
Poisson Subsampled Renyi Differential Privacy: Supplementary Materials

A. Proof of Theorem 5 and Theorem 8
Recall that we will denote the density of M ◦ PoissonSample(X ′) by q and that of M ◦ PoissonSample(X) by p. Let’s
first make a few observations.

1. There is a natural change of measure that we can do:

Eqe
α log(p/q) = Eq[(p/q)

α] = Ep[(p/q)
α−1] = Ep[e

(α−1) log(p/q)].

This relates RDP to the moment generating function of the log-odds ratio random variable, or the privacy random
variable log(p/q).

2. With our loss of generality, we can assume X ′ = X ∪ {x}. In order to bound RDP with order α, it suffices to bound
the moments Ep[(q/p)α] and Eq[(p/q)α] then take the bigger of the two bounds.

3. Both p and q are mixture distributions. Let |X| = n− 1 and |X ′| = n. p has 2n−1 mixture components and q has 2n
mixture components. Each component corresponds to a particular subset of the data set.

4. If we condition on condition on J = (σ1, ...,σn−1) ∈ {0, 1}n−1, we get

Ep[(q/p)
α] =

∫ (∑
J P(J)

[
(1− γ)µ0(J) + γµ1(J)

])α

(
∑

J P(J)µ0(J))α−1

By Lemma 23 of (Wang et al., 2019), f(x, y) = xα/yα−1 is jointly convex on R2
+ for all α ∈ (1,+∞), which allows

us to apply Jensen’s inequality to get

Ep[(q/p)
α] ≤

∑

J

P(J)Eµ0(J)

(
(1− γ)µ0(J) + γµ1(J)

µ0(J)

)α

and similarly

Eq[(p/q)
α] ≤

∑

J

P(J)E(1−γ)µ0(J)+γµ1(J)

(
µ0(J)

(1− γ)µ0(J) + γµ1(J)

)α

.

where µ0 is the distribution of M(XJ) and µ1 is the distribution of M(Xj ∪ {x}). 4

Denote µ0 := µ0(J) and µ1 := µ1(J) as short hands. What matters is that µ0 and µ1 are distributions induced by the
application of our base mechanism M to two adjacent data sets.

The fourth observation reduces the problem to bounding A1 := Eµ0

[(
(1−γ)µ0+γµ1

µ0

)α]
and A2 :=

E(1−γ)µ0+γµ1

[(
µ0

(1−γ)µ0+γµ1

)α]
using RDP of M.

Let’s start with A1 and consider only the case when α ≥ 1 is an integer. Also, without loss of generality, we assume γ < 1.
4Note that the arguments used by Abadi et al. (2016) based on the quasi-convexity of Renyi-divergence will give a slightly weaker

result but with the expectation over J replaced with the maximum over J , which will be sufficient for our purpose too in this paper.
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Let α ≥ 1 be an integer, and assume γ < 1. By the Binomial theorem:

A1 =Eµ0

[(
(1− γ) + γ

µ1

µ0

)α]

=
α∑

ℓ=0

(
α

ℓ

)
(1− γ)α−ℓγℓEµ0

(
µ1

µ0

)ℓ

=(1− γ)α−1(αγ − γ + 1) +
α∑

ℓ=2

(
α

ℓ

)
(1− γ)α−ℓγℓEµ0

(
µ1

µ0

)ℓ

≤(1− γ)α−1(αγ − γ + 1) +
α∑

ℓ=2

(
α

ℓ

)
(1− γ)α−ℓγℓe(ℓ−1)ϵ(ℓ).

A2 is tricky as we cannot always calculate it explicitly or approximate efficiently with Renyi-divergence. By a change of
measure, we can write A2 as moments of a negative order.

A2 = Eµ0

[(
1− γ + γ

µ1

µ0

)−(α−1)
]
.

Trivially, we have two somewhat trivial upper bounds

A2 ≤ (1− γ)−(α−1). (5)

When M is ϵ-DP,
A2 ≤ (1− γ(1− e−ϵ))−(α−1).

Other than these two, the expression does not seem to give us a more meaningful bound. It might be tempted to use
Binomial series expansion (now an infinite series). However, it is not guaranteed to converge for some µ0, µ1. Even in
cases when it converges, we will have positive and negative terms that we could not construct a tight expression with RDP.

A.1. A novel alternative decomposition.

Let us try to bound Eq[(p/q)α] through an alternative means. We will redefine the index set J = (σ1, ...,σn) ⊂ {0, 1}n.

Define q′ =
∑

J P(J)q′(J) such that q′(J) = q((σ1, ...,σn−1, 1)). Define p′ =
∑

J P(J)p′(J) such that p′(J) =
q((σ1, ...,σn−1, 0)). Note that p = p′, q = (1− γ)p+ γq′ and therefore p = q + γp′ − γq′.

It follows from Jensen’s inequality and the joint convexity that

Eq[(p/q)
α] =Eq

[(
q + γp′ − γq′

q

)α]
≤ EJEq

[(
q + γp′ − γq′

q

)α]

≤Eσ1,...,σn−1EσnEq(J)

[(
q(J) + γp′(J)− γq′(J)

q(J)

)α]

=Eσ1,...,σn−1

{
γEq′(J)

[(
q′(J) + γp′(J)− γq′(J)

q′(J)

)α∣∣∣∣σn = 1

]

+ (1− γ)Ep′(J)

[(
p′(J) + γp′(J)− γq′(J)

p′(J)

)α∣∣∣∣σn = 0

]}

=γEµ1

[(
(1− γ)µ1 + γµ0

µ1

)α]
+ (1− γ)Eµ0

[(
(1 + γ)µ0 − γµ1

µ0

)α]
(6)

=γEµ1

[(
(1− γ) + γ

µ0

µ1

)α]
+ (1− γ)Eµ0

[(
1− γ + γ(2− µ1

µ0
)

)α]

=
α∑

ℓ=0

(
α

ℓ

)
(1− γ)α−ℓγℓ

{
γEµ1

(
µ0

µ1

)ℓ

+ (1− γ)Eµ0

(
2− µ1

µ0

)ℓ
}

(7)



Poission Subsampled RDP

There are two interesting things about the above chain of derivation. (6) really allows us to evaluate the quantity for any pair
of µ0 and µ1. However, we cannot really easily upper bound it for all µ1, µ2 easily since some of the terms are negative.

Meanwhile, (7) is a slightly prettier form. If we can show that Eµ0

(
2− µ1

µ0

)ℓ
≤ Eµ0

(
µ1

µ0

)ℓ
, then we are done. In fact, for

ℓ = 0, 1, 2, it is straightforward to show that Eµ0

(
2− µ1

µ0

)ℓ
= Eµ0

(
µ1

µ0

)ℓ
. For ℓ ≥ 3, it becomes quite a deep question

whether it is true that Eµ0

(
2− µ1

µ0

)ℓ
≤ Eµ0

(
µ1

µ0

)ℓ
.

Our first attempt establishes that this is related to the sign of Pearson-Vajda pseudo-divergences of odd orders.

Lemma 13. For any pairs of distribution µ0, µ1 such that the Renyi-divergence Dα(µ1, µ0) exists up to order ℓ.

Eµ0

(
2− µ1

µ0

)ℓ

= Eµ0

(
µ1

µ0

)ℓ

− 2
∑

j is odd,j≤ℓ

(
ℓ

j

)
Eµ0

(
µ1

µ0
− 1

)j

,

where Eµ0

(
µ1

µ0
− 1
)j

is the Pearson-Vajda χj-pseudo-divergence of µ1 and µ2.

Proof. Observe that 2− µ1/µ0 = 1− (µ1/µ0 − 1) and that µ1/µ0 = 1 + (µ1/µ0 − 1). It follows that

Eµ0

(
2− µ1

µ0

)ℓ

− Eµ0

(
µ1

µ0

)ℓ

=
ℓ∑

j=0

(
ℓ

j

){(
(−1)j − 1

)
Eµ0

(
µ1

µ0
− 1

)j
}

= −2
∑

j is odd,j≤ℓ

(
ℓ

j

)
Eµ0

(
µ1

µ0
− 1

)j

Proof of Theorem 8. Note that Condition (4) implies

∑

j is odd,j≤ℓ

(
ℓ

j

)
Eµ0

(
µ1

µ0
− 1

)j

≥ 0 (8)

as a result, Lemma 13 implies that

Eµ0

(
2− µ1

µ0

)ℓ

≤ Eµ0

(
µ1

µ0

)ℓ

≤ e(ℓ−1)ϵM(ℓ).

Substitute the above into (7), then we can obtain a bound identical to the lower bound in the Theorem 6.

A bigger question is that what if the condition above is not true? Can we obtain a general-purpose bound that applies to all
M without needing to worry about whether Condition (4) is true.

One idea is to directly evaluate
∑

j is odd,j≤ℓ

(ℓ
j

)
Eµ0

(
µ1

µ0
− 1
)j

and replace all Renyi-divergences of µ1, µ0 with the cor-
responding RDP bound. This is not really a valid argument. We cannot directly evaluate irwith RDP because it is not
straightforward how we can take supremum over µ1, µ0 (two neighboring data sets). Substituting the RDP into it is not
really correct, because there might be some pair of µ1, µ0 that do not match the RDP bound.

Can we still obtain a bound that is quantitatively the same as Theorem 8?

In the following we write two lemmas that allow us to prove such a general purpose bound (Theorem 5).
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A.2. Approximation upper bound for ℓ ≥ 3.

Lemma 14 (Relax order of RDP).

Eµ0

[(
2− µ1

µ0

)ℓ
]
≤
{
eℓϵ(ℓ+1) if ℓ is odd
e(ℓ−1)ϵ(ℓ) + eℓϵ(ℓ+1) if ℓ is even.

Proof. We consider decomposing the expression to several pieces.

Eµ0

[(
2− µ1

µ0

)ℓ
]
= Eµ0

[(
2− µ1

µ0

)ℓ

1(
µ1

µ0
≤ 2)

]
(9)

+ Eµ0

[(
2− µ1

µ0

)ℓ

1(
µ1

µ0
> 2)

]
(10)

In the first term, we use the basic inequality that µ1

µ0
+ µ0

µ1
≥ 2, which implies that

0 ≤ Eµ0

[(
2− µ1

µ0

)ℓ

1(
µ1

µ0
≤ 2)

]
≤ Eµ0

[(
µ0

µ1

)ℓ

1(
µ1

µ0
≤ 2)

]

≤ Eµ0

[(
µ0

µ1

)ℓ
]
≤ eℓϵM(ℓ+1).

The second term is negative if ℓ is an odd number. Moreover, we can bound its absolute value:
∣∣∣∣∣Eµ0

[(
2− µ1

µ0

)ℓ

1(
µ1

µ0
> 2)

]∣∣∣∣∣= Eµ0

[(
µ1

µ0
− 2

)ℓ

1(
µ1

µ0
> 2)

]

≤ Eµ0

[(
µ1

µ0

)ℓ
]
≤ e(ℓ−1)ϵM(ℓ).

In addition, in the case of pure DP with ϵ ≤ log(2), we have that µ1 ≤ eϵµ0 ≤ 2µ0, which implies that the second term is
0.

Lemma 15 (Relax multiplicative constant).

Eµ0

[(
2− µ1

µ0

)ℓ
]
≤
{
2e(ℓ−1)ϵ(ℓ) if ℓ is odd
3e(ℓ−1)ϵ(ℓ) if ℓ is even.

Proof. We start with the case when ℓ is even.

Eµ0

[(
2− µ1

µ0

)ℓ
]

= Eµ0

[
(2− µ1

µ0
)

(
2− µ1

µ0

)ℓ−1
]

= 2Eµ0

[(
2− µ1

µ0

)ℓ−1
]
− Eµ1

[(
2− µ1

µ0

)ℓ−1
]

(11)

= 2Eµ0

[(
2− µ1

µ0

)ℓ−1
]
+ Eµ1

[(
µ1

µ0
− 2

)ℓ−1
]
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Note that we used the fact that ℓ−1 is odd in the last line. By Lemma 14 we can bound the first term by e(ℓ−1)ϵ(ℓ). Now by

the fact that xℓ−1 is a monotonically increasing function, we can bound the second term by Eµ1

[(
µ1

µ0

)ℓ−1
]

, which also is

smaller than e(ℓ−1)ϵ(ℓ). That gives us the constant multiplicative factor of 3.

Now consider the case when ℓ is odd. Decompose the expression by (10) and drop the second term since it is negative, we
can write

Eµ0

[(
2− µ1

µ0

)ℓ
]
≤ Eµ0

[(
2− µ1

µ0

)ℓ

1(
µ1

µ0
≤ 2)

]
.

Now apply the same trick as we did to get (11), we can rewrite the above as

2Eµ0

[(
2− µ1

µ0

)ℓ−1

1(
µ1

µ0
≤ 2)

]
− Eµ1

[(
2− µ1

µ0

)ℓ−1

1(
µ1

µ0
≤ 2)

]
.

Again note that the second term is negative, and by µ1

µ0
+ µ0

µ1
≥ 2, we can bound the first term by

2Eµ0

[(
µ0

µ1

)ℓ−1

1(
µ1

µ0
≤ 2)

]
≤ 2Eµ0

[(
µ0

µ1

)ℓ−1
]

= 2Eµ1

[(
µ0

µ1

)ℓ
]

≤ 2e(ℓ−1)ϵ(ℓ).

Now we are ready to present the main theorem.

Proof of Theorem 5. Substituting the results in Lemma 15 to (7), relax the constant to 3 and then apply the RDP upper
bound of the Renyi-divergence.

B. Tight bounds for Gaussian and Laplace mechanism
In this section, we prove Proposition 10 and also that our tight bound Theorem 8 applies to the Gaussian mechanism and
Laplace mechanism. In particular, we will show that the condition (4) in Theorem 8 that requires the Pearson-Vajda χα

divergences to be nonnegative for the π, µ that come running either the Gaussian mechanism or the Laplace mechanism on
any two adjacent data sets.

The proof for the Gaussian mechanism uses a novel inductive argument, while the proof for the Laplace mechanism directly
proves that moving f(X ′) away from f(X) strictly increases the odd-order Pearson-Vajda χα divergence using tools from
convex optimization.

These calculations are possible because the discrepancy of two data sets can be fully described by a single parameter. The
general recipe used in this section can also be applied to other cases where only a small number of parameters can be used
to avoid the intractable search over any pair of data sets to find the worst pair.

B.1. Qualifying Gaussian Mechanism

Lemma 16. For any π, µ that are absolutely continuous, and an odd α ≥ 3,

Eµ(
π

µ
)2(

π

µ
− 1)α−2 ≥ Eµ[(

π

µ
− 1)α−2]
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Proof.

Eµ(
π

µ
)2(

π

µ
− 1)α−2 = Eπ(

π

µ
)(
π

µ
− 1)α−2

= Eπ(
π

µ
− 1)α−1 + Eπ(

π

µ
− 1)α−2

≥ Eπ(
π

µ
− 1)α−2

Since α− 1 is even, Eµ(
π
µ − 1)α−1 ≥ 0. Eπ(

π
µ − 1)α−2 could be rewritten as Eµ(

π
µ )(

π
µ − 1)α−2

Eµ(
π

µ
)(
π

µ
− 1)α−2 = Eµ(

π

µ
− 1)α−1 + Eµ(

π

µ
− 1)α−2

≥ Eµ[(
π

µ
− 1)α−2]

Theorem 17. Let π, µ be two gaussian distriutions, π ∼ N (
√
t, 1) and µ ∼ N (0, 1), for ∀t ≥ 0, ∀odd α ≥ 1, we have

Eµ(
π
µ − 1)α ≥ 0 .

Proof. Base case: The statement holds when α = 1

∀t, Eµ(
π

µ
− 1) = 0

Inductive step: Show that if α = α̃, we have Eµ(
π
µ − 1)α̃ ≥ 0 for all t, then the statement holds for α = α̃+ 2. This can

be done as follows:
We first write an expansion of Eµ(

π
µ − 1)α as :

Eµ(
π

µ
− 1)α =

α∑

ℓ=0

(
α

ℓ

)
(−1)α−ℓEµ(

π

µ
)ℓ

= α− 1 +
α∑

ℓ=2

(
α

ℓ

)
(−1)α−ℓe

ℓ(ℓ−1)t
2

When t = 0, Eµ(
π
µ − 1)α = 0 holds for all α. We then take the derivative of t on the above expansion.

∂Eµ(
π
µ − 1)α

∂t
=

α∑

ℓ=2

(
α

ℓ

)
(−1)α−ℓe

ℓ(ℓ−1)t
2

ℓ(ℓ− 1)

2

Define ℓ̃ = ℓ− 2 and rewrite the above equation as

α(α− 1)

2

α−2∑

ℓ̃=0

(
α− 2

ℓ̃

)
(−1)α−2−ℓ̃Eµ(

π

µ
)ℓ̃+2

=
α(α− 1)

2
Eµ[(

π

µ
)2

α−2∑

˜ℓ=0

(
α− 2

ℓ̃

)
(−1)α−2−ℓ̃(

π

µ
)ℓ]

=
α(α− 1)

2
Eµ[(

π

µ
)2(

π

µ
− 1)α−2]

By applying lemma 16, we have Eµ[(
π
µ )

2(πµ − 1)α−2] ≥ Eµ[(
π
µ − 1)α−2], where α− 2 = α̃ and Eµ[(

π
µ − 1)α̃] ≥ 0 from

assumption. So the derivative is greater than 0 for all non-negative t. Combined with Eµ(
π
µ − 1)α = 0 when t = 0, we

have Eµ(
π
µ − 1)α ≥ 0 hold for all t.

Since both the base case and the inductive step have been performed, by mathematical induction the statement holds for all
odd α ≥ 1.
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B.2. Qualifying Laplace mechanism

Theorem 18. Let π, µ Laplace density functions obeying µ(x) = 1
λe

|x|
λ , and π(x) = 1

λe
|x+t|

λ . For all λ > 0, all natural

number α, function f(t) := Eµ

[(
π
µ − 1

)α] obeys that

1. f(t) ≥ 0 for any t ∈ R.

2. f(t) monotonically increases for t > 0.

3. f(t) monotonically decreases for t < 0.

Proof. When t = 0, π/µ = 1 and trivially Eµ[(π/µ− 1)α] = 0 for any α. We will show that this is actually the minimizer
for all t ∈ R by proving that the subdifferential ∂tf(t) ≥ 0 for t > 0 and ∂tf(t) ≤ 0 for t < 0.

∂tf(t) =∂t

[∫
1

2λ
e−

|x|
λ

(
e

−|x+t|+|x|
λ − 1

)α
dx

]

=

∫
1

2λ
e−

|x|
λ · α

(
e

−|x+t|+|x|
λ − 1

)α−1
· e

−|x+t|+|x|
λ

(−1) · ∂t|x+ t|
λ

dx

=

∫
− α

2λ2
e−

|x+t|
λ

(
e

−|x+t|+|x|
λ − 1

)α−1
∂t|x+ t|dx

=
↑

u:=x+t

∫
− α

2λ2
e−

|u|
λ

(
e

−|u|+|u−t|
λ − 1

)α−1
∂u|u|du.

Note that

∂u|u| =
{
[−1, 1] if u = 0;

{sign(u)} otherwise,

which implies that we can write

∂tf(t) =

∫ +∞

0
− α

2λ2
e−

|u|
λ

(
e

−|u|+|u−t|
λ − 1

)α−1
du

+

∫ 0

−∞
− α

2λ2
e−

|u|
λ

(
e

−|u|+|u−t|
λ − 1

)α−1
du

=

∫ +∞

0

α

2λ2
e−

|u|
λ

[
−
(
e

−|u|+|u−t|
λ − 1

)α−1
+
(
e

−|u|+|u+t|
λ − 1

)α−1
]
du

For positive t, we can decompose the integral into
∫ +∞

t

α

2λ2
e−

|u|
λ

[
−
(
e

−t
λ − 1

)α−1
+
(
e

t
λ − 1

)α−1
]
du

+

∫ t

0

α

2λ2
e−

|u|
λ

[
−
(
e

t−2u
λ − 1

)α−1
+
(
e

t
λ − 1

)α−1
]
du.

For even α ≥ 2, α− 1 is an even number and above expression is trivially nonnegative.

For odd α ≥ 3, that α− 1 is even. By the inequality that et − 1 ≥ 1− e−t for any t, therefore the first term is nonnegative.

Now we address the second term. For u ∈ [0, t/2], 0 ≤ t − 2u ≤ t and the nonnegativity follows directly from the
monotonicity of (e· − 1) on [0,+∞). For u ∈ (t/2, t], −t ≤ t− 2u ≤ 0, and the nonnegativity follows from the fact that

et − 1 ≥ 1− e−t ≥ 1− e−v

for all 0 ≤ v ≤ t. This concludes the proof for the positive t.

The results that the subgradient is positive for negative t follows naturally by symmetry.
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Remark 19 (Handling Laplace Mechanism in higher dimension). The generalization to higher dimension is trivial. The
perturbation t is now a vector, but since the noise is added independently for each coordinate, we can work out the
monotonicity for each coordinate separately.

C. Proofs related to efficient approximation
Proof of Theorem 11. Apply ϵ(ℓ) ≤ ϵ(α) for all ℓ = τ + 1, ...,α, we have:

ϵM◦PoissonSample(α) ≤
1

α− 1
log
{
(1− γ)α−1(αγ − γ + 1) +

τ∑

ℓ=2

(
α

ℓ

)
(1− γ)α−ℓγℓe(ℓ−1)ϵ(ℓ)

+
α∑

ℓ=τ+1

(
α

ℓ

)
(1− γ)α−ℓγℓe(ℓ−1)ϵ(α)

}

=
1

α− 1
log
{
(1− γ)α−1(αγ − γ + 1) +

τ∑

ℓ=2

(
α

ℓ

)
(1− γ)α−ℓγℓe(ℓ−1)ϵ(ℓ)

−
τ∑

ℓ=0

(
α

ℓ

)
(1− γ)α−ℓγℓe(ℓ−1)ϵ(α) + e−ϵ(α)(1− γ + γeϵ(α))α

}

=
1

α− 1
log
{
(1− γ)α−1(αγ − γ + 1) +

τ∑

ℓ=2

(
α

ℓ

)
(1− γ)α−ℓγℓ(e(ℓ−1)ϵ(ℓ) − e(ℓ−1)ϵ(α))

− (1− γ)αe−ϵ(α) − α(1− γ)α−1γ + e−ϵ(α)(1− γ + γeϵ(α))α
}

=
1

α− 1
log
{
(1− γ)α(1− e−ϵ(α)) + e−ϵ(α)(1− γ + γeϵ(α))α

−
τ∑

ℓ=2

(
α

ℓ

)
(1− γ)α−ℓγℓ(e(ℓ−1)ϵ(α) − e(ℓ−1)ϵ(ℓ))

}

Theorem 20 (Fast approximation for general upper bound).

ϵM◦PoissonSample(α) ≤
1

α− 1
log
{
(1− γ)α(1− 3e−ϵ(α)) + 3e−ϵ(α)(1− γ + γeϵ(α))α

− 3
τ∑

ℓ=3

(
α

ℓ

)
(1− γ)α−ℓγℓ(e(ℓ−1)ϵ(α) − e(ℓ−1)ϵ(ℓ))

− 2γα(1− γ)α−1 +

(
α

2

)
γ2(1− γ)α−2(eϵ(2) − 3eϵ(α))

}
.

Proof is similar to that of Theorem 11 thus omitted.

C.1. experiments on approximate methods

D. Comparison to the implementation of Abadi et al. (2016)
According to Section 3.2 of Abadi et al. (2016), in the implementation of the moments accountant they used numerical
integration to compute

E1 = Ez∼µ0 [(µ0(z)/µ(z))
α−1] = Ez∼µ[(µ0(z)/µ(z))

α]

E2 = Ez∼µ[(µ(z)/µ0(z))
α−1] = Ez∼µ0 [(µ(z)/µ0(z))

α]

where µ0 = N (0,σ2) and µ = γN (1,σ2) + (1− µ)N (0,σ2) then output

ϵ(α) ≤ 1

α− 1
log(max{E1, E2}).



Poission Subsampled RDP

(a) Subsampled Gaussian with σ = 5 (b) Subsampled Laplace with b = 2 (c) Subsampled Random Response with
p = 0.6

(d) Subsampled Gaussian with σ = 1 (e) Subsampled Laplace with b = 0.5 (f) Subsampled Random Response with
p = 0.9

Figure 5. Illustration of the numerical fast τ -term apprixomation results under high privacy and low privacy regimes. The x-axis is the
order α, and the y-axis is the RDP parameter (ϵ(α)) , the subsampling rate γ = 0.001 in all the experiments. The Approximate RDP
upper bound is obtained through Theorem 11, and the corresponding tight upper bound in possion subsample case is represented as the
black curve.



Poission Subsampled RDP

This approach is correct but costly, because a different numerical integration is needed for each α. Our result implies that
E2 > E1 and one never need to numerically simulate E1.

The most recent update to the moments accountant implementation of the Tensorflow Privacy package is slightly different
from the version described in Section 3.2 of Abadi et al. (2016). The new version of their code https://github.
com/tensorflow/privacy/blob/master/privacy/analysis/rdp_accountant.py implements an an-
alytical version of E2 via the Binomial expansion — essentially our tight bound Theorem 6 for Poisson-Sampled Gaussian
mechanism verbatim with a prescribed list of αs. The current paper complements this implementation with a proof that
E2 > E1, which justifies that doing this is correct. To the best of our knowledge, the current paper is the first that rigorously
establishes E2 ≥ E1 which establishes that this new implementation is correct for Poisson subsampling.

Our implementation of moments accountant in AutoDP ( https://github.com/yuxiangw/autodp ) is a more
flexible framework that allows us to exactly or almost exactly track the RDP of any subsampled differentially private
mechanisms provided that the based mechanism’s RDP is known.


