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Abstract

We develop the first general semi-bandit algo-
rithm that simultaneously achieves O(log T ) re-
gret for stochastic environments and O(

√
T ) re-

gret for adversarial environments without prior
knowledge of the regime or the number of rounds
T . The leading problem-dependent constants of
our bounds are not only optimal in a certain worst-
case sense studied previously, but also optimal for
two concrete instances of semi-bandit problems.
Our algorithm and analysis extend the recent work
of Zimmert & Seldin (2019) for the special case
of multi-armed bandits, but importantly requires
a novel hybrid regularizer designed specifically
for semi-bandit. Experimental results on synthetic
data show that our algorithm indeed performs well
over different environments. Finally, we provide
a preliminary extension of our results to the full
bandit feedback.

1. Introduction
The multi-armed bandit is one of the most fundamental on-
line learning problems with partial information feedback.
In this problem a learner repeatedly selects one of d arms
and observes its loss generated by the environment, with the
goal of minimizing her regret, the difference between her
total loss and the loss of the best fixed arm in hindsight. It is
well known that in the stochastic environment where each
arm’s loss is drawn independently from a fixed distribution,
the minimax optimal regret is of order O(log T ) where T is
the number of rounds (dependence on all other parameters
is omitted) (Lai & Robbins, 1985), while in the adversarial
environment where each arm’s loss can be completely arbi-
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trary, the minimax optimal regret is of order O(
√
T ) (Auer

et al., 2002).

Several recent works (Bubeck & Slivkins, 2012; Seldin &
Slivkins, 2014; Auer & Chiang, 2016; Seldin & Lugosi,
2017; Wei & Luo, 2018; Zimmert & Seldin, 2019) develop
“best-of-both-worlds” results for multi-armed bandits and
propose adaptive algorithms that achieve O(log T ) regret
in stochastic environments while simultaneously ensuring
worst-case robustness, that is, O(

√
T ) regret even for adver-

sarial environments. Importantly, this is achieved without
any prior knowledge of the nature of the environment.

In this work, we extend such best-of-both-worlds results to
the combinatorial bandit problem, a generalization of multi-
armed bandits, where the learner has to pick a subset of arms
(called a combinatorial action) at each time (see Section 2
for formal definitions). In particular, we consider the semi-
bandit feedback, meaning that the learner observes the loss
of each arm in the selected subset. Our main contributions
include the following:

1. We propose a simple and general semi-bandit algo-
rithm based on the Follow-the-Regularized-Leader
(FTRL) framework with a novel regularizer (Sec-
tion 2.1).

2. For any combinatorial action set, we prove that our
algorithm achieves O(Csto log T ) regret for stochas-
tic environments and O(Cadv

√
T ) regret for adversar-

ial environments, where Csto and Cadv are problem-
dependent factors (that do not depend on T ) and are
optimal in some worst-case sense. This is the first best-
of-both-worlds result for combinatorial bandit to the
best of our knowledge (Section 3.1).

3. For two common special cases of combinatorial action
sets: the set of all subsets of arms and the set of all
subsets with a fixed size m (so called m-set), we fur-
ther derive refined bounds for the problem-dependent
constants Csto and Cadv, which are optimal for each
of these special cases. As a side result, our bounds
imply that for the m-set with m > d/2, semi-bandit
feedback is no harder than full-information feedback
in the adversarial case (Sections 3.2 and 3.3).
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4. We conduct experiments with synthetic data to show
that our algorithm indeed adapts well to the nature of
the environment. Additionally, we present a simple
intermediate setting where our algorithm outperforms
all baselines (Section 4).

5. We also provide a preliminary extension of our results
to a special case of the more challenging bandit feed-
back (Section 6).

Our techniques are close to those of (Zimmert & Seldin,
2019): we make use of the FTRL algorithm, a well-known
framework for adversarial environments, and show that with
a simple time-decaying learning rate schedule (that is, 1/

√
t

for time t), the regret admits a certain self-bounding property
under the stochastic environment which eventually leads to
logarithmic regret in this case. Importantly, however, our
results require the use of a novel hybrid regularizer, de-
signed specifically for semi-bandit. Roughly speaking, the
idea is that for arms outside of the optimal subset, the prob-
lem of identifying their suboptimality is analogous to the
multi-armed bandit problem, and we apply the regularizer
of Zimmert & Seldin (2019) to these arms; and on the other
hand for arms in the optimal subset, the problem behaves
like the full-information expert problem (Freund & Schapire,
1997), and we thus apply the classical Shannon entropy as
the regularizer to these arms.

1.1. Related work

Semi-bandits. The combinatorial semi-bandit problem is
a natural generalization of multi-armed bandits and captures
many real-life applications. There are many algorithms for
stochastic semi-bandits based on the well-known optimistic
principle (Gai et al., 2012; Chen et al., 2013; Kveton et al.,
2015; Combes et al., 2015). Optimistic algorithms are prov-
ably not instance-optimal (Lattimore & Szepesvari, 2017)
and a recent work developed a general instance-optimal
algorithm for any structured stochastic bandits (including
semi-bandit as a special case (Combes et al., 2017)). Specif-
ically, they obtain the optimal regret O(C log T ) where C
is an instance-dependent term expressed as the solution of
a certain optimization problem. The constant Csto in our
stochastic bound O(Csto log T ) is also expressed as an opti-
mization problem (see Theorem 1), but it is not clear how it
compares to the instance-optimal constant C in general, ex-
cept for the two special cases we discuss in Section 3. Two
advantages of our algorithm compared to prior work are: a)
our stochastic assumption is weaker than others (see Sec-
tion 2) and b) our algorithm ensures worst-case robustness
even when the stochastic assumption does not hold.

Algorithms with O(
√
T ) regret for the adversarial semi-

bandit setting are also well-studied (Audibert et al., 2013;
Neu & Bartók, 2013; Combes et al., 2015; Neu, 2015;

Wei & Luo, 2018). These algorithms are either based on
Follow-the-Regularized-Leader (equivalently Online Mirror
Descent) or Follow-the-Perturbed-Leader, both of which are
standard frameworks for designing adversarial online learn-
ing algorithms (see Hazan et al. (2016) for an introduction).
It is easy to show that even if the environment is stochastic,
the regret of these algorithms is still Θ(

√
T ), indicating the

lack of adaptivity. Moreover, even for the adversarial case
the leading constant in previous bounds is only worst-case
optimal but not instance-optimal. In contrast, our adversar-
ial regret bound O(Cadv

√
T ) is instance-dependent through

the term Cadv , again expressed as the solution of a certain
optimization problem (see Theorem 1). To the best of our
knowledge, there is no known general instance-dependent
lower bound for this term, but again we show the optimality
of our bound in two special cases in Section 3.

Best-of-both-worlds. Algorithms that are optimal for
both stochastic and adversarial environments were studied
for multi-armed bandits (Bubeck & Slivkins, 2012; Seldin
& Slivkins, 2014; Auer & Chiang, 2016; Seldin & Lugosi,
2017; Wei & Luo, 2018; Zimmert & Seldin, 2019), and also
for the easier full-information (the expert problem) (Gail-
lard et al., 2014; Luo & Schapire, 2015; Koolen et al., 2016)
and intermediate version (Thune & Seldin, 2018). Notably,
among these works the recent two (Wei & Luo, 2018; Zim-
mert & Seldin, 2019) discovered that sophisticated hypoth-
esis testing or gap estimations used in earlier works are in
fact not needed for such adaptivity. Instead, their algorithms
are based on the FTRL framework with special regularizers.
As mentioned, our work also follows this route by designing
a new regularizer for the more general semi-bandit setting.

Hybrid regularizers. The idea of using hybrid regulariz-
ers for FTRL was first proposed by Bubeck et al. (2018) for
sparse bandit and bandit with a specific form of adaptive
regret bound, and also recently used by Luo et al. (2018)
for the online portfolio selection problem. The form of the
hybrid regularizers and the way they are used in the analysis,
however, are different both among these two prior works
and with ours.

2. Problem Setting and Algorithm
The semi-bandit problem is a sequential game between a
learner and an environment with d fixed arms. We call a
subset of arms a combinatorial action,1 and the learner is
given a fixed set of combinatorial actions X ⊂ {0, 1}d.
At any time t = 1, 2, . . . , the learner chooses an action
Xt ∈ X and at the same time the environment chooses

1In some works a combinatorial action is also referred to as
“an arm”, but here we exclusively use the term “arm” for one of
the d elements and “combinatorial action” for a subset of these
elements.
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a loss vector �t ∈ [−1, 1]d. The learner suffers the loss
�Xt, �t� and receives the feedback ot = Xt ◦ �t, where ◦
stands for the element-wise multiplication. In other words,
the learner only observes the loss of each arm in the selected
subset (the so-called semi-bandit feedback).

The environment can be either stochastic or adversarial.
In the stochastic case, we adopt and extend the broader
“stochastically constrained adversarial setting” (Wei & Luo,
2018; Zimmert & Seldin, 2019) and assume that there is a
fixed action x∗ ∈ X such that for any x ∈ X\{x∗} there
exists a constant Δx > 0, such that E[�x− x∗, �t�] ≥ Δx

for all t. Note that this clearly subsumes the traditional
stochastic setting where �1, . . . , �T are i.i.d. samples from a
fixed unknown distribution, and is much more general since
neither independence nor identical distributions are required.
In the adversarial case, on the other hand, �t is chosen in an
arbitrary way based on the history �1, X1, . . . , �t−1, Xt−1

and possibly an internal randomization by the environment.

The performance of a learner is measured by pseudo-regret:

RegT := E

�
T�

t=1

�Xt − x∗, �t�
�
,

where x∗ = argminx∈X E
��T

t=1 �x, �t�
�

is the best action
in hindsight and the expectation is with respect to the ran-
domness of both the learner and the environment. Note that
in the stochastic case we are overloading the notation x∗

since clearly they are the same action.

It is well known that in terms of the dependence on T ,
the optimal regret is Θ(log T ) in the stochastic case and
Θ(

√
T ) in the adversarial case (see, for example, Audibert

et al. (2013); Combes et al. (2017)).

Notations. We denote by Et[·] the conditional expectation
E[·|Ft−1] where Ft is the filtration σ(X1, o1, . . . , Xt, ot).
We also use a shorthand It(i) for the indicator function
I{Xti = 1} (Xti is the i-th component of the vector Xt ∈
X ⊂ {0, 1}d) and write the characteristic function of a set
A as IA(x) which is 0 if x ∈ A and +∞ otherwise. We
denote the d-dimensional vector with all 1s as 1d.

2.1. Our algorithm

Our algorithm is based on the general FTRL framework.2

In this framework, each time the algorithm computes the
regularized leader xt = argminx∈Conv(X )

�
x, L̂t−1

�
+

η−1
t Ψ(x), where Conv(X ) is the convex hull of X , L̂t−1 =�t−1
s=1 �̂s is the cumulative estimated loss, ηt > 0 is a learn-

2For linear objectives and Legendre regularizers, FTRL is equiv-
alent to Online Mirror Descent as defined in (Orabona et al., 2015).
The same framework is also known under the names OMD, OSMD,
or INF.

Algorithm 1 FTRL with hybrid regularizer for semi-bandits
Input: 0 < γ ≤ 1, sampling scheme P
Initialize: L̂0 = (0, . . . , 0), ηt = 1/

√
t

for t = 1, 2, . . . do
compute

xt = argmin
x∈Conv(X )

�
x, L̂t−1

�
+ η−1

t Ψ(x)

where Ψ(·) is defined in Eq. (1)
sample Xt ∼ P (xt)
observe ot = Xt ◦ �t
construct estimator �̂t, ∀i : �̂ti =

(oti+1)It(i)
xti

− 1

update L̂t = L̂t−1 + �̂t
end for

ing rate, and Ψ(x) : Conv(X ) → R ∪ {+∞} is a regular-
izer. Then the algorithm samples Xt ∼ P (xt) for a sam-
pling rule P that provides a distribution over X satisfying
EX∼P (x)[X] = x. As long as Conv(X ) can be described
by a polynomial number of constraints, one can always find
an efficient sampling rule P (see concrete examples in Sec-
tion 3). Finally, the algorithm constructs a loss estimator �̂t
based on the observed information and proceeds to the next
round.

The novelty of our algorithm lies in the use of the hybrid
regularizer

Ψ(x) =

d�

i=1

−√
xi + γ(1− xi) log(1− xi) (1)

with a parameter 0 < γ ≤ 1 to be chosen later based
on the action set X (in most cases we use γ = 1). This
is a combination of the Tsallis entropy (with power 1/2)�

i −
√
xi, and the Shannon entropy

�
i(1−xi) log(1−xi)

on the complement of x. The
�

i −
√
xi regularizer was

first implicitly introduced by Audibert & Bubeck (2009),
and later discovered as a member of the Tsallis entropy
regularizers by Abernethy et al. (2015). It was also recently
shown to be optimal for both stochastic and adversarial
multi-armed bandits (Zimmert & Seldin, 2019).

In addition, similar to Zimmert & Seldin (2019), our al-
gorithm uses a very simple time-decaying learning rate
schedule ηt = 1/

√
t. The loss estimators �̂t are defined

as �̂ti = (oti+1)It(i)
xti

− 1 for all i. It is clear the estima-
tors are unbiased, Et[�̂t] = �t, just as common importance
weighted estimators. The shift by 1 is used to ensure that
the range of the loss estimates is bounded from one side,
�̂t,i ≥ −1. See Algorithm 1 for a complete pseudocode.

Intuition behind the new regularizer. It is known
that the classical Shannon entropy regularizer (Freund &
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Schapire, 1997) is optimal for both adversarial and stochas-
tic environments in the full-information setting. In fact, the
Shannon entropy on the complement of x is also optimal
for full-information. This can be verified by considering
the complementary problem: the problem with action set
1d − X and reversed losses −�t. Both problems describe
the exact same game with the same information, and using
Shannon entropy in the complementary problem is the same
as using it on the complement of x in the original problem.

The intuition behind combining Tsallis and Shannon en-
tropy is that when xi is close to 0, the learner is starved
of information and has to act similarly to a regular bandit
problem. The magnitude of the gradient and its slope in that
regime are dominated by the Tsallis entropy, which again is
known to be optimal for bandits.

On the other hand, when xi is close to 1, the game resembles
a full-information game, and Shannon entropy on the com-
plement becomes the dominating part of the regularizer in
that regime. Effectively, this allows us to regularize arms in
the optimal combinatorial set differently than arms outside
the optimal set, without the need to know which arms are in
the optimal set.

3. Main Results
In this section we present general regret guarantees for our
algorithm, followed by concrete instantiations in two special
cases.

3.1. Arbitrary action set

To state the general regret bound for our algorithm for any
arbitrary action set X , we define the following two func-
tions:

f(x) =
�

i:x∗
i =0

√
xi

g(x) =
�

i:x∗
i =1

(γ−1 − γ log(1− xi))(1− xi)

and the instantaneous regret function r : [0,∞)|X | → R as

r(α) =
�

x∈X\{x∗}
αxΔx

(recall the definition of x∗ and Δx from Section 2). We
also define α =

�
x∈X αxx for any α ∈ [0,∞)|X |, and let

Δ(X ) denote the simplex of distributions over X .
Theorem 1. For any γ ≤ 1 the pseudo regret of Algorithm 1
is upper bounded by

RegT ≤ O (Csto log T ) +O (Cadd)

in the stochastic case and

RegT ≤ O
�
Cadv

√
T
�

in the adversarial case, where Csto, Cadd and Cadv are
defined as

Csto := max
α∈[0,∞)|X|

f(α)− r(α),

Cadd :=

∞�

t=1

max
α∈Δ(X )

�
100√
t
g(α)− r(α)

�
,

Cadv := max
x∈Conv(X )

f(x) + g(x).

Moreover, it always holds that Csto = O
�

md
Δmin

�
, Cadd =

O
�

m2

γ2Δmin

�
, and Cadv = O

�
1
γ

√
md

�
, where m =

maxx∈X ||x||1 and Δmin = minx∈X\{x∗} Δx.

We defer the proof to Section 5. The dependence of our
bounds on T is optimal in both cases. The leading problem-
dependent constants Csto and Cadv are expressed as solu-
tions to optimization problems. Recent works (Combes
et al., 2015; Lattimore & Szepesvari, 2017; Combes et al.,
2017) also expressed the instance-optimal leading constant
in the stochastic case in a similar way, but it is not clear how
to compare the results.

The explicit upper bounds on these constants stated at the
end of the theorem immediately imply that for γ = 1 our
bounds are worst-case optimal according to (Kveton et al.,
2015) and (Audibert et al., 2013). Here, worst-case optimal-
ity refers to the minimax regret over all environments with
the same value m of maxx∈X ||x||1 and also the same value
Δmin of minx∈X\{x∗} Δx in the stochastic case.

However, for explicit instances, one can hope to achieve
even better bounds. By exploiting the structure of the prob-
lem and providing better bounds on the constants Csto,
Cadd and Cadv, we show in the next two sections that our
algorithm is optimal in two special cases. For better in-
terpretability, in the stochastic case we consider the more
traditional setting where �1, . . . , �T are i.i.d. samples from
an unknown distribution D. It is clear that we can define
Δx = E�∼D[�x− x∗, ��] in this case.

3.2. Special case: full combinatorial set

The simplest semi-bandit problem is when X = {0, 1}d,
that is, the learner can pick any subset of arms. In this
case Conv(X ) = [0, 1]d and a trivial sampling rule is
P (x) =

�d
i=1 Ber(xi) where Ber(·) stands for Bernoulli

distribution.

It is clear that in this case each dimension/arm can be treated
completely independently. Note, however, that the problem
of each dimension is not exactly a two-armed bandit prob-
lem since the loss of “not choosing the arm” is known to
be 0, and the problem is asymmetric between positive and
negative losses. Specifically, we prove the following regret
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guarantee for our algorithm, where in the stochastic case
with a slight abuse of notation we define Δi = E�∼D [�i].

Theorem 2. If X = {0, 1}d, the pseudo-regret of Algo-
rithm 1 with γ = 1 is

RegT ≤ O
� �

Δi>0

log(T )

Δi

�
+O

� �

Δi<0

1

|Δi|

�

in the stochastic case and

RegT ≤ O
�
d
√
T
�

in the adversarial case. Moreover, both bounds are optimal.

Proof. Note that in this case the algorithm is equivalent
to the following: for each coordinate, run a copy of Algo-
rithm 1 for a one-dimensional problem with X = {0, 1} as
the action set. We can thus apply Theorem 1 to such one-
dimensional problems and finally sum up the regret along
each coordinate. Below we focus on a fixed coordinate i.

In particular, in the stochastic case, if Δi > 0, it
implies x∗

i = 0 and thus g(·) ≡ 0 and Cadd =�
t maxα∈[0,1] −αΔi = 0. For Csto we apply the gen-

eral bound from Theorem 1 and obtain Csto = O (1/Δi)
(since m = d = 1 and Δmin = Δi). This gives the bound
O

�
log(T )
Δi

�
for Δi > 0.

On the other hand if Δi < 0 then x∗
i = 1 and f(·) ≡ 0, so

Csto = maxα≥0 αΔi = 0. For Cadd we apply the general
bound from Theorem 1 and obtain Cadd = O (1/Δi) (since
m = γ = 1 and Δmin = Δi). This gives the bound
O

�
1
Δi

�
for Δi < 0.

In the adversarial case, we apply the general bound of The-
orem 1 and obtain Cadv = O(1). This finishes the proof
for the regret upper bounds. The optimality of the adver-
sarial bound is trivial since it matches the full-information
lower bound. Obtaining a matching lower bound in the
stochastic regime is a simple adaptation of the regular two-
armed bandit lower bound. We believe this result is well
known, but provide a proof in the appendix in absence of a
reference.

3.3. Special case: m-set

Another common instance of semi-bandit is when the learner
can only select subsets of a fixed size. Specifically, let
m ∈ {1, . . . , d − 1} be a fixed parameter and define the
m-set as

X =

�
x ∈ {0, 1}d

�����
d�

i=1

xi = m

�
. (2)

Note that we are overloading the notation m =
maxx∈X ||x||1 since clearly they are the same in this case. It

is well-known that the convex hull of m-set is Conv(X ) =�
x ∈ [0, 1]d | �d

i=1 xi = m
�

, and in the appendix we
provide a simple sampling rule P with O(d log(d)) time
complexity.

In the stochastic case, we assume without loss of generality
that the expected losses of arms are increasing in i. Over-
loading the notation again we define the stochastic gaps as
Δi = E�∼D [�i − �m] for all i. Note that the uniqueness of
x∗ also implies Δi �= 0 for all i > m. The next theorem
shows that our algorithm is optimal for both environments.
As a side result, we also show that when m > d/2, semi-
bandit feedback is no harder than full-information feedback
in the adversarial case. To the best of our knowledge, this
was previously unknown.
Theorem 3. If X is the m-set defined by Eq. (2), then the
pseudo-regret of Algorithm 1 with

γ =

�
1 if m ≤ d/2

min{1, 1/
�
log(d/(d−m))} otherwise,

satisfies

RegT ≤ O
�

d�

i=m+1

log(T )

Δi

�
+O

�
d�

i=m+1

(log d)2

Δi

�

in the stochastic case and

RegT ≤




O

�√
mdT

�
if m ≤ d/2

O
�
(d−m)

�
log( d

d−m )T
�

otherwise

in the adversarial case. Moreover, both bounds are optimal.

Proof sketch. We provide a proof sketch here and defer
some details to Appendix B.

Cadv : The optimization problem is concave in x and sym-
metric for all i with the same value of x∗

i . Therefore the
optimal solution takes the form
�

argmax
x∈Conv(X )

f(x) + g(x)

�

i

=

�
λ if x∗

i = 0

1− d−m
m λ if x∗

i = 1

for some λ ∈ [0,min{1, m
d−m}]. In Appendix B we show

that the function is increasing in λ, and that inserting λ =
min{1, m

d−m} leads to the stated adversarial bound.

Csto : With the definitions of the gaps, we can ex-
press Δx =

�
i:xi �=x∗

i
|Δi|, which is lower bounded by�

i:x∗
i =0,xi=1 Δi =

�
i:x∗

i =0 Δixi. So the immediate re-
gret function r(α) can be bounded as

r(α) =
�

x�=x∗

Δxαx ≥
�

x�=x∗

�

i:x∗
i =0

Δiαxxi

=
�

i:x∗
i =0

Δi


 �

x�=x∗

αxxi


 =

�

i:x∗
i =0

Δiαi.
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The optimization problem can now be bounded as

Csto = max
α∈[0,∞)|X|

�

i:x∗
i =0

√
αi −

�

x�=x∗

αxΔx

≤ max
α∈[0,∞)d

�

i:x∗
i =0

�√
αi −Δiαi

�
=

�

i:x∗
i =0

1

4Δi
,

which is the same as
�d

i=m+1
1

4Δi
.

Cadd : We bound the function g as follows:

g(α) =
�

i:x∗
i =1

(γ−1 − γ log(1− αi))(1− αi)

≤


γ−1 − γ log


 �

i:x∗
i =1

1− αi

m




 �

i:x∗
i =1

(1− αi)

=


γ−1 − γ log


 �

i:x∗
i =0

αi

m




 �

i:x∗
i =0

αi

≤
�

i:x∗
i =0

�
γ−1 − γ log

�
αi

m

��
αi

where the first inequality is by the concavity of g; the second
equality is by the fact

�
i:x∗

i =1 1− αi =
�

i:x∗
i =0 αi since

α is in the convex hull of m-set.

Recall the lower bound r(α) ≥ �
i:x∗

i =0 Δiαi as derived
previously. We can thus bound Cadd as

�

i:x∗
i =0

∞�

t=1

max
A∈[0,1]

100√
t

�
γ−1 − γ log

�
A

m

��
A−ΔiA

Solving the one-dimensional optimization problems above
independently for each i (see Appendix B) proves Cadd ≤
O

��
i:x∗

i =0
(log d)2

Δi

�
.

Optimality: The optimality for the stochastic case is im-
plied by (Anantharam et al., 1987; Combes et al., 2017).
For the adversarial case, only a matching lower bound
Ω(

√
mdT ) for m ≤ d/2 is known (Theorem 2 of (Lat-

timore et al., 2018)). We close this gap by making a simple
observation that when m > d/2, our bound in fact matches
the lower bound of the same problem with full-information
feedback. This clearly implies the optimality of our bound
since semi-bandit feedback is harder.

Indeed, Koolen et al. (2010) prove the lower bound
Ω(m

�
T log(d/m)) for full-information m-set when m ≤

d/2. When m > d/2, one can simply work on the com-
plementary problem with action set 1d − X and reversed
losses. This is exactly a (d − m)-set problem and thus a
lower bound Ω((d−m)

�
T log(d/(d−m))) applies. This

exactly matches our upper bound.

4. Empirical Comparisons
We compare our novel algorithm with four baselines
from the literature. For stochastic algorithms, we choose
COMBUCB (Kveton et al., 2015) and THOMPSON SAM-
PLING (Gopalan et al., 2014); for adversarial algorithms,
we choose EXP2 (Audibert et al., 2013) and LOGBAR-
RIER (Wei & Luo, 2018), which are respectively FTRL
with generalized Shannon entropy and log-barrier regu-
larizer. For each adversarial algorithm, we tune the time-
independent part of the learning rate by choosing from the
grid of {2i|i ∈ {−5,−4, . . . , 5}}, and the optimal value
happens to be identical for both adversarial and stochastic
environment in our experiments. Specifically the final learn-
ing rates ηt for our algorithm, EXP2 and LOGBARRIER are
respectively 1/

√
t, 1/(4

√
t) and 4

�
log(t)/t.

We test the algorithms on concrete instances of the m-set
problem with parameters: d = 10, m = 5, T = 107. Below,
we specify the mean of each arm’s loss at each time. With
mean µti the actual loss of arm i at time t will be −1 with
probability (1−µti)/2 and +1 with probability (1+µti)/2,
independent of everything else. We create the following two
environments:

Stochastic environment. In this case the losses are drawn
from a fixed distribution with µti = −Δ if i ≤ 5 and
µti = Δ otherwise, where Δ = 1/8.

“Adversarial” environment. Since it is difficult to create
truly adversarial data, here we in fact use a stochastically
constrained adversarial setting defined in Section 2. The
construction is similar to that of Zimmert & Seldin (2019).
Specifically, the time is split into phases

1, . . . , t1� �� �
T1

, t1 + 1, . . . , t2� �� �
T2

, . . . , tn−1, . . . , T� �� �
Tn

.

The length of phase s is Ts = 1.6s, and the means of the
losses are set to

µti =

�
−Δ/2± (1−Δ/2) if i ≤ 5,

+Δ/2± (1−Δ/2) otherwise,
,

where ± represents + if t belongs to an odd phase and
− otherwise. This model is not only a nice toy example,
but could also be justified by real world applications. For
example, in a network routing problem, an adversary might
periodically attack the network, making the delay of every
edge increase by roughly the same amount.

We measure the performance of the algorithms by the aver-
age pseudo-regret over at least 20 runs. For COMBUCB and
THOMPSON SAMPLING in the adversarial environment, we
increase the number of runs to 500 and 1000 respectively
due to the high variance of the pseudo-regret. Figure 1
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Figure 1. Comparisons of our new algorithm (HYBRID) and several
existing algorithms with d = 10,m = 5 and T = 107 under a)
stochastic and b) stochastically constrained adversarial setting.
The left side is in linear scale and the right is in log-log scale.

shows the average pseudo-regret of all algorithms at each
time, where plot (a) uses the stochastic data and plot (b) uses
the adversarial data. We use log-log scale after 104 rounds.
Shaded areas in the plot show the confidence intervals.

The plots clearly confirm our theoretical results. Our algo-
rithm outperforms EXP2 and LOGBARRIER (in the later
stage) in both environments. In the stochastic case our algo-
rithm is competitive with COMBUCB, while THOMPSON
SAMPLING has the best performance (a well-known phe-
nomenon). However, these two stochastic algorithms clearly
fail in the adversarial case and exhibit nearly-linear regret.

5. Proof of Theorem 1
We provide the key steps of the proof for our general result
(Theorem 1) in this section. Define Ψt(·) = η−1

t Ψ(·) and
potential function Φt(·) = maxx∈Conv(X ) �x, ·� − Ψt(x),
which is the convex conjugate of Ψt + IConv(X ).

Following a standard analysis of FTRL, we decompose the
regret

RegT = E

�
T�

t=1

�Xt, �t�+ Φt(−L̂t)− Φt(−L̂t−1)

�

� �� �
Regstab

+ E

�
T�

t=1

−Φt(−L̂t) + Φt(−L̂t−1)− �x∗, �t�
�
,

� �� �
Regpen

(3)

into terms corresponding to the stability and the regulariza-
tion penalty of the algorithm.

We then further bound these two terms respectively in the
following two lemmas using mostly standard FTRL analysis
(see Appendix A for the proofs).
Lemma 1. The regularization penalty is bounded as

Regpen ≤
T�

t=1

3

2
√
t

� �

i:x∗
i =0

�
E[xti]

−
�

i:x∗
i =1

γ(1− E[xti]) log(1− E[xti])

�
.

Lemma 2. The stability term is bounded as

Regstab ≤
T�

t=1

16
√
2√
t

� �

i:x∗
i =0

�
E[xti]

+
�

i:x∗
i =1

γ−1(1− E[xti])

�
+ c.

where c = 58m/γ2 (recall that m = maxx∈X ||x||1).

We now proceed to the proof of Theorem 1.

Proof of Theorem 1. Using Lemma 1 and Lemma 2 in
Eq. (3) and the definition of functions f and g, we can
bound the regret by

RegT ≤
T�

t=1

25√
t
(f(E[xt]) + g(E[xt])) + c (4)

≤ 50
√
T max

x∈Conv(X )
(f(x) + g(x)) + c

= O
�
Cadv

√
T
�
,

which concludes the adversarial case.

For the stochastic case we use a self-bounding technique
similar to Wei & Luo (2018); Zimmert & Seldin (2019).
First, by the definition of the function r and the stochastic
assumption we have

RegT = E

�
T�

t=1

�E[xt]− x∗, �t�
�
≥

T�

t=1

r(P (E[xt])).

Together with Eq. (4) we have

T�

t=1

25√
t
(f(E[xt]) + g(E[xt])) + c−

T�

i=1

r(P (E[xt])) ≥ 0.

Combining the above with Eq. (4) again we bound RegT by

T�

t=1

�
50√
t
(f(E[xt]) + g(E[xt]))− r(P (E[xt]))

�
+ 2c.
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We next decompose the summation above into two terms
and upper bound them as Csto log T and Cadd respectively:

T�

t=1

50√
t
f(E[xt])−

1

2
r(P (E[xt]))

≤
T�

t=1

max
α∈Δ(X )

50√
t
f(α)− 1

2
r(α)

≤
T�

t=1

max
α∈[0,∞)|X|

50√
t
f

�
104

t
α

�
− 1

2
r

�
104

t
α

�

(�)
=

T�

t=1

104

2t
max

α∈[0,∞)|X|
f(α)− r(α) = O (Csto log(T ))

where (�) follows since r is linear and f satisfies for any
scalar a ≥ 0: f(ax) =

√
af(x). On the other hand,

T�

t=1

50√
t
g(E[xt])−

1

2
r(P (E[xt]))

≤ 1

2

∞�

t=1

max
α∈Δ(X )

�
100√
t
g(α)− r(α)

�
= O(Cadd),

where the last inequality uses the fact: for all t > 0,
maxα∈Δ(X )

�
100√

t
g(α)− r(α)

�
≥ 0. This is because a

particular α that puts all the weight on x∗ attains the value
of 0.

The above finishes the proof of the general regret bounds.
Due to space limitations we defer the derivation of up-
per bounds on the constants Csto, Cadd and Cadv to Ap-
pendix A.

6. Extensions to Bandit Feedback
The most natural extension of our work is to consider the
full bandit feedback setting, where each time after playing
an action Xt the learner only observes �Xt, �t�. Again, both
stochastic and adversarial versions of the problem are well-
studied in the literature, but there is no best-of-both-worlds
result. Here, we provide a preliminary result for the simplest
case X = {0, 1}d. Similar to Section 3.2, in the stochastic
case we assume �t ∼ D and define Δi = E�∼D[�i].
Theorem 4. For the full bandit feedback setting with
X = {0, 1}d, FTRL with regularizer Ψ(x) =

�d
i=1

√
xi +√

1− xi, learning rate ηt = 1/
√
t and loss estimators

�̂ti =
�Xt,�t�Xti

xti
− �Xt,�t�(1−Xti)

1−xti
ensures:

RegT ≤ O


 �

i:Δi �=0

log(T )

|Δi|




in the stochastic case and

RegT ≤ O
�
d
√
T
�

in the adversarial case. Moreover, both bounds are optimal.

Proof sketch. In this case, the optimization of FTRL decom-
poses over the coordinates and it is clear that the stated
algorithm is equivalent to the following: for each coordinate
i, apply the algorithm of Zimmert & Seldin (2019) to a
two-armed bandit problem where the loss of arm 1 at time t
is �ti+

�
j �=i Xtj�tj and the loss of arm 2 is

�
j �=i Xtj�tj .3

In the stochastic case this exactly fits into the stochastically
constrained adversarial setting of Zimmert & Seldin (2019)
with gap |Δi| and, therefore, applying their Theorem 2 and
summing up the regret over each coordinate finishes the
proof for the stated regret bounds. The optimality of the
stochastic bound follows from Combes et al. (2017) and the
optimality of the adversarial bound is trivial since even with
full information Ω(d

√
T ) regret is unavoidable.

For general action sets, however, the problem becomes sig-
nificantly harder, because all known adversarial algorithms,
e.g. Cesa-Bianchi & Lugosi (2012), require implicit or ex-
plicit exploration of order 1/

√
T , which prohibits log(T )

regret in the stochastic case. We leave this as question for
future work.

7. Conclusions
We provide the first best-of-both-worlds results for combi-
natorial bandits, via an FTRL-based algorithm with a novel
hybrid regularizer. Our bounds are worst-case optimal and
also optimal in two particular instances of the problem. Em-
pirical evaluations also confirm our theory.

Other than the open problem under bandit feedback men-
tioned in Section 6, another open question is whether our
stochastic bound is instance-optimal as in Combes et al.
(2017), and if not, whether there is a best-of-both-worlds
algorithm that is instance-optimal in the stochastic case.
One can also ask the same question for the adversarial case,
however, next to nothing is known regarding the instance-
optimality of the adversarial case, let alone best-of-both-
worlds results.
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