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A. Derivations and Proofs for Main Paper
A.1. Derivation of Eq. (11) in main paper

Proof. The "mild smoothness assumptions" refers that
L(θt) ∈ C2. Then the Ito’s lemma holds (Øksendal, 2003).
Thus,
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Taking expectation with respect to the distribution of θt, we
have
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since the expectation of Brownian motion is zero.

Thus the solution of EθtL(θt) is,

EL(θt) = L(θ0)−
∫ t

0

E
(
∇LT∇L

)
+

∫ t

0

1

2
ETr(HtΣt) dt.

(5)

A.2. Derivation of Eq. (13) in main paper

Proof. Without loss of generality, we assume that L(θ0) =
0.

For multivariate Ornstein-Uhlenbeck process, when θ0 = 0
is an constant, θt follows a multivariate Gaussian distribu-
tion (Øksendal, 2003).
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For symmetric matrix A, let

eA := UT diag(eλ1 , . . . , eλn)U, (6)

where λ1, . . . , λn and U are the eigenvalues and eigenvector
matrix of A.

Consider change of variables θ → φ(θ, t) = eHtθt. Note
that,

deHt

dt
= HeHt. (7)

Thus by applying Ito’s lemma, we have
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1
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which we can integrate form 0 to t to obtain
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The expectation of θt is zero. And by Ito’s isometry (Øk-
sendal, 2003), the covariance of θt is,
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The last equation is because H and Σ are both constant.
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Eq. (18) holds since H is symmetric. Further, by Taylor’s
expansion we have
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A.3. Proof of Proposition 1

Proof. Tr(HΣ) can be decomposed as
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Thus by the conditions of Proposition 1, we can bound
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A.4. Proof of Proposition 2 in main paper

Proof. For simplicity, we define

f̄(x; θ) := φ ◦ f(x; θ) ∈ [δ, 1− δ], (27)
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Then the loss function becomes L(θ) = E(x,y)`(x, y; θ).

Since both f and φ are piecewise linear, f̄(x; θ) is also
piece-wise linear with respect to θ. Thus the Hessian of f̄ is
zero almost everywhere.

We calculate the gradient and the Hessian of the loss:
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The last equation holds almost everywhere, since f̄(x; θ) is
piece-wise linear and its Hessian is zero almost everywhere.
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A.5. Proof of Proposition 3 in main paper

Proof. We only consider θ around the minima θ∗ such that
{θ :
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∥∥ ≤ δ+ε,∀(x, y)}. On the other hand
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holds almost everywhere.

Thus let λ(θ) and u(θ) being the maximal eigenvalue and
its corresponding eigenvector of H(θ),

u(θ)TF (θ)u(θ) ≥ δ2u(θ)TH(θ)u(θ) = δ2λ(θ). (40)

Since at the minimal θ∗ the Hessian is not zero, thus there
is a positive value λ∗ > 0 such that λ(θ∗) > λ∗ > 0.
Therefore by the continuity of H(θ), there are ε1, δ1, such
that,
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On the other hand, by definition, the gradient covariance Σ
and Fisher F has the following relationship,
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B. About the non-convexity of the model in
Proposition 2 in main paper

Suppose we only have one training data {x = (1, 1); y =
1}, and the threshold activation is

φ(f) = min{max{f, 0.1}, 0.9}. (63)
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Figure 1. L2 norm of gradient mean vs. the expected norm of
noise during the training using SGD. The dataset and model are
same as the experiments of FashionMNIST in main paper, or as in
Section D.3

Thus the loss is

L(w1, w2) = (φ(relu(w1)− relu(w2))− 1)2. (64)

Hence
L(1, 0) = 0.01

L(0, 1) = 0.81

L(0.5, 0.5) = 0.81.

(65)

Therefore

1

2
L(1, 0) +

1

2
L(0, 1) < L(0.5, 0.5), (66)

which means that L is not convex.

It is also easy to see that L has multiple minima.

C. Additional experiments
C.1. Dominance of noise over gradient

Figure 1 shows the comparison of gradient mean and the ex-
pected norm of noise during training using SGD. The dataset
and model are same as the experiments of FashionMNIST
in main paper, or as in Section D.3. From Figure 1, we see
that in the later stage of SGD optimization, the magnitude
of noise indeed dominates that of gradient.

These experiments are implemented by TensorFlow 1.5.0.

C.2. The first 50 iterations of FashionMNIST
experiments in main paper

Figure 2 shows the first 50 iterations of FashionMNIST
experiments in main paper. We observe that SGD, GLD
1st eigvec(H), GLD Hessian and GLD leading successfully
escape from the sharp minima found by GD, while GLD
diag, GLD dynamic, GLD const and GD do not.

These experiments are implemented by TensorFlow 1.5.0.
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Figure 2. The fisrt 50 iterations of FashionMNIST experiments
in main paper. Compared dynamics are initialized at ��

GD found
by GD. The learning rate is same for all the compared methods,
�t = 0:07, and batch size m = 20. Left: Training accuracy
versus iteration. Right: Test accuracy versus iteration.

D. Detailed setups for experiments in main
paper

D.1. Two-dimensional toy example

Loss Surface The loss surface L(w1, w2) is constructed
by,

s1 = w1 − 1− x1,
s2 = w2 − 1− x2,
`(w1, w2;x1, x2) = min{10(s1 cos θ − s2 sin θ)2

+ 100(s1 cos θ + s2 sin θ)2, (w1 − x1 + 1)2 + (w2 − x2 + 1)2},

L(w1, w2) =
1

N

N∑
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`(w1, w2;xk1 , x
k
2),

where

θ =
1

4
π,

N = 100,

xk ∼ N (0,Σ), Σ =

(
cos θ sin θ
− sin θ cos θ

)
.

Note that Σ is the inverse of the Hessian of the quadric form
generalizeing the sharp minima. And the 3-dimensional plot
of the loss surface is shown in Figure 3.

Hyperparameters All learning rates are equal to 0.005.
All dynamics concerned are tuned to share the same ex-
pected square norm, 0.01. The number of iteration during
one run is 500.

These experiments are implemented by PyTorch 0.3.0.

D.2. One hidden layer network

Hyperparameters The δ is set to be 0.001. The learning
rate is 0.001. The optimizer is Adam for fast convergence,
which does not affect our point on studying Tr(HΣ).

The code is implemented in TensorFlow 1.9.0.


