match the optima of the test metric.

As an illustrative example, Figure 1 shows a simulated
dataset with non-IID training and test examples, and the
learned MOEW example weighting. The goal is to max-
imize precision at 95% recall on the test distribution. At
95% recall, with uniform weighting the precision is 20.8%;
with optimal importance weighting (Shimodaira, 2000) it
is better at 21.8%, but with MOEW it can be improved to
23.2%, much closer to the Bayes optimal of 25%. Com-
paring Figure 1c to 1d, one can see that MOEW learns to
upweight negative training examples compared to positive
examples, and to upweight examples closer to the center.

2. Related Work
Our proposed approach simultaneously addresses two key
issues: non-IID training and test sets, and mismatch between
training loss and test metrics.

For the first issue, classical approaches include propensity
matching (Lunceford & Davidian, 2004) and importance
weighting (Shimodaira, 2000; Sugiyama et al., 2007; 2008;
Kanamori et al., 2009). Bickel et al. (2009) also proposed a
discriminative approach for learning under covariate shift .
None of these approaches handle a general test metric.

For the second issue, a variety of approaches have been de-
veloped to directly optimize complex metrics on the training
set. These include (i) plug-in approaches (Koyejo et al.,
2014; Narasimhan et al., 2014), (ii) surrogate loss optimiza-
tion for AUC (Ferri et al., 2002; Yan et al., 2003; Cortes
& Mohri, 2004; Freund et al., 2003; Herschtal & Raskutti,
2004; Rudin & Schapire, 2009; Zhao et al., 2011), the F-
measure (Joachims, 2005; Jansche, 2005) and other ranking
metrics (Yue et al., 2007; Eban et al., 2017; Kar et al., 2014;
2015), and (iii) sequential example-weighting techniques for
complex metrics (Parambath et al., 2014; Narasimhan et al.,
2015b;a) and constraints (Agarwal et al., 2018; Kearns et al.,

Metric-Optimized Example Weights

(a) Training Distribution (b) Test Distribution

(c) Pos. Example Weighting (d) Neg. Example Weighting

Figure 1: Figures 1a and 1b show the distribution of the
training and validation/test data, where black dots represent
negative examples and red dots represent positive exam-
ples. The two features were drawn from beta distributions:
training (x1, x2) ∼ (β(2, 1), β(2, 1)), but validation/test,
(x1, x2) ∼ (β(1, 2), β(1, 2)). Figures 1c and 1d show con-
tour lines of the MOEW weighting function for positive and
negative examples, respectively.

2018; Narasimhan, 2018). These methods crucially rely on
the test metric having a specific closed-form structure and
do not offer the generality of our approach.

Our approach generalizes the idea of sequential weighting
techniques to arbitrary (possibly black-box) test metrics and
to non-IID train and test distributions.

3. Metric Adaptive Weight Optimization
We now describe our proposed adaptive example weighting
approach and provide theoretical justifications in Section 4.

3.1. Overview

We consider classification and regression problems where
examples x ∈ RD and labels y ∈ Y ⊆ R. We allow the
training and test distribution to be non-IID, but sharing the
same support.

We are interested in learning a model, h(x; θ) ∈ H, which is
parameterized by θ ∈ RD. The performance of the classifier
or regressor is evaluated using a metric M(θ) defined on a
test distribution (with higher values of M being better). Let
T and V denote the sets of training and validation examples,
respectively. We assume that V is drawn IID from the test

distribution, but that T and V may not be IID. The goal is
to use the training and validation sets to find model θ∗ that
maximizes the test metric M .

It is known that for a wide range of evaluation metrics that
can be written as a function of simpler expected point-wise
losses, the optimal parameters θ can be found by minimizing
a particular example-weighted loss function (Parambath
et al., 2014; Narasimhan et al., 2015a;b) (see Section 4 for
details). Motivated by these results, we propose to directly
learn an example weighting on the training examples that
yields a model with optimal test metric.

In particular, we use an example weighting function w :
RD × R → R+ parameterized by α that maps a training
feature vector and label to a non-negative weight. For a
predicted label ŷ and true label y, define a loss function
L(ŷ, y). Find the optimal θ̂ that minimizes the correspond-
ing weighted loss on the training set

θ̂(α) = arg min
θ

∑
j∈T

w (xj , yj ;α)L (h (xj ; θ) , yj) . (1)

Let M̂(xV , yV ; θ) denote the estimate of the test metric
on the validation dataset V . Indeed one could consider
directly optimizing M̂(xV , yV ; θ) over θ ∈ RD. However,
for a high-dimensional θ and a small V , we may end up
overfitting the validation set, and performing poorly on
the test metric. Instead, we propose learning the example
weighting function w(x, y; α̂), such that:

α̂ = arg max
α

M̂(xV , yV ; θ̂(α)). (2)

In other words, we propose finding the optimal parameters
α̂ for the example weighting function w(x, y; α̂) such that
the model that optimizes the example-weighted loss on the
training set achieves the best validation score. The benefit
of this approach is that α can be constructed to be low-
dimensional, which can be optimized to maximize M on
the validation set, whereas θ, being high-dimensional, is
optimized on the larger training set.

To simplify the notation, where possible, we denote θ(α)
by θ and M̂(xV , yV ; θ) by M̂(θ). The validation metric
M̂(θ) as a function of θ and α is likely non-convex and non-
differentiable, which makes it hard to be directly optimized
through, e.g., SGD. Instead, we adopt an iterative algorithm
to optimize for θ∗ and α̂, which is detailed in Algorithm 1.

We start with a random sample of K weighting parameters,
α0 = {α0

1, . . . , α
0
K}. For each of α0

l , 1 ≤ l ≤ K, we solve
equation 1 to obtain K corresponding model parameters
θ̂0
l , and use those to compute K validation metrics, M̂(θ̂0

l).
Then, based on the batch of K weighting parameters and
validation metrics, we determine a new set of K weight
parameter candidates. This step is performed by a call to the

Metric-Optimized Example Weights

Algorithm 1 Get optimal α̂ and θ̂(α̂)

T ← training data
V ← validation data
B ∈ N+ ← number of batches of weight parameters
α0 = {α0

1, . . . , α
0
K} ← initial weight parameters

for i = 0, 1, . . . , B − 1 do
for all l ∈ {1, . . . ,K} do
θ̂il ← arg minθ

∑
j∈T w(xj , yj ;α

i
l)L(h(xj ; θ), yj)

end for
si ← {(αi1, M̂(θ̂i1)), . . . , (αiK , M̂(θ̂iK))}
αi+1 ← GetCandidateAlphas(s0, . . . , si)

end for
b̂, k̂ ← arg maxb∈{0,...,B−1},k∈{1,...,K} M̂(θbk)

α̂, θ̂ ← αb̂
k̂
, θ̂b̂
k̂

subroutine GetCandidateAlphas. The process is repeated
for B iterations. At the end, we choose the candidate α that
produced the best validation metric.

In the following subsections, we describe the function class
W of the weighting model, and one possible instantiation
of the GetCandidateAlphas subroutine used in Algorithm 1.

3.2. Function Class for the Example Weighting Model

Recall that the final optimal α̂ is taken to be the best out of
B ×K samples of α’s. To ensure a sufficient coverage of
the weight parameter space for a small number of B ×K
validation samples, we found it best to use a function class
W with a small number of parameters.

There are many reasonable strategies for definingW . In this
paper, we chose the functional form:

w (x, y;α) = c π (y)σ
(
z(x, y)>α

)
, (3)

where c ∈ R+ is a constant that normalizes the weights
over (a batch from) the training set T , and σ(z(x, y)>α)
is a sigmoid transformation of a linear function of a low-
dimensional embedding z of (x, y). In the experiments
discussed in Section 5, we used the standard importance
function π (y) = pV (y) /pT (y), where pV(y) and pT (y)
denote the probability density function of y in the validation
and training data, respectively. In practice, π(y) can be
substituted with any baseline weighting function, which can
be considered as an initialization of MOEW.

While there are many ways to form a low-dimensional em-
bedding z of (x, y), we choose to use an autoencoder. To
train the autoencoder z(x, y; ξ̂), we minimize the weighted
sum of the reconstruction loss for x and y:∑
(x,y)∈T

{
λLx(z(x, y; ξ), x) + (1− λ)Ly(z(x, y; ξ), y)

}
,

where Lx is an appropriate loss for the feature vector x and
Ly is an appropriate loss for the label y. The hyperparameter
λ is used to adjust the relative importance of features and
the label in the embedding. For all the experiments in this
paper discussed in Section 5, we used a fixed λ = 0.5.

3.3. Global Optimization of Weight Function
Parameters

The validation metric M̂(θ̂(α)) may have multiple optima
as a function of α. In order to find the maximum validation
score, the sampled candidate α’s should achieve two goals.
First, α should sufficiently cover the weighting parameter
space. In addition, we also need a large number of candidate
α’s sampled near the most promising local optima. In other
words, there is an exploration (spread α’s more evenly) and
exploitation (make α’s closer to the optima) trade-off when
choosing candidate α’s.

One can treat this as a global optimization problem and
sample candidate α’s with a derivative free optimization
algorithm (Conn et al., 2009), such as simulated annealing
(van Laarhoven & Aarts, 1987), particle swarm optimiza-
tion (Kennedy & Eberhart, 1995) and differential evolution
(Storn & Price, 1997). For a low dimensional space, one
can do an exhaustive search for α’s on a grids. We derive a
generalization bound for such a search in Theorem 2.

For the experiments in this paper, we chose to base our al-
gorithm on Gaussian process regression (GPR), specifically
on the Gaussian Process Upper-Confidence-Bound (GP-
UCB) (Auer, 2002; Auer et al., 2002) adapted to batched
sampling of parameters, i.e., GP-BUCB. Desautels et al.
(2014) shows that GP-BUCB could achieve the same cumu-
lative regret as GP-UCB up to a constant factor.

As detailed in Algorithm 2, after getting the i-th batch of
candidate α’s and their corresponding validation metrics
M̂(θ̂), we build a GPR model g(α) to fit the validation met-
rics on α for all previous observations. The next batch of
candidate α’s is then selected sequentially: we first sample
an αi+1

1 based on the upper bound of the p% prediction
interval of g(α), i.e., αi+1

1 = arg maxαQ(50+p/2)%[g(α)].
A larger value of hyperparameter p encourages exploration,
whereas a smaller value encourages exploitation. After αi+1

1

is sampled, we refit a GPR model with an added observa-
tion for αi+1

1 , as if we have observed a validation metric
Q(50−q/2)%[g(αi+1

1)], which is the lower bound of the q%
prediction interval of g(α). Hyperparameter q controls how
much the refitted GPR model trusts the old GPR model and
a larger q encourages wider exploration within each batch.
We then use the refitted GPR model to generate another can-
didate αi+1

2 , and continue this process until all the candidate
α’s in the (i+ 1)-th batch are generated. Note that to ensure
convergence, in practice, we usually generate candidate α’s
within a bounded domain B.

Metric-Optimized Example Weights

Algorithm 2 Get Candidate αi+1

S ← set of α and validation metrics in prior batches
K ∈ N+ ← number of candidates in a batch
B← convex domain in which to sample α
p, q ∈ [0, 100]← explore-exploit hyperparameters
for j = 1, 2, . . . ,K do
g(α)← GPR(S)
αi+1
j ← arg maxα∈B{Q(50+p/2)%[g(α)]}
S ← S ∪ {(αi+1

j , Q(50−q/2)%[g(αi+1
j)])}

end for
αi+1 ← {αi+1

1 , . . . , αi+1
K }

Figure 2 shows 200 sampled candidate α’s in B = 10
batches in the example in Section 5.4 with p = q = 68.3.
It shows that at the beginning of the candidate α sampling
process, GPR explores more evenly across the domain B.
As the sampling process continues, GPR begins to exploit
more heavily near the optimal α̂ in the lower right corner.

4. Theoretical Analysis
In this section, we first show that example-weighting can
indeed find the optimal model for a large family of evalua-
tion metrics. We then provide a generalization bound for the
MOEW approach that learns an example-weighting function
for a general test metric. All proofs are in the appendix.

Let D and D′ denote the test and train distributions respec-
tively. We will present our results for a fairly broad family
of evaluation metrics M(θ) that can be written as a general
function Ψ : RK → R of K simpler evaluation metrics
defined on the test distribution:

M(θ) := Ψ(φ1(θ), . . . , φK(θ)), (4)

where:

φk(θ) := E(x,y)∼D
[
`k
(
x, y; θ

)]
,

with each `k : RD × Y → R+ being a loss on individual
examples. This class of metrics includes the F-measure, var-
ious fairness metrics and general functions of the confusion
matrix of a classifier. In fact, similar functional forms have
been used previously to model arbitrary functions on a set
of points (Zaheer et al., 2017).

As a simple example, to write the precision of a classifier in
this form, we can set:

`1(x, y; θ) := 1(h(x; θ)=1, y=0)

`2(x, y; θ) := 1(h(x; θ)=0, y=1)

Ψ(φ1, φ2) := (E[y=1]− φ2)/(E[y=1] + φ1 − φ2).

We first generalize results from (Narasimhan et al., 2015a;b)
to show that under specific assumptions on `k the optimal

(a) Batch 0 (b) Batch 1

(c) Batch 3 (d) Batch 5

(e) Batch 7 (f) Batch 9

(g) Validation Metric (h) Test Metric

Figure 2: In Figures 2a-2f, red dots show the first two
embedding dimensions of candidate α’s throughout theB =
10 batches GPR sampling process in the example studied in
Section 5.4. Figures 2g and 2h show the validation and test
metrics with the 200 sampled candidate α. The correlation
between validation (g) and test (h) metrics is 0.97.

model for the above test metrics can be found by minimizing
an example-weighted loss on the train distribution.

Theorem 1 (Connection between complex metrics and
example-weighting). Let θ∗ be the optimal model param-
eters for M(θ). Let the train and test distributions D and
D′ have the same support. Let each φk be strictly convex
in θ and let each `k

(
x, y; θ

)
=
(
ϕk(x, y)

)>
L
(
h(x; θ), y

)
for weight functions ϕ1, . . . , ϕK : RD × Y → Rn+ and a
loss function L : R× Y → Rn+. Let Ψ belong to one of the
following two families:

1. Ψ(z) is concave in z, and is strictly decreasing in zi.

2. Ψ(z) = Ψ′(z)/Ψ′′(z) where Ψ′ : RK → R+ is
concave, Ψ′′ : RK → R+ is convex, Ψ′′(z) > 0 ∀z ∈
RK , and Ψ′(z)−M(θ∗)Ψ′′(z) is strictly decreasing
in each zi.

Metric-Optimized Example Weights

Then there exists a weight function w : RD×Y → Rn+ such
that θ∗ is the unique solution for the following weighted loss
minimization on the train distribution:

min
θ∈RD

E(x,y)∼D′

[(
w(x, y)

)>
L
(
h(x; θ), y

)]
.

The above theorem shows an equivalence between maximiz-
ing a metric M of the prescribed form, and minimizing an
example-weighted loss. The monotonicity assumption on
Ψ ensures that that the lower the individual losses φk, the
higher is the metric.

To better understand the effect of the embedding dimension
and the size of the validation set on the generalization error
of the MOEW method, we consider a theoretical analysis of
an instance of MOEW where the GetCandidates algorithm
does an exhaustive search over a fixed candidate set A that
covers the unit ball.
Theorem 2 (Generalization bound). Let α ∈ Bd be the
MOEW coefficient vector in a d-dimensional unit ball. Let
V ∼ DN be a validation set of sizeN . Denote the empirical
versions of the test metric in equation 4 as:

M̂(θ) := Ψ(φ̂1(θ), . . . , φ̂K(θ)),

φ̂k(θ) :=
1

N

∑
(x,y)∈V

`k(x, y; θ).

Let α∗ := arg maxα∈Bd M(θ̂(α)) be the optimal coefficient
vector in the unit ball, and α̂ := arg maxα∈A M̂(θ̂(α)) be
the empirically optimal among a candidate set A. Assume:

(A) For all k, `k is sub-Gaussian with parameter σ.
(B) Ψ is LΨ-Lipschitz continuous in φ′s w.r.t. the L2 norm.
(C) For all k, φk(θ̂(α)) is Lφ-Lipschitz continuous in α w.r.t.
the L2 norm.

For N ≥ 9σ2K, there is a candidate set A such that with
probability 1− δ, M(θ̂(α∗))−M(θ̂(α̂)) is bounded by:

σLΨ

√
K√

N

(√
4d ln

N

σ2
+ 8 ln

2K

δ
+ 3Lφ

)
.

Theorem 2 establishes that an exhaustive search in the unit
ball finds a solution that approaches the optimal test metric
in order Õ(

√
d logN/N). Note that the Lipschitz constant

Lφ depends on the metric function, model hypothesis space,
training loss function, training algorithm and the size of
the training set. A more concrete bound can possibly be
established with convexity assumption on the loss function
and well-behaved hypothesis spaces.

5. Experimental Results
In this section, we illustrate the value of our proposal by
comparing it to common strategies on a diverse set of exam-
ple problems. Unless otherwise noted, for our proposal, we

first create a d-dimensional embedding of training pairs T
by training an autoencoder that has d nodes in the middle
layer. We sample B ×K candidate α’s in a d-dimensional
ball of radius R using GP-BUCB with p = q = 68.3 and
an RBF kernel, whose kernel width was set to be equal to
R. The noise level of the GP was determined based on the
metric noise level of uniform weighting models. For a fair
comparison, for competing methods, we also train the same
number of models (with random initialization), and pick the
one with the best validation metric. Both the autoencoder
and the main models were trained for 10k steps using Adam
optimizer (Kingma & Ba, 2015) with learning rate 0.001.
We used squared loss for numeric, hinge loss for binary, and
cross-entropy loss for multiclass label/features. To mitigate
the randomness in the result, we repeat the whole process
100 times and report the average and error margin1.

Our experiments are designed to test whether MOEW can
help, irregardless of the model structure. Therefore, for
simplicity, model architecture and hyperparameters were
optimized for each experiment without any weights, then
fixed for the weighting experiments. In practice, one might
get some additional gains by tuning MOEW and model
hyperparameters jointly.

The ability to optimize any testing metric is a unique benefit
of MOEW over other metric-specific methods. For that
reason we focus on demonstrating it does help optimize non-
standard metrics. How MOEW compares to customized
losses for optimizing specific testing metrics, such as AUC
or F-score, is not the focus of this paper, but would be
interesting follow-on work.

5.1. MOEW Performance Versus Model Complexity

In this section we empirically examine the performance of
MOEW in relation to the complexity of the main model and
the weighting model.

5.1.1. MAIN MODEL COMPLEXITY

If the model is flexible enough, and the training data is
clean and sufficient to fit a perfectly accurate model for
all parts of the feature space, then MOEW is not needed.
MOEW will be most valuable when the model must take
some trade-off, and we can learn an example weighting in
a way that best benefits the test metric. We illustrate this
effect by studying the efficacy of MOEW as a function of
the complexity of the main model. For this experiment, we
used MNIST handwritten digit database (LeCun & Cortes,
2010), and train on it with classifiers of varying complexity.

We used training/validation/test split of sizes 55k/5k/10k

1The code on public datasets is available at the follow-
ing GitHub address: https://github.com/google-research/google-
research/tree/master/moew.

Metric-Optimized Example Weights

10 20 30 40 50

6
8

1
0

1
2

1
4

Number of Hidden Nodes

E
rr

o
r

M
e

tr
ic

 (
%

)

(a) Number of Hidden Nodes

0 2 4 6 8−
0

.4
−

0
.2

0
.0

0
.2

0
.4

Digit

W
e

ig
h

ti
n

g
 C

o
e

ff
ic

ie
n

t

0 1 2 3 4 5 6 7 8 9

0
2

4
6

8

U
n

ifo
rm

 V
a

lid
a

ti
o

n
 E

rr
o

r
(%

)

(b) Analysis of Digits

Figure 3: (a) MNIST test metric with varying number of
hidden nodes in the main model. Methods include uniform
weighting (orange), purely random weighting (red), MOEW
with random α’s (green) and with GP-BUCB selected α’s
(blue). The 95% error margin for any point is less than 0.1%.
(b) With h = 50 hidden nodes in the main model, average
α of each digit and their 95% error margin for GP-BUCB
(blue, axis on the left), as well as the validation error of
uniform weighting model (orange, axis on the right).

respectively. For the MOEW model, to simplify analy-
sis, instead of using an autoencoder to learn the embed-
ding, we directly used the class label as the 10-dimensional
embedding. The main classifier was a sigmoid-activation
network with 784 → h → 10 nodes in each layer, with
h ∈ {10, 20, 30, 40, 50}. We used B = 10 batches of
K = 20 α’s, which were either generated randomly or
based on GP-BUCB, and compared against the best-of-200
uniform and purely random weighted models. The error
metric was taken to be the maximum of the error rates for
each digit: maxi∈{0,...,9} Pr{ŷ 6= i|y = i}.

Figure 3a shows the test error metric calculated with vari-
ous main model complexities, each averaged over 100 runs.
We observe that our proposal (blue and green) clearly out-
performs uniform weighting (orange) and purely random
weighting (red) for models of limited complexity. The ben-
efit is smaller for models that are more flexible. In most
real-world situations, the model complexity is limited either
by practical constraints on computation, or otherwise to
avoid overfitting to smaller training datasets. In such cases
there might be an inherent trade-off in the learning process,
and we expect MOEW to deliver the most improvement. In
addition to the above finding, we observe that candidate α’s
generated based on GP-BUCB delivers better performance
than those generated randomly.

Figure 3b shows the average weighting coefficients (i.e.,
α in equation 3) of the ten digits generated by GP-BUCB
with h = 50 hidden nodes in the main model (blue). It
indicates that MOEW learns to upweight digits 2, 5, 8 and
9, and downweight 0, 1, 4 and 7. Such a result is consistent
with the validation error in the uniform weighting model
(orange), where digits 2, 5, 8 and 9 have the highest error.

5.1.2. MOEW MODEL COMPLEXITY AND RISK OF
OVERFITTING

In this experiment, we study the effect of the embedding
dimension d, the number of batches B and the exploration-
exploitation parameters p and q on the MOEW performance.
Specifically, we are interested in the difficulty for GP-BUCB
to find the optimal solution, as well as the risk of overfitting
to the validation dataset. We used the wine reviews dataset
from Kaggle (www.kaggle.com/zynicide/wine-reviews).
The task is to predict the price of the wine using 39 Boolean
features describing characteristic of the wine and the quality
score (points), for a total of 40 features. We calculate the
error in percentage of the correct price, and want the model
to have good accuracy across all price ranges. To that end,
we set the test metric to be the worst of the errors among
4 quartiles {qi} of the price (thresholds are 17, 25 and 42
dollars): maxi∈{0,...,3}Eprice(x)∈qi [|ŷ/y − 1|].

We used training/validation/test split of sizes 85k/12k/24k
respectively. We applied a log transformation to the label
(price) and used mean squared error as the training loss on
the log-transformed prices (for all weightings). For MOEW,
we used a d-dimensional embedding, created by training a
sigmoid-activation autoencoder network on the (x, y) pair,
with 41 → 100 → d → 100 → 41 nodes in each layer.
The main regressor was a sigmoid-activation network with
40 → 20 → 10 → 1 nodes in each layer. We used B
batches of K = 20 α’s in our proposed method.

In the first study, shown in figure 4a, we fixed the number
of batches B = 10 and varied the embedding dimension
d ∈ {2, 4, . . . , 30}. The result indicates that the test perfor-
mance of MOEW improves as we increase the embedding
dimension up to around d = 8, at which point the test error
metric is 46.33±0.16. As a comparison, the best-of-200 uni-
form weighted models achieves an average test error metric
of 52.00± 0.31. On the other hand, the result also suggests
that the validation performance begins to drop when d > 14,
which indicates that GP-BUCB was unable to converge to
good solutions in such high-dimensional spaces with 200
candidate α’s. In addition, the test-metric-to-validation-
metric-ratio is slightly larger when d is small, which sug-
gests that there might be overfitting to the validation set
with small embedding dimension d. This is in fact intuitive:
in a high-dimensional space with a limited number of α’s,
GP-BUCB acts similarly to pure exploration. Because there
is less exploitation, there is also less overfitting.

In the second study, shown in figure 4b, we fixed the embed-
ding dimension d = 10 and investigated the performance of
MOEW with number of batches B ∈ {5, 10, . . . , 50}. The
figure indicates that both the validation and test performance
improves as we sample more batches of candidate weighting
parameters. In addition, the gap between validation and test
metrics does not widen, suggesting that the risk of overfit-

Metric-Optimized Example Weights

ting is small in the range of values we experimented with.
As a comparison with the B = 50 case, the best-of-1000
uniform model achieves test performance 48.27± 0.41.

0 5 10 15 20 25 30

4
6

4
7

4
8

4
9

5
0

Embedding Dimension d

E
rr

o
r

M
e

tr
ic

 (
%

)

(a) Embedding Dimension d

0 10 20 30 40 504
5

.0
4

5
.5

4
6

.0
4

6
.5

4
7

.0

Number of Batches B

E
rr

o
r

M
e

tr
ic

 (
%

)

(b) Number of Batches B

Figure 4: Metrics for validation (red) and test (blue) on
wine data with (a) embedding dimension d ∈ {2, 4, . . . , 30}
and number of batches B = 10, and (b) d = 10 and
B ∈ {5, 10, . . . , 50}. The pink and light blue shaded areas
indicate the 95% confidence bands.
In the third study, we fixed the embedding dimension d = 10
and number of batches B = 10, and study the effect of p
and q on MOEW performance. When p = q = 0, 75,
95, 99.99 and 99.999, MOEW test errors are 47.07± 0.19,
46.32± 0.15, 46.28± 0.15, 46.28± 0.16 and 46.46± 0.17,
respectively. MOEW is insensitive to p or q if exploration
is reasonably large.

5.2. MOEW Performance on Small Data

In this example, we examine MOEW on a small dataset,
namely the Communities and Crime dataset from the UCI
Machine Learning Repository (Dheeru & Karra Taniskidou,
2017), which contains the violent crime rate of 1994 com-
munities. The goal is to predict whether a community has
violent crime rate per 100k population above 0.28.

In addition to obtaining an accurate classifier, we also aim
to improve its fairness. To this end, we divided the commu-
nities into 4 groups based on the quartiles of white popu-
lation percentage in each community (thresholds are 63%,
84% and 94%). We seek a classifier with high accuracy,
but that has similar false positive rates (FPR) across racial
groups. Therefore, we evaluate classifiers based on two
metrics: overall accuracy across all communities and the
difference between the highest and lowest FPR across four
racial groups (fairness violation).

We used a linear classifier with 95 features, including the
percentage of African American, Asian, Hispanic and white
population. For MOEW, those features and the label were
projected to a 4-dimensional space using an autoencoder
with 96 → 10 → 4 → 10 → 96 nodes. We sampled
candidate α’s in B = 10 batches of size K = 5.

In practice, there is usually a trade-off between accuracy
and fairness (see, e.g., Hardt et al., 2016; Goh et al., 2016).
To explore this trade-off, we consider two approaches: with

Table 1: Average accuracy and fairness violation with their
95% error margin with IID training/test split. We consider
(Vanilla) minimizing fairness violation with identical deci-
sion threshold across racial groups, and (Post-Shift) maxi-
mizing accuracy with racial-group-specific thresholds for
equal FPR on the training data.

Vanilla Approach

Uniform MOEW

Accuracy (%) 86.82± 0.07 86.84± 0.12
Fairness Violation (%) 79.23± 2.35 57.74± 4.64

Post-Shift Approach

Uniform MOEW

Accuracy (%) 79.12± 0.12 79.95± 0.17
Fairness Violation (%) 12.26± 0.30 10.06± 0.54

the vanilla approach, we used MOEW to minimize the dif-
ference between the highest and lowest FPR across the 4
groups (i.e., minimize fairness violation), with identical
decision thresholds for all groups. With the post-shift ap-
proach (Hardt et al., 2016), after training the model, we
used MOEW to maximize accuracy with separate decision
thresholds for each group to achieve the same FPR on the
training data while maintaining the same overall coverage.

In the first study, we sample 994/500/500 train-
ing/validation/testing examples purely randomly, and com-
pare MOEW with the best-of-50 uniform weighting model.
The results are summarized in Table 1. With the vanilla
approach, MOEW reduces fairness violation by over 20%
and yet achieves the same accuracy compared to uniform
weighting. With the post-shift approach, MOEW improves
accuracy and reduces fairness violation at the same time.

In the second study, we sample 994/500/500 train-
ing/validation/testing examples such that in the training
data, 76% of the communities have above median popu-
lation, whereas in the validation/testing set, 40% of the
communities have above median population. We compare
MOEW with the best-of-50 optimal domain adaptation train-
ing weights provided by Shimodaira (2000). The results
are summarized in Table 2. MOEW performed similarly to
Shimodaira (2000) with the vanilla approach, and better in
fairness violation with post-shift.

5.3. Spam Blocking

For this problem from a large internet services company,
the goal is to classify whether a result is spam, and this
decision affects whether the result provider receives ads
revenue from the company. Thus, it is more important to
block more expensive spam results, but it is also important
not to block any results that are not spam, especially results

Metric-Optimized Example Weights

Table 2: Average accuracy and fairness violation with their
95% error margin with non-IID training/test split.

Vanilla Approach

Shimodaira MOEW

Accuracy (%) 85.59± 0.05 85.59± 0.06
Fairness Violation (%) 37.53± 0.40 37.78± 0.39

Post-Shift Approach

Shimodaira MOEW

Accuracy (%) 72.46± 0.11 72.33± 0.12
Fairness Violation (%) 6.63± 0.44 4.61± 0.41

Table 3: Average test metric and 95% error margin for Spam
Blocking with models trained with uniform weighting, opti-
mal domain adaptation weighting (Shimodaira) and MOEW.
Larger test metric is better.

Study 1 Study 2

Uniform 1.000± 0.040 1.000± 0.124
Shimodaira 1.210± 0.063 1.010± 0.137
MOEW 1.849± 0.133 8.057± 0.923

with many impressions. We used a simplified test metric
that captures these different goals (the actual metric is more
complex and proprietary). Specifically, for each method
we set the classifier decision threshold so that 5% of the
validation set is labelled as spam. We then sum the costs
saved by blocking correctly identified spams and divide it
by the total number of blocked impressions of incorrectly-
identified spams.

The datasets contain 12 features. We trained an autoencoder
on the 12 features plus label, with layers of 13 → 100 →
3 → 100 → 13 nodes, and used the middle layer as an
embedding. For each weighting method, we built a sigmoid-
activation network classifier with architecture 12→ 20→
10→ 1. Candidate α’s were sampled K = 20 at a time in
B = 10 rounds of sampling.

In the first study, we divide the dataset such that the 180k
training dataset is 25% spam, and is not IID with the valida-
tion/test datasets, which are IID and have 10k/30k examples
with 5% spam. In the second study, we divide the dataset
such that half of examples are from large result providers
in the 180k training dataset, and 20% of examples are from
large result providers in the 10k/30k validation/test datasets.

Table 3 compares MOEW with two common choices in
practice: uniform weighting and optimal domain adaptation
weighting (Shimodaira, 2000). We have normalized the
reported scores so that the average uniformly weighted test
metric is 1.0. Our proposed method clearly outperforms
both uniform and optimal domain adaptation weighting.

5.4. Web Page Quality

This binary classifier example is from a large internet ser-
vices company. The goal is to identify high quality web-
pages, thresholded such that 40% of examples are classified
as high quality. The company performed several rounds of
human ratings of example web pages. In the early rounds,
the label was binary (high/low quality). Later, human raters
provided finer-grained labels, scoring the quality in [0, 1].
The test metric for this problem is the mean fine-grained
score of the positively classified test examples.

We trained a six-feature sigmoid-activation classifier with
6 → 20 → 10 → 1 nodes on the 62k examples with
binary labels. To fit MOEW, we trained an autoencoder
that mapped the six features plus label onto a 3-dimensional
space: 7 → 100 → 3 → 100 → 7. We sampled K = 20
candidate α’s for B = 10 rounds.

The validation data and test data each have 10k web pages
labeled with a fine-grained score in [0, 1]. The datasets are
not IID: the training data is the oldest data, the test data is the
newest data, with validation data in-between. The average
quality score of 40% selected web pages is 0.7113±0.0004
with uniform weighting, and 0.7176± 0.0004 with MOEW.
Note that in this example, domain adaptation weighting
results in uniform weighting.

6. Conclusions
We proposed learning example weights to sculpt a standard
loss function into one that better optimizes a test metric for
the test distribution. We demonstrated substantial benefits
on public benchmark datasets and real-world applications,
for problems with non-IID train/test distributions and cus-
tom metrics that incorporated multiple objectives.

To limit the amount of validation data needed, we define
the example weighting model over a low-dimensional space.
Our experiments used the low-dimensional embedding of
(x, y) produced by an autoencoder, but we hypothesize that a
discriminatively-trained embedding could be more optimal,
or that using a small subset of semantically-meaningful
features could be more interpretable.

We hypothesize that the MEOW could also be useful for
other purposes. For example, they may be useful for guid-
ing active sampling, suggesting one should sample more
examples in feature regions with high training weights. And
we hypothesize one could downsample areas of low-weight
to reduce the size of training data for faster training and
iterations, without sacrificing test performance.

Metric-Optimized Example Weights

References
Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., and

Wallach, H. A reductions approach to fair classification.
In Proceedings of the 35th International Conference on
Machine Learning, pp. 60–69, 2018.

Auer, P. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3:397–422, 2002.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

Bickel, S., Brückner, M., and Scheffer, T. Discriminative
learning under covariate shift. Journal of Machine Learn-
ing Research, 10:2137–2155, 2009.

Conn, A. R., Scheinberg, K., and Vicente, L. N. Introduction
to Derivative-Free Optimization. SIAM, 2009.

Cortes, C. and Mohri, M. AUC optimization vs. error rate
minimization. In Advances in Neural Information Pro-
cessing Systems, pp. 313–320, 2004.

Davis, J. and Goadrich, M. The relationship between
precision-recall and ROC curves. In Proceedings of the
23rd International Conference on Machine Learning, pp.
233–240, 2006.

Desautels, T., Krause, A., and Burdick, J. W. Paralleliz-
ing exploration-exploitation tradeoffs in gaussian process
bandit optimization. The Journal of Machine Learning
Research, 15(1):3873–3923, 2014.

Dheeru, D. and Karra Taniskidou, E. UCI
machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml.

Eban, E., Schain, M., Mackey, A., Gordon, A., Rifkin, R.,
and Elidan, G. Scalable learning of non-decomposable ob-
jectives. In Proceedings of the 20th International Confer-
ence on Artificial Intelligence and Statistics, volume 54,
pp. 832–840, 2017.

Ferri, C., Flach, P. A., and Hernández-Orallo, J. Learn-
ing decision trees using the area under the ROC curve.
In Proceedings of the 19th International Conference on
Machine Learning, pp. 139–146, 2002.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933–969, 2003.

Goh, G., Cotter, A., Gupta, M., and Friedlander, M. P. Sat-
isfying real-world goals with dataset constraints. In Ad-
vances in Neural Information Processing Systems, pp.
2415–2423, 2016.

Hardt, M., Price, E., and Srebro, N. Equality of opportunity
in supervised learning. In Advances in Neural Informa-
tion Processing Systems, pp. 3315–3323, 2016.

Herschtal, A. and Raskutti, B. Optimising area under the
roc curve using gradient descent. In Proceedings of the
21st International Conference on Machine Learning, pp.
49–56, 2004.

Jansche, M. Maximum expected F-measure training of logis-
tic regression models. In Proceedings of the Conference
on Human Language Technology and Empirical Methods
in Natural Language Processing, pp. 692–699, 2005.

Joachims, T. A support vector method for multivariate
performance measures. In Proceedings of the 22nd Inter-
national Conference on Machine Learning, pp. 377–384,
2005.

Kanamori, T., Hido, S., and Sugiyama, M. A least-squares
approach to direct importance estimation. Journal of
Machine Learning Research, 10:1391–1445, 2009.

Kar, P., Narasimhan, H., and Jain, P. Online and stochastic
gradient methods for non-decomposable loss functions.
In Advances in Neural Information Processing Systems,
pp. 694–702, 2014.

Kar, P., Narasimhan, H., and Jain, P. Surrogate functions
for maximizing precision at the top. In Proceedings of
the 32nd International Conference on Machine Learning,
pp. 189–198, 2015.

Kearns, M., Neel, S., Roth, A., and Wu, Z. S. Preventing
fairness gerrymandering: Auditing and learning for sub-
group fairness. In Proceedings of the 35th International
Conference on Machine Learning, pp. 2564–2572, 2018.

Kennedy, J. and Eberhart, R. Particle swarm optimization. In
Proceedings of IEEE International Conference on Neural
Networks, pp. 1942–1948, 1995.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Koyejo, O. O., Natarajan, N., Ravikumar, P. K., and Dhillon,
I. S. Consistent binary classification with generalized
performance metrics. In Advances in Neural Information
Processing Systems, pp. 2744–2752, 2014.

LeCun, Y. and Cortes, C. MNIST hand-
written digit database. 2010. URL
http://yann.lecun.com/exdb/mnist/.

Lunceford, J. K. and Davidian, M. Stratification and weight-
ing via the propensity score in estimation of causal treat-
ment effects: a comparative study. Statistics in Medicine,
23(19):2937–2960, 2004.

Metric-Optimized Example Weights

Narasimhan, H. Learning with complex loss functions and
constraints. In International Conference on Artificial
Intelligence and Statistics, pp. 1646–1654, 2018.

Narasimhan, H., Vaish, R., and Agarwal, S. On the sta-
tistical consistency of plug-in classifiers for nondecom-
posable performance measures. In Advances in Neural
Information Processing Systems, pp. 1493–1501, 2014.

Narasimhan, H., Kar, P., and Jain, P. Optimizing nonde-
composable performance measures: A tale of two classes.
In Proceedings of the 32nd International Conference on
Machine Learning, pp. 199–208, 2015a.

Narasimhan, H., Ramaswamy, H., Saha, A., and Agarwal,
S. Consistent multiclass algorithms for complex perfor-
mance measures. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, pp. 2398–2407,
2015b.

Parambath, S. P., Usunier, N., and Grandvalet, Y. Opti-
mizing f-measures by cost-sensitive classification. In
Advances in Neural Information Processing Systems, pp.
2123–2131. 2014.

Perlich, C., Provost, F., and Simonoff, J. S. Tree induction
vs. logistic regression: A learning-curve analysis. Journal
of Machine Learning Research, 4:211–255, 2003.

Rudin, C. and Schapire, R. E. Margin-based ranking and an
equivalence between AdaBoost and RankBoost. Journal
of Machine Learning Research, 10:2193–2232, 2009.

Shimodaira, H. Improving predictive inference under covari-
ate shift by weighting the log-likelihood function. Jour-
nal of Statistical Planning and Inference, 90(2):227–244,
2000.

Storn, R. and Price, K. Differential evolution – a simple and
efficient heuristic for global optimization over continuous
spaces. Journal of Global Optimization, 11(4):341–359,
1997.

Sugiyama, M., Krauledat, M., and Müller, K.-R. Covari-
ate shift adaptation by importance weighted cross valida-
tion. Journal of Machine Learning Research, 8:985–1005,
2007.

Sugiyama, M., Nakajima, S., Kashima, H., Büenau, P. V.,
and Kawanabe, M. Direct importance estimation with
model selection and its application to covariate shift adap-
tation. In Advances in Neural Information Processing
Systems, pp. 1433–1440, 2008.

van Laarhoven, P. J. M. and Aarts, E. H. L. Simulated
Annealing: Theory and Applications. Springer, 1987.

Yan, L., Dodier, R., Mozer, M. C., and Wolniewicz, R. Op-
timizing classifier performance via an approximation to
the Wilcoxon-Mann-Whitney statistic. In Proceedings of
the 20th International Conference on Machine Learning,
pp. 848–855, 2003.

Yue, Y., Finley, T., Radlinski, F., and Joachims, T. A support
vector method for optimizing average precision. In Pro-
ceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pp. 271–278, 2007.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Advances in Neural Information Processing Systems, pp.
3391–3401, 2017.

Zhao, P., Hoi, S. C. H., Jin, R., and Yang, T. Online AUC
maximization. In Proceedings of the 28th International
Conference on Machine Learning, pp. 233–240, 2011.

