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Abstract
We study the problem of learning a real-valued function of correlated variables. Solving this prob-
lem is of interest since many classical learning results apply only in the case of learning functions
of random variables that are independent. We show how to recover a high-dimensional, sparse
monomial model from Gaussian examples with sample complexity that is poly-logarithmic in the
total number of variables and polynomial in the number of relevant variables. Our algorithm is
based on a transformation of the variables—taking their logarithm—followed by a sparse linear
regression procedure, which is statistically and computationally efficient. While this transforma-
tion is commonly used in applied non-linear regression, its statistical guarantees have never been
rigorously analyzed. We prove that the sparse regression procedure succeeds even in cases where
the original features are highly correlated and fail to satisfy the standard assumptions required for
sparse linear regression.
Keywords: attribute-efficient, computationally efficient, statistics, monomial, learning, restricted
eigenvalue condition, lasso, log-transform, dependent features

1. Introduction

Consider the following canonical problem in learning theory. We observe n features-response pairs
{(xi, yi)}ni=1 ⊂ Rp × R drawn i.i.d. from the following model:

xi ∼ Dx, yi = f(xi).
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Here, Dx is some distribution on Rp. The goal is to design an algorithm to accurately estimate
the unknown function f with small sample complexity (n) and small run-time. Moreover, the
unknown function f may depend on only k out of the p features, with k � p. This models the
problem of feature selection in machine learning and statistics. In this situation, a reasonable goal
is to design algorithms that are attribute-efficient—that is, require n = poly(log(p), k) samples and
poly(n, p, k) run-time. While there is a long line of work studying this problem, most existing work
has one or more of the following limitations:

1. Many existing results provide algorithms and hardness results when the features are Boolean,
i.e., Dx is supported {0, 1}p or {−1,+1}p. These results, however, do not necessarily reflect
the difficulty or qualities of the learning problem when the features are real-valued, which is
common in many practical settings.

2. A long line of work in compressed sensing and high-dimensional statistics assumes f is a
(sparse) linear function, but does not extend to non-linear functions.

3. To the best of our knowledge, all existing work for real-valued attributes and non-linear func-
tions f assumes that Dx is a product measure, for example a standard normal Dx = N (0, Ip)
(Andoni et al., 2014).

In particular, the question of attribute-efficient learning is not well understood even for simple
classes of non-linear functions and some canonical non-product measures. In this work, we ad-
dress this gap by considering the problem of learning sparse monomials in the noiseless setting
under the Gaussian measure. In particular, we assume:

Dx = N (0,Φ), f(x) =
∏
i∈S

xβii .

For simplicity, we assume that covariance matrix Φ satisfies Φi,i = 1 for all i, since we can rescale
the features to have unit variance. The βi ∈ N ∪ {0} are degrees of each of the relevant variables
S ⊆ {1, . . . , p}, and |S| = k. Even in this simple setup, a number of standard approaches fail to
give an algorithm that runs in poly(n, p, k) time and has poly(log(p), k) sample complexity.

1. One natural approach is to expand the feature space by constructing all possible monomials of
degree ≤ d and consisting of at most k variables (there are at least Ω(pk) such monomials)
and using Empirical Risk Minimization. One expects this procedure to work with sample size
n = O(log(pk)) = O(k log(p)), but the approach is computationally inefficient. Sparse regres-
sion (e.g., Tibshirani, 1996)) in the expanded feature space has similar sample complexity and
run-time (and may require additional assumptions on the expanded design matrix). Negahban
and Shah (2012) analyze this approach when Dx is the uniform distribution on {−1, 1}p and
f is a sum of s monomial terms and obtain a sample complexity of O(ps2) and a run-time of
O(2p).

2. One can avoid explicit feature expansion by using the kernel trick. Kernel ridge regression is
equivalent to `2-penalized least squares in the expanded feature space, and can be solved in
poly(n, p, k) time. Standard analyses of kernel ridge regression imply that the sample complex-
ity of this approach is proportional to the Rademacher complexity of linear classes with bounded
`2 norm in the expanded space (e.g., Bartlett and Mendelson, 2002, Lemma 22). Unfortunately,
the latter quantity depends on the average squared norm of the feature vector in the expanded
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space, which in the Gaussian case scales like Ω(pk). We also refer the reader to Theorem 2 of
Quang (2006) for a precise analysis of the L2 risk bound which makes the pΩ(d) dependence
explicit for kernel ridge regression when f is a degree d polynomial and Dx is supported on the
unit sphere.

3. Andoni et al. (2014) describe an algorithm that learns a degree-k polynomial with at most s
monomial terms under a product measure on Rp, achieving a run-time and sample complexity of
poly(p, 2k, s). There is a natural reduction of our problem to their setting: learn the matrix Φ and
then apply a whitening transformation Φ−1/2 to the feature vectors. However, this reduction may
convert a degree-k monomial over the original features into a dense polynomial with s = Ω(pk)
terms over the new features.

Our contributions. We design an attribute-efficient algorithm for learning the function f(x) =∏
i∈S x

βi
i , where x ∼ Dx = N (0,Φ), that uses sample size n = O(k2 · poly(log(p), log(k))) and

runs in poly(n, p, k) time. In particular, the algorithm exactly recovers the set S and exponents βi
with high probability. The algorithm does not have access to Φ, and indeed, the sample size may be
too small to learn it accurately.

Our algorithm provably succeeds as long as maxi 6=j |Φi,j | < 1. This is, in a sense, the min-
imal assumption on Φ: if violated, this model is not even identifiable. To put this into context, it
is instructive to contrast to the case when f is a sparse linear function, under the same input dis-
tribution x ∼ N (0,Φ). For the latter problem, there is no known computationally efficient and
attribute-efficient algorithm to estimate the set S under similarly-weak assumptions on Φ.

The key algorithmic technique is to apply a log-transform to the features and response, and
reduce the problem to a sparse linear regression problem. While this is a commonly-used technique
in applied statistics, to the best of our knowledge, it has not been rigorously analyzed before. We
show that this log-transform is precisely what allows us to provably learn f when it is a monomial.
Specifically, we analyze how the covariance matrix changes after the log-transform, showing that
the log-transform eliminates linear dependencies between two or more features. To again contrast
with the case of learning sparse linear functions, the linear dependencies are precisely the obstacle
for designing computationally-efficient and attribute-efficient algorithms.

2. Preliminaries

This section presents the formal learning problem, and introduces technical tools and notations used
in our algorithm and analysis.

2.1. Problem statement

We observe n i.i.d. feature-response pairs {(xi, yi)}ni=1 ⊂ Rp × R from the following model:

xi ∼ N (0,Φ), yi =
∏
j∈S

x
βj
i,j , (1)

where S ⊆ [p] := {1, . . . , p} is the set of relevant variables, and β ∈ (N ∪ {0})p is the vector of
degrees (with βj 6= 0 iff j ∈ S). The total degree of the monomial is ‖β‖1 =

∑
j∈S βj . We say the

monomial is k-sparse when |S| = k. (Our results also permit βj < 0, but such a model would not
be a monomial.)
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The attribute-efficient learning goal is to recover, with high probability, both S and β with
sample size n = poly(log(p), k) and run-time poly(n, p, k).

For simplicity, we assume that the features are standardized, so the feature variances satisfy
Φi,i = 1 for all i ∈ [p]. We also assume the cross-correlations satisfy

|Φi,j | ≤ 1− ε, ∀i 6= j

for some ε > 0. This latter assumption is necessary so that β is identifiable. Indeed, if there are
two perfectly correlated features, then it is impossible to distinguish them, in which case β cannot
be uniquely determined. These assumptions are not restrictive and still permit highly correlated
features. In particular, the covariance matrix is permitted to be rank deficient, so some features can
be linear combinations of others.

2.2. Concepts and results from compressed sensing

Our main algorithm is based on a reduction to sparse linear regression / compressed sensing.
The main problem in compressed sensing is to recover an s-sparse vector w ∈ Rp from obser-

vations of the form Aw + η = b where A ∈ Rn×p is the sensing matrix, w ∈ Rp is the signal
vector, η ∈ Rn is the measurement noise, and b ∈ Rn is the observation vector. A commonly-
used estimator is the Lasso (Tibshirani, 1996): for ϑ > 0, the Lasso estimator is ŵLasso(ϑ) :=
arg minu∈Rp

1
2n ‖Au− b‖

2
2 + ϑ‖u‖1. This estimator succeeds in recovering w under certain con-

ditions on A. One such condition is the restricted eigenvalue condition introduced by Bickel et al.
(2009) which we review here.

Definition 1 For T ⊂ [p] and q0 > 0, define C(q0, T ) := {v ∈ Rp : ‖v‖2 = 1, ‖vT c‖1 ≤
q0‖vT ‖1}. T is commonly taken to be the non-zero support S of the sparse vector to recover.
We say the (q0, T, A)-restricted eigenvalue condition (REC) is satisfied by matrix A ∈ Rn×p if
λ̃(q0, T, A) := minv∈C(q0,T )

1
n‖Av‖

2
2 > 0. When q0 and T are apparent from context and |T | = s,

we will simply write λ̃(s,A).

The following well-known result about the performance of the estimator ŵLasso(ϑ) is due to
Bickel et al. (2009); the specific form we state is taken from Hastie et al. (2015).

Theorem 2 Consider the model Aw + η = b, and suppose the support S of w ∈ Rp has size k,
and the measurement matrix A ∈ Rn×p satisfies (q0, S,A)-REC with q0 = 3. For any ϑ > 0 such
that ϑ ≥ (2/n)‖AT η‖∞, the Lasso estimate ŵLasso(ϑ) satisfies

‖w − ŵLasso(ϑ)‖2 ≤
3ϑ
√
k

λ̃(k, 3, S,A)
.

2.3. Additional notations

Let X = [x1| · · · |xn]T ∈ Rn×p be the data matrix, and let y = [y1| · · · |yn]T ∈ Rn be the vector of
responses. Throughout, log denotes the natural logarithm, and applying log or absolute value to a
matrix or vector means these operations are taken element-wise. For any matrix M , we write M (l)

to denote its l-th Hadamard power, so M (l)
i,j = M l

i,j .
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3. Learning sparse monomials

In this section, we present our learning algorithm and its performance guarantees.

3.1. Algorithm

Our proposed attribute-efficient learning algorithm, given as Algorithm 1, is based on a log-transformation
of the data, followed by sparse linear regression. For concreteness, we use Lasso (Tibshirani, 1996)
for the second step, although other sparse regression methods could also be used.

Algorithm 1 Learn Sparse Monomial
Require: data matrix X ∈ Rn×p, responses y ∈ Rn, regularization parameter ϑ > 0

1: Apply log
(
| · |
)

transformation to data and responses, element-wise: X̂ ← log
(
|X|
)

and ŷ ←
log
(
|y|
)
.

2: Solve Lasso optimization problem: β̂ ← arg minβ∈Rp
1

2n‖X̂β − y‖
2
2 + ϑ‖β‖1.

3: Select variables: Ŝ ← {j ∈ [p] : β̂j 6= 0}.
4: return Ŝ and β̂.

The logarithm transformation is a folklore technique in applied statistics (see, e.g., Keene, 1995)
but, to the best of our knowledge, has not received a non-trivial theoretical analysis in a setting
similar to ours. We compose the log-transform with absolute value in Algorithm 1 to ensure non-
negativity.

We make two observations about the log
(
| · |
)
-transformation. First, it converts the monomial

model in Eq. (1) to the following:

log
(
|yi|
)

=
∑
j∈S

βj log
(
|xi,j |

)
(2)

Second, the transformation is only applicable to non-zero entries in the data matrix X and response
vector y. For the Gaussian data in our problem setup, all entries are non-zero almost surely.

So, after the transformation, the problem reduces to a linear sparse recovery problem, which
can be efficiently solved using well-known techniques from compressed sensing under appropriate
conditions on the design matrix (e.g., restricted eigenvalues).

The following simple proposition formalizes the reduction.

Proposition 3 A unique solution β̂ to the transformed model in Eq. (2) is the unique solution to the
original model in Eq. (1).

Proof See Appendix A.

3.2. Performance guarantees

Our approach to analyzing Algorithm 1 is based on applying the performance guarantee for Lasso
from Theorem 2. Because we apply Lasso to data from the log

(
| · |
)
-transformed model in Eq. (2),

we need to prove that REC is satisfied by X̂ = log
(
|X|
)
. As noted before, it is sufficient to

lower-bound λ̃(k, 3, S, X̂/
√
n). This is the content of the following theorem.
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Theorem 4 Let δ ∈ (0, 1) be an arbitrary confidence parameter. Suppose the covariance matrix
Φ satisfies Φi,i = 1, ∀i ∈ [p] and maxi 6=j |Φi,j | < 1 − ε. Then, the log

(
| · |
)
-transformed design

matrix X̂ = log
(
|X|
)

for X taken from the model in Eq. (1) with true support |S| = k satisfies

λ̃

(
k,

1√
n
X̂

)
≥ 1

5

√
ε

log(16k) + 2
,

with probability 1− δ, provided that

n ≥ C · k
2 log(2k)

ε
· log2

(
2p

δ

)
· log2

(
k log(k)

ε
log

(
2p

δ

))
. (3)

In the above display, C is a universal constant.

Therefore, applying Theorem 2, we immediately get as a corollary the following performance
guarantee for Algorithm 1.

Corollary 5 Let δ ∈ (0, 1) be an arbitrary confidence parameter and ϑ be the regularization
parameter. Suppose the covariance matrix Φ satisfies Φi,i = 1 for all i ∈ [p] and maxi 6=j |Φi,j | <
1 − ε, and that the sample size n satisfies the inequality in Eq. (3). For X and y taken from the
model in Eq. (1) with |S| = k, Algorithm 1 returns β̂ such that, with probability at least 1− δ,

‖β̂ − β‖2 ≤ 15ϑ

√
k(log(16k) + 2)

ε
.

Remark 6 We note that, as ϑ → 0, ‖β̂ − β‖2 → 0, and hence, Algorithm 1 recovers β exactly.
Furthermore, in the limit ϑ → 0, Algorithm 1 is equivalent to the Basis Pursuit estimator (Chen
and Donoho, 1994) defined as:

β̂BP = arg min
v∈Rp

‖v‖1 subject to X̂v = ŷ.

In particular, this means that under the conditions of Corollary 5, the Basis Pursuit estimator satis-
fies

β̂BP
j = 0 ∀j 6∈ S, β̂BP

j = βj ∀j ∈ S.

Remark 7 Suppressing logarithmic factors in p and k, the above result shows that Algorithm 1
succeeds in recovering the monomial with high probability with Õ(k2/ε) samples.

Remark 8 If we observe data with multiplicative noise, that is,

yi = eηi ·
∏
j∈S

x
βj
i,j (4)

where ηi ∈ R is a zero-mean sub-gaussian noise (e.g., ηi ∼ N (0, σ2)), then the log | · | transform
reduces our problem to a noisy compressed sensing problem. Hence we can still apply Theorems 2
and 4, as long as we set the parameter ϑ according to the noise level. If the sample size is large
enough relative to the noise level, we can exactly recover the degrees by rounding β̂ to nearest
integers. The details are straightforward and omitted.
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4. Restricted eigenvalues for the log
(
| · |
)
-transformed data

In this section, we present the main technical results used in the proof of Theorem 4. We define the
following notations:

z := log(|x|), Σ := Ez[zzT ], Σ̂ :=
1

n

n∑
i=1

z(i)z(i)T .

where log(| · |) is applied elementwise and z(i) denotes the ith empirical data point. We also use zi
to denote the ith feature of z. The proof of Theorem 4 involves three steps:

1. We first determine an explicit formula for the population covariance matrix Σ given in Lemma 9.

2. We leverage this explicit formula to prove a lower bound on λmin(Σ) and λ̃(k,Σ1/2) in Theo-
rem 10.

3. Finally, we show that λ̃(k, Σ̂1/2) concentrates around λ̃(k,Σ1/2) in Lemma 13.

One of our main technical contributions is a lower bound on λ̃min(k,Σ1/2) under very weak
assumptions about the covariance matrix Φ of the original features, namely, |Φi,j | < 1 − ε for any
i 6= j. In particular, this holds even in cases where Φ is low-rank or Φ1/2 doesn’t satisfy REC.
Intuitively, this result holds because the logarithm, a highly non-linear operation, destroys the linear
dependence structure of a low-rank matrix as long as no two features are perfectly correlated (which
is anyway necessary for identifiability).

4.1. Properties of log
(
| · |
)
-transform

The following key lemma provides several useful properties of the log | · | transform, culminating in
an explicit and convenient expression for Σ in terms of Φ.

Lemma 9 Let x ∼ N (0,Φ) where Φi,i = 1 for all i ∈ [p]. Define z = log
(
|x|
)
. Then:

1. The random variable zi has bounded variance, in particular, var(zi) = π2/8.

2. The function a 7→ log(|a|) admits the following expansion in the Hermite polynomial basis
{Hl}l≥0:

log(|a|) =

∞∑
l=0

c2lH2l(a), c2l =
(−1)l−12l−1(l − 1)!√

(2l)!
.

3. E[zizj ] =
∑∞

l=0 c
2
2lΦ

2l
i,j .

4. Σ = c2
01p×p +

∑∞
l=1 c

2
2lΦ

(2l), where 1p×p is the p× p matrix of all 1’s.

Proof [Proof sketch]

1. The challenge in calculating the variance of zi is that integrals involving log moments and the
Gaussian measure are not analytically easy to work with. To get around this, we leverage the
fact that for any non-negative random variable a and any m ∈ N,

Ea[logm a] = lim
ν→0

dm

dνmEa[aν ].

When a = |xi|, the RHS of the above expression is available in closed-form. (This is the
“Replica Trick” from statistical physics (Edwards and Anderson, 1975).)
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2. Since the Hermite polynomials form a complete orthonormal basis for L2(N (0, 1)), we can
compute cl by the integral:

cl =

∫ ∞
−∞

log
(
|a|
)
·Hl(a) · e

−a2/2
√

2π
da.

We calculate the above integral by-parts and by leveraging the recursive structure of Hermite
Polynomials.

3. The rationale behind expanding the log(|a|) in the Hermite polynomial basis is that there is a
clean formula between the correlation of Hermite polynomials applied to two correlated Gaus-
sian random variables (see, e.g., O’Donnell, 2014):

E[Hl(xi)Hm(xj)] = Φl
i,j1{l=m}.

Using this fact and the expansion of log | · | gives us the expression for E[zizj ].

4. The formula for Σ immediately follows given the general expression for Σi,j = E[zizj ].

See Appendix B for a detailed proof.

4.2. Restricted eigenvalues of population covariance matrices

Theorem 10 Let Φ be any covariance matrix with Φi,i = 1 for all i and |Φi,j | < 1 − ε for i 6= j,
and let Σ = Ez[zzT ] for z ∼ N (0,Φ). The following inequalities hold.

1. λmin (Σ) ≥ π2

8
λmin(Φ).

2. λ̃
(
k,Σ1/2

)
≥

1
2

⌊
log(16k))

log( 1
1−ε )

⌋
∑
`=1

λ̃
(
k, [Φ(2`)]1/2

)
5`3/2

+
2

5

√√√√ 2 log((1− ε)−1)

log
(

16k
1−ε

)
+ max{2, log((1− ε)−1)}

.

Remark 11 If Φ already has a positive minimum eigenvalue, we automatically have a constant mul-
tiplicative factor improvement after applying the log

(
| · |
)
-transformation. But even if λmin(Φ) =

0, we still obtain a positive lower bound on λ̃ (k,Σ).

Remark 12 In Appendix C (specifically Theorem 30), we also prove a simpler minimum eigenvalue
lower bound of λmin(Σ) ≥ Ω(

√
ε/ log(p)), which is similar to the lower bound on λ̃(k,Σ1/2)

except with log(k) replaced by log(p). The improvement in Theorem 10, which has no explicit
dependence on the ambient dimension p, uses a restricted form of Gershgorin’s Circle Theorem
(Lemma 32). Using either lower bound is sufficient to obtain the sample complexity guarantees in
Theorem 4, but the improved bound highlights the power of the log

(
| · |
)
-transformation and may

be of independent interest.

Proof [Proof sketch] We recall the explicit expression for Σ from Lemma 9:

Σ = c2
01p×p +

∞∑
l=1

c2
l Φ

(l).
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The definitions of λmin(·) and λ̃(k, ·) imply both are superadditive:

λ̃(k,Σ1/2) ≥
∞∑
l=1

c2
l λ̃(k, [Φ(l)]1/2).

We obtained the bound on λmin(Σ) by applying a linear algebraic result from Bapat and Sunder
(1985) which implies that λmin(Φ(l)) ≥ λmin(Φ). As for the second expression, we split the infinite
sum into two parts and apply a restricted version of the Gershgorin Circle Theorem to the second part
(see Lemma 32 in Appendix C.2.2). We then analyze how fast the coefficients cl of the remaining
terms decay to 0. We refer the reader to Appendix C for a complete proof.

4.3. Analysis of the empirical covariance matrix

The last piece required to complete the proof Theorem 4 is a concentration result about |λ̃(k,Σ1/2)−
λ̃(k, Σ̂1/2)|. This is stated in the following lemma.

Lemma 13 Let δ ∈ (0, 1) be an arbitrary confidence parameter. With probability 1− δ,

|λ̃(k,Σ1/2)−λ̃(k, Σ̂1/2)| ≤ Ck

(√
(log(3/δ) + 2 log(p))

n
+

log2(n)(log(3/δ) + 2 log(p))2

n

)
.

In the above display C is a universal constant.

Proof [Proof sketch] We apply Theorem 4.2 of (Kuchibhotla and Chakrabortty, 2018) after verifying
that the log-transformed features zi are entry-wise sub-exponential. See Appendix D for a detailed
proof.

5. Simulations

We conducted a simple simulation to evaluate the robustness of our procedure to small additive noise
(which our analysis does not cover). The p = 512-dimensional feature vectors are xi ∼ N (0,Φ)
for a rank-p/2 covariance matrix Φ given by

Φ :=

 I
√

2
pH√

2
pH I

 .
Above, I is the (p/2) × (p/2) identity matrix, and H is the (p/2) × (p/2) Hadamard matrix.
The responses are yi =

∏
j∈S xi,j + ηi for independent ηi ∼ N (0, σ2), where σ = 10−3, and

S = {1, . . . , k/2, p/2 + 1, . . . , p/2 + k/2}.
Algorithm 1 was implemented with a setting of ϑ = ϑ(n, p, σ) as suggested by Bickel et al.

(2009). For different values of the cardinality k = |S| and sample size n, we estimated the proba-
bility of exact recovery of S on 100 independent trials:

9
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Estimated probability of exact recovery
k = 2 k = 4 k = 6 k = 8

n = 128 0.99 0.76 0.01 0.00
n = 384 1.00 1.00 0.97 0.22
n = 640 1.00 1.00 1.00 0.88

The results suggest that our procedure tolerates some level of additive noise, but that the sample
size may need to increase significantly with the sparsity level k. This is reasonable, as the signal-to-
noise ratio decreases exponentially with k.

6. Related work

There are a large number of results on attribute-efficient learning under different assumptions onDx
and the target function f . We discuss representative results from each category.

6.1. Learning with Boolean features

When Dx is supported on {0, 1}p, learning monomials with positive integral degrees is the same as
learning conjunctions. This class was shown to be PAC learnable by Valiant (1984). Furthermore,
there also exists a computationally efficient and attribute-efficient learner due to Littlestone (1988).
When Dx is supported on {−1,+1}p, then learning monomials with positive integral degrees cor-
responds to learning parities. Parity functions are PAC learnable using Gaussian elimination over
F2 in time O(n3) (Helmbold et al., 1992).

When a parity function involves only k variables, a brute force search over all size-k subsets of
variables PAC learns k-sparse parities with an attribute-efficient sample complexity of poly(log(p), k)
but has a run-time of O(pk). Finding an attribute-efficient algorithm with poly(n, p, k) run-time is
a long-standing open problem of Blum (1998). Some notable improvements over the brute-force
run-time include an attribute-efficient algorithm with run-time O(pk/2) due to Dan Spielman (Kli-
vans and Servedio, 2006), and an attribute-inefficient improper learner with sample complexity
n = O(p1−1/k) and run-time O(p4) for the noiseless case with an arbitrary distribution over
{−1,+1}p due to Klivans and Servedio (2006). Finally, an O(p0.8k poly

(
1/(1− 2η)

)
-time (but

attribute-inefficient) algorithm of Valiant (2015) learns parities in the noisy setting (where labels are
flipped with probability η) under the uniform distribution.

6.2. Average case analysis for learning parities

The key bottleneck in avoiding the pO(k) dependence in run-time while learning k-sparse parities
over the uniform distribution on {−1,+1}p in an attribute-efficient manner is that it is not clear
how to decide if a feature is relevant or not without considering its interaction with every possible
set of k − 1 features. In light of this, Kalai et al. (2009) study the problem when f is a DNF
with s terms (k-sparse parities are DNFs of size s = 2k) and show that a natural greedy feature
selection algorithm can learn such f in time and sample complexity poly(s, p) under a product
distribution whose parameters are adversarially chosen and then randomly perturbed by a small
amount. Similarly, Kocaoglu et al. (2014) identify a property of the function f called the unique
sign property (USP) that facilitates learning. For functions f defined on {−1,+1}p satisfies USP
and depends on just k features, their algorithm learns f under the uniform distribution with run-
time and sample complexity poly(p, 2k). In the spirit of smoothed analysis, they show the USP

10
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is satisfied when an adversarially chosen k-sparse function f is perturbed by a small amount of
random noise.

6.3. Learning with real-valued features

When Dx is a product measure and the features are real-valued (for example, the uniform measure
on [−1, 1]p or the standard Gaussian measure on Rp), Andoni et al. (2014) consider the problem
of learning sparse polynomials of degree d that contain at most s monomial terms with additive
noise. They show a surprising result that in contrast to learning sparse parities with noise, it is
possible to avoid a pd dependence in run-time. They design an algorithm with poly(p, 2d, s) sample
complexity and run-time. At the heart of their approach are linear-time correlation tests that detect
if a feature participates in the highest degree (lexicographically) monomial. Once they detect all
features participating in the highest degree monomial, they remove it, and recurse on the residual
polynomial. An interesting property of their algorithm is that it never looks at the signs of either the
responses or the features. This highlights the fact that in the real-valued case the magnitudes of the
observations contain valuable information (which was not present in the case of parities) that can be
leveraged to design algorithms with sub-O(pd) run-time. The algorithm we propose has the same
property. While the class of functions we can handle is smaller (1-sparse polynomials), we are able
to handle extremely large correlations between features. In this highly-correlated setting, it is not
immediately clear how to analyze the correlation tests proposed by Andoni et al. (2014). Hence,
we rely on a completely different technique: computing a log-transform of the responses and using
sparse linear regression.

7. Summary and open problems

In this paper, we studied the problem of learning sparse monomials of highly-correlated features.
Our work provides the first attribute-efficient analysis (handling arbitrarily high correlations) in a
non-product distribution setting, which has been a major challenge in the prior work (e.g., Kalai
et al. (2009); Andoni et al. (2014)). By leveraging a folklore technique from applied statistics,
namely applying the log(| · |) transform to the features and responses, we reduced this problem to a
sparse linear regression problem. By analyzing how the covariance matrix changes after the log(| · |)
transform, we show that our procedure works under the minimal conditions required for the model
to be identifiable.

We summarize the conceptual contributions of the paper as follows.

1. Learning degree-k sparse polynomial functions with poly(log(p), k) samples in po(k)-time under
non-product distributions is a challenging problem. Our work gives a new algorithmic line-of-
attack for this problem, namely transforming both the response and the features such that each
relevant variable participates in an O(1)-degree interaction in the transformed model, reducing
the computational burden of searching for relevant variables from pΩ(k) to pO(1). Although
we study this general principle in a specialized setting, we believe our techniques (Lemma 9)
can be useful for analyzing other instances of this algorithmic idea. The fact that no existing
approach gives attribute-efficient algorithms with po(k) run-time for the comparatively simple
sparse monomial problem underscores the promise of this approach.

2. Our analysis uncovers a blessing of non-linearity. Specifically, the assumptions on the corre-
lation structure needed to learn a class of sparse non-linear functions are less restrictive than

11
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those needed to learn sparse linear functions. We require only minimal assumptions on the
dependence structure to ensure identifiability, a significant departure from previous results.

3. We demonstrate the minimum eigenvalue of the log-transformed data covariance matrix is
strictly positive with high probability, regardless of the initial rank. Thus, nonlinear data trans-
formations can destroy low-rank covariance structure, a principle which may be useful for other
estimation problems.

We conclude with a few open problems. The most immediate is to find an efficient algorithm for
learning sparse monomials in the presence of additive noise, which our simulations suggest should
be possible. Beyond this extension, we would like to relax the Gaussian distribution assumption
(e.g., to rotations of general product distributions), and to also handle larger families of sparse
polynomials over highly-correlated features.
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Appendix A. Proof of Proposition 3.

Proposition 14 A unique solution β̂ to the transformed model in Eq. (2)) is the unique solution to
the original model in Eq. (1).

Proof We proceed by reversing each step of the transformation and demonstrating that the solutions
do not change. First, note that the logarithm is invertible over the positive reals, which allows us
to undo the log transformation without any effect, since absolute value ensures the domain is non-
negative. Thus only consider the modified problem using data ŷi = |yi|, x̂i,j = |xi,j |. Since absolute
value distributes under multiplication, ŷi = |yi| = |

∏
j∈S x

βj
i,j | =

∏
j∈S |xi,j |βj =

∏
j∈S x̂

βj
i,j and

the resulting data points (x̂i, ŷi) still satisfy the monomial model. Thus, if there is a unique solution
on the transformed data (log |xi|, log |yi|), it must also be the unique solution on all of the data.

Appendix B. Supporting Lemmas and Proof for Lemma 9

B.1. Hermite polynomials

We introduce some basic theory about the Hermite polynomial basis which will be useful in the
analysis. We take the definition and required basic facts from O’Donnell (2014).

Definition 15 (Hermite orthogonal polynomial basis) The Hermite basis is an orthogonal basis
over L2(N (0, 1)). In particular, we can write

f(a) =
∞∑
`=0

c`H`(a)

where H`(a) is the `th Hermite basis function, and c` = Ea[f(a)H`(a)]. We define

H0(a) = 1, H1(a) = a,

and compute the rest by applying Gram-Schmidt over the function space. We have the following
definition for the `th Hermite basis function:

H`(a) :=
1√
`!

(−1)`

ϕ(a)

d`

da`
ϕ(a).

We also have the recurrence relation

H`+1(a) =
1√
`+ 1

(
aH`(a)− d

da
H`(a)

)
and derivative formula

d

da
H`(a) =

√
`H`−1(a).

The following important lemma provides a rule for calculating Ea,a′ [f(a)f(a′)] when a, a′ are
correlated Gaussian random variables.
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Lemma 16 Let a, a′ be standard Gaussian random variables with correlation ρ. Then, we have

Ea,a′ [H`(a)H`′(a
′)] =

{
ρ` if ` = `′

0 otherwise.

and

Ea,a′ [f(a)f(a′)] =
∞∑

`,`′=1

c`c`′Ea,a′ [H`(a)H`′(a
′)]

=
∞∑
`=0

c2
`ρ
`.

B.2. Calculating the First and Second Log-Moments

In order to use the ideas from Section B.1, we first need to show that the function log | · | ∈
L2(N (0, 1)), e.g., that Ew∼N (0,1)[log2 |w|] = α < ∞. Along the way, it will also be useful to
calculate and record Ew∼N (0,1)[log |w|] = τ < ∞. In order to directly calculate these quantities,
we use an idea from statistical physics called the replica trick (Edwards and Anderson (1975)). The
idea is to note that d

dνE[aν ] = E[ ddνa
ν ] = E[(log a)aν ]. In general, if one takes m derivatives, the

result will be dm

dνmE[aν ] = E[aν logm(a)]. Then, taking the limit as ν → 0 yields

Lemma 17 (Replica trick) Let a be a non-negative random variable,

Ea[logm a] = lim
ν→0

dm

dνm
Ea[aν ] (5)

We refer to the LHS expression in Eq. (5) as the mth log-moment of a. Thus, as long as we can get
an analytic expression for Ea[aν ] which is valid for ν ∈ R+, we can take the continuous limit and
derive expressions for the first and second log-moments of a, where a = |w|, w ∼ N (0, 1). We
also note that in the upcoming discussion, γ refers to the Euler-Mascheroni constant.

We will apply the replica trick to calculate the first two log-moments. We first need to collect
some lemmas from the literature.

Lemma 18 (Moments of Absolute Gaussian Distribution) We have for ν ∈ R+ withw ∼ N (0, 1)

Ew[|w|ν ] =
1√
π

2ν/2Γ

(
ν + 1

2

)
where Γ is the gamma function.

Proof For derivation, see Winkelbauer (2014).

We will need some properties of the gamma function, several of which depend on the polygamma
function ψ. We take these facts from Stein and Shakarchi (2003), Abramowitz and Stegun (1964),
and Sondow (1998).
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Definition 19 (Polygamma function) The polygamma function of order 0 is defined by

ψ(x) :=
d

dx
log(Γ(x)) =

Γ′(x)

Γ(x)
.

The polygamma function of order i ≥ 1 is defined by

ψ(i)(x) :=
di

dxi
ψ(x).

Lemma 20 (Properties of the Gamma and Polygamma functions) The derivative of Γ(x) is given
by

d

dx
Γ(x) = Γ(x)ψ(x).

The Taylor series expansions for ψ(i)(1 + x) are

ψ(x+ 1) = −γ +

∞∑
j=1

(−1)j+1ζ(j + 1)xj

ψ(i)(x+ 1) =

∞∑
j=0

(−1)i+j+1 (i+ j)!

j!
ζ(i+ j + 1)xj for i ≥ 1

(convergence is for |x| < 1). Above, γ is the Euler-Mascheroni constant and ζ(s) =
∑∞

n=1
1
ns is

the zeta function.

The first identity above follows from Abramowitz and Stegun (1964) and the antisymmetric formula
for γ given in Sondow (1998).

Now, we can use these facts to calculate the first two log-moments of |w|.

Lemma 21 (First log-moment (τ))

τ := Ew[log |w|] = −1

2

(
log(2) + γ

)
≈ −0.635

We also record that τ2 ≈ 0.403.

Proof We apply the replica trick to get

Ew[log |w|] = lim
ν→0

d

dν

1√
π

2ν/2Γ(
ν + 1

2
)

=
1

2
log(2) +

1

2
√
π

lim
ν→0

Γ′
(

1 + ν

2

)√
2
ν

=
1

2
log(2) +

1

2
√
π

(
1 ·
√
π · lim

ν→0
ψ

(
1 + ν

2

))

=
1

2

(
log(2) + ψ

(
1

2

))
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where we used the derivative of Γ and the fact that the limit existed individually for each term in
the second product. Applying the Taylor expansion of ψ(x+ 1) and plugging in x = −1/2, we get
using properties of infinite geometric series that

ψ(1/2) = −γ +
∞∑
j=1

(−1)j+1ζ(j + 1)(−1/2)j

= −

γ +
∞∑
j=1

1

2j
ζ(j + 1)


= −

γ +
∞∑

j,n=1

1

2j
1

nj+1


= −

γ +

∞∑
n=1

1

n

∞∑
j=1

1

(2n)j


= −

γ +

∞∑
n=1

1

n

(
1/2n

1− 1/2n

)
= −

γ +

∞∑
n=1

1

n(2n− 1)


Then, consider the Taylor series for log(x) centered at x = 1, which has radius of convergence
|x− 1| ≤ 1. We have, plugging in x = 2,

log(x) =
∞∑
n=1

(−1)n+1 (x− 1)n

n

log(2) =
∞∑
n=1

(−1)n+1 1

n

= (1− 1

2
) + (

1

3
− 1

4
) + (

1

5
− 1

6
) + · · ·

=
1

2

∞∑
n=1

1

n(2n− 1)
.

Thus, we conclude that ψ(1/2) = −(γ + 2 log(2)), and overall that

τ =
1

2

(
log(2)− γ − 2 log(2)

)
= −1

2

(
log(2) + γ

)
.

Lemma 22 (Second log-moment (α))

α := Ew[log2 |w|] =
1

4

(
γ2 +

π2

2
+ log2(2) + γ log(4)

)
≈ 1.637.

We also record that α− τ2 ≈ 1.234.
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Proof We calculate the second derivative with respect to ν and evaluate it at ν = 0, using the
product rule and the derivatives of Γ and ψ:

Ew[log2 |w|] =
d2

dν2
Ew[|w|ν ]|ν=0

=
1

2
√
π

[
log(2)

(
log(
√

2)eν log(
√

2)Γ

(
1 + ν

2

)
+

1

2
eν log(

√
2)Γ

(
1 + ν

2

)
ψ

(
1 + ν

2

))

+ ψ

(
1 + ν

2

)
d

dν

(
√

2
ν
Γ

(
1 + ν

2

))
+

1

2

√
2
ν
Γ

(
1 + ν

2

)
ψ(1)

(
1 + ν

2

)]∣∣∣
ν=0

=
1

4

[(
log2(2)− 2 log(2)(γ + log(4)) + (γ + log(4))2

)
+

[
ψ(1)

(
1 + ν

2

)] ∣∣∣∣∣
ν=0

]
where we used the results from Lemma B.2 to simplify, keeping in mind that we will shortly show
that ψ(1)(1/2) exists. We use the Taylor series for ψ(1)(x + 1) which converges for |x| < 1 and
plug in x = −1/2:

ψ(1)(x+ 1) =
∞∑
j=0

(−1)j+2 (j + 1)!

j!
ζ(j + 2)xj

ψ(1)(1/2) =

∞∑
j=0

j + 1

2j

∞∑
n=1

1

nj+2

= 2

∞∑
n=1

1

n

∞∑
j=1

j

(
1

2n

)j
= 4

∞∑
n=1

1

(2n− 1)2

= 4

 ∞∑
n=1

1

n2
−
∞∑
n=1

1

(2n)2

 = 4

(
π2

6
− π2

24

)
=
π2

2

recalling that
∑∞

j=1 jc
j = c

1−c + c2

1−c + · · · = c
(1−c)2 and the fact that

∑∞
n=1

1
n2 = π2

6 . Plugging
this value in to our previous formula, we conclude

α =
1

4

[
log2(2)− 2 log(2)(γ + log(4)) + (γ + log(4))2 +

π2

2

]

=
1

4

[
log2(2) +

π2

2
− 2γ log(2)− log2(4) + γ2 + 2γ log(4) + log2(4)

]

=
1

4

[
γ2 + log2(2) +

π2

2
+ γ log(4)

]
.

The next lemma will be useful in the next section of the appendix, and uses similar ideas.
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Lemma 23

Ew[w2 log(|w|)] = 1 + τ.

Proof We have by integration by parts and the fact that ϕ′(w) = −wϕ(w)∫
w2 log(|w|)ϕ(w)dw

∣∣∣∣∣
R

=

∫
w log(|w|)wϕ(w)dw

∣∣∣∣∣
R

= −
∫
w log(|w|) d

dw
ϕ(w)dw

∣∣∣∣∣
R

= −
(
w log(|w|)ϕ(w)−

∫
(1 + log(|w|))ϕ(w)dw

) ∣∣∣∣∣
R

= 0 + 1 +

∫
log(|w|)ϕ(w)dw

∣∣∣∣∣
R

= 1 + τ

since limw→±∞w log(|w|)ϕ(w) = 0.

B.3. Coefficients of the Hermite Expansion of log(| · |)

Lemma 24 (Coefficients of the Hermite Expansion for log(| · |)) The Hermite expansion of log
(
| · |
)

log(a) =
∞∑
`=0

c`H`(a)

has c0 = τ , and for ` ≥ 1,

c2`−1 = 0, c2` =
(−1)`−12`−1(`− 1)!√

(2`)!
.

Moreover,

lim
`→∞

c2
2` · `3/2 =

√
π

4
,

and for ` ≥ 2,

c2
2` ≥

1

5
· 1

`3/2
.

Proof Our goal is to calculate Ew[H`(w) log(|w|)]. Recall that ϕ(w) is the standard Gaussian
density. We proceed by making use of several properties of Hermite polynomials from Section
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B.1 and applying integration by parts. First define the indefinite integral and apply the property
H ′i+1(w) =

√
i+ 1Hi(w):

Ai =

∫
log(|w|)Hi(w)ϕ(w)dw

=
1√
i+ 1

∫
H ′i+1(w) log(|w|)ϕ(w)dw

=
1√
i+ 1

(
Hi+1(w) log(|w|)ϕ(w)−

∫
Hi+1(w)

(
1

w
− w log(|w|)

)
ϕ(w)dw

)

where we used the fact d
dw log(|w|)ϕ(w) =

(
1
w − w log(|w|)

)
ϕ(w). Let Vi(w) = Hi(w) log(|w|)ϕ(w).

Then, applying the relation wHi(w) = H ′i(w) +
√
i+ 1Hi+1(w), we get

Ai =
1√
i+ 1

(
Vi+1(w) +

∫ (
H ′i+1(w) +

√
i+ 2Hi+2(w)

)
log(|w|)ϕ(w)dw

−
∫

1√
i+ 1

wHi(w)−H ′i(w)

w
ϕ(w)dw

)
=

1√
i+ 1

(
Vi+1(w) +

√
i+ 2Ai+2 +

√
i+ 1Ai −

1√
i+ 1

∫ (
Hi(w)− 1

w
H ′i(w)

)
ϕ(w)dw

)
.

Assuming that i > 0, orthogonality implies
∫
RHi(w)ϕ(w)dw = 0, and we cancel it out now (since

eventually we will evaluate everything over R). We simplify the equation to

Vi+1(w) +
√
i+ 2Ai+2 +

√
i

i+ 1

∫
1

w
Hi−1(w)ϕ(w)dw = 0.

Then we calculate d
dwHi−1(w)ϕ(w) = ϕ(w)

(√
i− 1Hi−2(w)− wHi−1(w)

)
and apply integra-

tion by parts to the last integral to get∫
1

w
Hi−1(w)ϕ(w)dw

= Vi(w)−
∫ (√

i− 1 log(|w|)Hi−2(w)− log(|w|)
(
wHi−1(w)

))
ϕ(w)dw

= Vi(w)−
√
i− 1Ai−2 +

∫
log(|w|)

(
H ′i−1(w) +

√
iHi(w)

)
ϕ(w)dw

= Vi(w)−
√
i− 1Ai−2 +

√
i− 1Ai−2 +

√
iAi

= Vi(w) +
√
iAi.

Plugging this equality back in and then evaluating the integrals on R yields[
Vi+1(w) +

√
i

i+ 1
Vi(w)

] ∣∣∣∣∣
R

+
√
i+ 2Ai+2

∣∣∣∣∣
R

+
i√
i+ 1

Ai

∣∣∣∣∣
R

= 0,

√
i+ 2ci+2 = − i√

i+ 1
ci,

−i√
(i+ 1)(i+ 2)

ci = ci+2 (6)
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since limw→±∞ Vi(w) = 0 for any i, as ϕ(w) decays much faster than log(|w|) · poly(w) grows.
Note that this recurrence is only valid for i > 0, since we used that in the analysis. Now, recall that
by definition, c0 = τ since H0(w) = 1. Furthermore, since H1(w) = w, c1 = Ew[w log(|w|)] = 0
since w log(|w|) is an odd function and the Gaussian distribution is symmetric. Then, we can
calculate H2(w) = 1√

2
(x2 − 1) and thus that

c2 =
1√
2

(
Ew[w2 log(|w|)]− Ew[log(|w|)]

)
=

1√
2

(1 + τ − τ) =
1√
2

using Lemma 23. The rest of the coefficients are defined recursively by Eq. (6). In particular, we
can find a closed form. First, note that since c1 = 0, c2n−1 = 0 for all strictly positive integers n.
Iterating Eq. (6) gives

c2n =
(−1)n−12n−1(n− 1)!√

(2n)!
.

Now, we can apply the well-known Stirling’s approximation
(
n! �

√
2πn

(
n/e
)n) to get the asymp-

totic behavior of this quantity. We have

c2n � (−1)n−12n−1

√√
π(n− 1)√

n

e

n− 1

(
n− 1

n

)n
2−n

= (−1)n−1π
1/4

2

(
(n− 1)

√
n
)−1/2

e

(
1− 1

n

)n
� (−1)n−1π

1/4

2
n−3/4

after noting that limn→∞

(
1− 1

n

)n
= e−1. Therefore, the behavior of c2

2n is given by

c2
2n �

√
π

4
· 1

n3/2
.

We note that this asymptotic behavior is quite tight, even up to constants, for sufficiently large n.
We can also prove a fairly tight lower bound using Robbins (1955), which gives the bound

√
2πnnne−ne1/(12n+1) ≤ n! ≤

√
2πnnne−ne1/12n

Plugging in the upper bound for (n+ 1)! and the lower bound for (2n)!, we get that

2n−1 (n− 1)!√
(2n)!

≥ eπ1/4

2

√
1

n
√
n

(
n− 1

n

)n
e

36n+11
48n(12n−11)

≥ eπ1/4

8
· 1 · n−3/4
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for n ≥ 2. Thus, for n ≥ 2,

c2
2n ≥

e2√π
64

n−3/2 >
1

5
n−3/2.

Lemma 25 (Integrals of the Hermite Coefficients) Suppose |b| < 1 and a > 0. Then∫ ∞
a

`−3/2d` =
2√
a

and ∫ ∞
a

`−3/2|b|2`d` =
2|b|2a√

a
+ 2
√

2π log |b|−1

(
−1 + Erf

(√
a log |b|−2

))
where

Erf(x) =
2√
π

∫ x

0
e−t

2
dt.

We also have the following upper bound:∫ ∞
a

`−3/2|b|2`d` ≤ 2|b|2a√
a
− 4
√

2 log |b|−1
e2a log |b|√

log |b|−2a +
√

2 + log |b|−2a
.

Proof The first equality is by direct integration. Now we tackle the second equality. We apply
integration by parts to get∫

`−3/2|b|2`d` = |b|2`(−2`−1/2) +

∫
2`−1/2 · (2 log(|b|))|b|2`d`

= |b|2`(−2`−1/2) + 4 log(|b|)
∫
|b|2u22du

= |b|2`(−2`−1/2) + 8 log(|b|)
∫
e
−u2/

(
1
2

1
log(|b|−1)

)
du

= |b|2`(−2`−1/2) +
−8 log(|b|−1)√

2 log(|b|−1)

√
π

2

2√
π

∫
e−v

2
dv

= −2

(
|b|2`(`−1/2) +

√
2π log(|b|−1)Erf

(√
2` log(|b|−1)

))
.

Then since Erf(∞) = 1, we simply evaluate the integral and note that the Erf term (depending on
a) is positive:∫ ∞
a

`−3/2|b|2`d` = −2
√

2π log(|b|−1) + 2

(
|b|2aa−1/2 +

√
2π log(|b|−1)Erf

(√
2a log(|b|−1)

))
.
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Section 7.1.13 of Abramowitz and Stegun (1964) gives

1

x+
√
x2 + 2

< ex
2

∫ ∞
x

e−t
2
dt ≤ 1

x+
√
x2 + 4

π

,

1− 2√
π

e−x
2

x+
√
x2 + 4

π

≤ Erf(x) < 1− 2√
π

e−x
2

x+
√
x2 + 2

.

We can apply the upper bound on Erf to in order to get the final upper bound on the integral.

Appendix C. Supporting Lemmas and Proofs for Theorem 10

C.1. Matrix Inequalities and Hadamard Powers of Matrices

In this section, we record some useful definitions and theorems about matrices and their Hadamard
powers.

Theorem 26 (Gershgorin Circle Theorem) For matrix A ∈ Rp×p, every eigenvalue λ(A) satis-
fies

λ(A) ≥ Aii −
∑
i 6=j
|Aij |.

In particular,

λmin(A) ≥ min
i
|Aii| − (p− 1) max

i 6=j
|Aij |.

Proof See Golub and Van Loan (1996).

Definition 27 (Hadamard Product and Power) The Hadamard product of matricesA,B is given
by

[A ◦B]i,j = Ai,jBi,j .

The mth Hadamard power of A is given by

A(m) = A ◦A ◦ · · · ◦A︸ ︷︷ ︸
m times

.

Theorem 28 (Schur Product Theorem (weak version)) Suppose A,B are both symmetric PSD
square matrices. Then A ◦B is also PSD.

Proof Write eigendecompositions of A =
∑

i µiaia
T
i and B =

∑
i νibib

T
i . Then

A ◦B =
∑
i,j

µiνj

(
aia

T
i

)
◦
(
bjb

T
j

)
=
∑
i,j

µiνj
(
ai ◦ bj

) (
ai ◦ bj

)T (7)

Then we have that µi, νi ≥ 0 and
(
ai ◦ bj

) (
ai ◦ bj

)T is PSD. Thus A ◦B is PSD.
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Theorem 29 (Eigenvalues of Hadamard Powers) Suppose A,B ∈ Rp×p both PSD. Let b denote
B’s diagonal. Then

p∏
i=j

λi(A ◦B) ≥
p∏
i=j

λi(A)bi (8)

for all j ∈ [p], where λi is the ith smallest eigenvalue.

Proof See Theorem 3 from Bapat and Sunder (1985).

C.2. Proof of Theorem 10

C.2.1. LOWER BOUNDING THE POPULATION MINIMAL EIGENVALUE

As a warm-up, we first prove prove a lower bound on λmin(Σ).

Theorem 30 (Minimum Eigenvalue of Population Correlation Matrix) The following lower bounds
on λmin(Σ) hold:

1. λmin (Σ) ≥ π2

8
λmin(Φ).

2. λmin (Σ) ≥

1
2

⌊
log(p−1)

log( 1
1−ε )

⌋
∑
`=1

λmin

(
Φ(2`)

)
5`3/2

+
2

5

√√√√ 2 log((1− ε)−1)

log
(
p−1
1−ε

)
+ max{2, log((1− ε)−1)}

.

Note that the first lower bound is positive whenever Φ is full-rank, and the second bound is always
strictly positive, even if Φ is low-rank.

Remark 31 (Intuition for Theorem 10) In the case that Φ is not low-rank, we automatically have
a constant multiplicative factor improvement on the minimum eigenvalue when applying the log
transformation. However, the true magic happens in the second bound – even if λmin(Φ) = 0, we
can still achieve a positive lower bound on λmin

(
Ez[zzT ]

)
. The intuitive reason this phenomenon

occurs is because the Hadamard power destroys the potential co-linear structure in Φ – this is
precisely how the nonlinearity of the logarithm comes into play.

Proof For ease of notation, through out this proof, we define |ρmax| = 1 − ε. We recall that
Σ = E[zzT ] where z = log |x|, x ∼ N (0,Φ). By Lemma 16, we have

Σi,j =

∞∑
`=0

c2
`Φ

`
i,j

where c` = Ew[H`(w) log(|w|)]. This means,

Σ =

∞∑
`=0

c2
`Φ

(`).
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Continuing with the proof, we have

λmin

(
Ez[zzT ]

)
= min
‖v‖2=1

p∑
i,j=1

vivj

∞∑
`=0

c2
`Φ

`
i,j

= min
‖v‖2=1

∞∑
`=0

c2
`

p∑
i,j=1

vivjΦ
`
ij

≥
∞∑
`=0

c2
`

 min
‖v‖2=1

p∑
i,j=1

vivjΦ
`
i,j

 (9)

=
∞∑
`=0

c2
`λmin

(
Φ(`)

)

= c2
0

0︷ ︸︸ ︷
λmin

(
1p×p

)
+

∞∑
`=1

c2
`λmin

(
Φ(`)

)
=

∞∑
`=1

c2
`λmin

(
Φ(`)

)
where Φ(`) denotes the `th element-wise (Hadamard) power of Φ (see Definition 27). Then, using
Theorem 29, we have that λmin(A ◦ B) ≥ λmin(A) · Bp,p, where ◦ denotes Hadamard product.
Therefore, since the diagonal entries are all 1 and 1` = 1, we have for all ` ≥ 1 that

λmin

(
Φ(`)

)
≥ λmin (Φ) · 1

and we immediately get the bound

λmin

(
Ez[zzT ]

)
≥
∞∑
`=1

c2
`λmin (Φ) = λmin(Φ)

∞∑
`=1

c2
` =

(
α− τ2

)
λmin(Φ) =

π2

8
λmin(Φ).

However, this bound can be greatly improved by judiciously applying the well-known Gershgorin
circle theorem (Theorem 26). In order to apply this bound, we need to ensure that the Gershgorin
bound will be strictly positive. Therefore, we truncate the summation carefully. Define

`threshold = 1 +

⌈
log(p− 1)

log(1/|ρmax|)

⌉
.

Note that for ` ≥ `threshold, we have

(p− 1)|ρmax|` ≤ (p− 1)|ρmax|
1+
⌈

log(p−1)
log(1/|ρmax|)

⌉

≤ |ρmax|(p− 1)

p− 1
< 1
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Applying Gershgorin to the truncated tail of the sum, we bound

λmin

(
Ez[zzT ]

)
≥
∞∑
`=1

c2
`λmin

(
Φ(`)

)

=

`threshold−1∑
`=1

c2
`λmin

(
Φ(`)

)
+

∞∑
`=`threshold

c2
`

(
1− (p− 1)|ρmax|`

)
.

We know from Theorem 28 that taking the Hadamard power of a PSD matrix yields a PSD matrix,
thus the first summation term is non-negative.

We can further control this bound by plugging in estimates for c2
` from Lemma 24: Recall that

we have c2
2` ≥

1
5

1
`3/2

and c2
2`−1 = 0. Then, supposing `threshold is even for simplicity, we can re-write

our bound as

λmin

(
Ez[zzT ]

)
≥

(`threshold−2)/2∑
`=1

c2
2`λmin

(
Φ(2`)

)
+

1

5

∞∑
`=`threshold/2

`−3/2
(

1− (p− 1)|ρmax|2`
)

=

(`threshold−2)/2∑
`=1

λmin

(
Φ(2`)

)
5`3/2

+
1

5

 ∞∑
`=`threshold/2

`−3/2 − (p− 1)

∞∑
`=`threshold/2

`−3/2|ρmax|2`
 .

We now focus on lower bounding the second term further, letting

L =

(`threshold−2)/2∑
`=1

λmin

(
Φ(2`)

)
5`3/2

.

Recall that for a non-negative function f , we can upper and lower bound its summation as follows:∫ ∞
a

f(`)d` ≤
∞∑
`=a

f(`) ≤ f(`) +
∞∑

`=a+1

f(`) ≤ f(`) +

∫ ∞
a

f(`)d`.

Then, applying Lemma 25, and plugging in the integral bounds, we get

λmin

(
Ez[zzT ]

)
≥ L+

1

5

(
2− 2(p− 1)|ρmax|`threshold√

`threshold/2
+

4(p− 1)
√

2 log(|ρmax|−1)e−`threshold log(|ρmax|−1)√
`threshold log(|ρmax|−1) +

√
2 + `threshold log(|ρmax|−1)

)

= L+
2

5

(
1√

`threshold/2
(1− |ρmax|) +

2(p− 1)|ρmax|`threshold
√

2 log(|ρmax|−1)√
log(|ρmax|−`threshold) +

√
2 + log(|ρmax|−`threshold)

)

> L+
2

5

(1− |ρmax|)
√√√√ 2

1 +
⌈

log(p−1)
log(1/|ρmax|)

⌉ + |ρmax|

√√√√ 2 log(|ρmax|−1)

log
(

p−1
|ρmax|

)
+ 2


> L+

2

5

(1− |ρmax|)

√√√√ 2 log(|ρmax|−1)

log
(

p−1
|ρmax|

)
+ log(|ρmax|−1)

+ |ρmax|

√√√√ 2 log(|ρmax|−1)

log
(

p−1
|ρmax|

)
+ 2


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where we upper bounded dxe ≤ x+ 1. Then, we can simplify the expression to

λmin

(
Ez[zzT ]

)
> L+

2

5

√√√√ 2 log(|ρmax|−1)

log
(

p−1
|ρmax|

)
+ max(2, log(|ρmax|−1))

where if |ρmax| ≥ e−2, we have that log(|ρmax|−1) ≤ 2, which is the desired result.

C.2.2. BOUNDS THAT USE SPARSITY

In this section, we demonstrate bounds on the minimum eigenvalue which are independent of di-
mension p: instead, the sparsity k plays a role.

In order to fully take advantage of the sparsity assumption, we prove a restricted analogue to the
Gershgorin circle theorem (Golub and Van Loan (1996)) we used previously.

Lemma 32 (Restricted Gershgorin Circle Theorem) Let A ∈ Rp×p be a symmetric matrix. Let
α ≥ 1 and T ⊂ [p]. Then,

λ̃(α, T,A1/2) ≥ min
i
Aii − |T | · (1 + α)2 ·max

i 6=j
|Aij |.

Proof Given in Appendix E.

We can use these results directly to replace dimension p with sparsity k in the statements in
Theorem 10. The proof is by direct application of Lemma 32.

Corollary 33 The following lower bound holds:

λ̃
(
k,Σ1/2

)
≥

1
2

⌊
log(16k))

log( 1
1−ε )

⌋
∑
`=1

λ̃
(
k, [Φ(2`)]1/2

)
5`3/2

+
2

5

√√√√ 2 log((1− ε)−1)

log
(

16k
1−ε

)
+ max{2, log((1− ε)−1)}

(10)

This improvement is quite notable in that it completely removes dependence on dimension p. Poten-
tially, the bound could be a lot better as typically k � p in high-dimensional settings. This improve-
ment is also valuable because it now shifts dependence on λmin(Φ) to dependence on λ̃(k,Φ1/2),
which is potentially much larger and positive even in the case where λmin(Φ) = 0.

Appendix D. Proof of Lemma 13 and Theorem 4.

D.1. Bounding the Empirical Restricted Eigenvalue

We denote the sample and population covariance matrices of the log-transformed covariates by Σ
and Σ̂:

Σ := Ez[zzT ]

Σ̂ :=
1

n

n∑
i=1

z(i)z(i)T .
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Theorem 10 gives us a bound on λ̃(k,Σ1/2). In this section we apply the results of Kuchibhotla
and Chakrabortty (2018) to convert this into a bound on λ̃(k, Σ̂1/2) by analyzing |λ̃(k,Σ1/2) −
λ̃(k, Σ̂1/2)|. The following lemma shows that it is sufficient to analyze ‖Σ− Σ̂‖∞.

Lemma 34 We have,

|λ̃(k,Σ1/2)− λ̃(k, Σ̂1/2)| ≤ 16k‖Σ− Σ̂‖∞.

Where, ‖ · ‖∞ denotes the entry-wise∞−norm.

Proof We note that,

|λ̃(k,Σ1/2)− λ̃(k, Σ̂1/2)| ≤ max
v:‖v‖2=1,‖vcS‖1≤3‖vS‖1

vT (Σ− Σ̂)v.

Furthermore for any v which satisfies ‖v‖2 = 1, ‖vSc‖1 ≤ 3‖vS‖1, we have,

vT (Σ− Σ̂)v
(1)

≤ ‖v‖1‖(Σ− Σ̂)v‖∞
= ‖v‖1 max

i
|〈Σi,· − Σ̂i,·, v〉|

(2)

≤ ‖v‖21‖Σ− Σ̂‖∞.

In the above display, the inequalities marked (1) and (2) both follow from Holder’s Inequality.
Furthermore,

‖v‖1 = ‖vS‖1 + ‖vSc‖1
(3)

≤ (1 + 3)‖vS‖1
≤ 4
√
k‖vS‖2

(4)

≤ 4
√
k.

In the above display, the inequality marked (3) follows from ‖vSc‖1 ≤ 3‖vS‖1, the inequality
marked (4) follows from ‖vS‖2 ≤ ‖v‖2 ≤ 1. Consequently, we have,

|λ̃(k,Σ1/2)− λ̃(k, Σ̂1/2)| ≤ 16k‖Σ− Σ̂‖∞.

To analyze ‖Σ − Σ̂‖∞ we appeal to the concentration results from Kuchibhotla and Chakrabortty
(2018). To do so we need to verify two conditions on our covariates:

1. The log-transformed covariates zi are entry-wise (marginally) subexponential. This is done in
Lemma 35.

2. An upper bound on the quantity Γ defined as:

Γ2 := max
j,k∈[p]

1

n

n∑
i=1

var
(
z

(i)
j z

(i)
k

)
.

This is done in Lemma 36.
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Lemma 35 Let w ∼ N (0, 1). Then, z = log(|w|) is 1-subexponential.

Proof It is sufficient to show that, ∀t > 0,

P
[
| log(|w|)| > t

]
≤ 2 exp(−t).

To show this, we bound the upper tail and the lower tail separately. First let us consider the upper
tail,

P[log(|w|) > t] = P[|w| > et]

= 2P[w > et]

(1)
≤
√

2

π

e−e
2t/2

et

≤
√

2

π
e−t.

In the inequality marked (1) we used the standard estimate for Gaussian tails: P[w > δ] ≤√
2
π

exp(−δ2/2)
δ . To bound the lower tail, we use standard estimates on Gaussian anti-concentration,

P[log(|w|) < −t] = P[|w| < e−t]

=
1√
2π

∫ e−t

−e−t
exp(−a2/2)da

≤
√

2

π
e−t.

Combining the estimates of the lower and upper tail, we get,

P
[
| log(|w|)| > t

]
≤ 2

√
2

π
exp(−t) < 2 exp(−t)

as desired.

Lemma 36 We have the following upper bound on Γ:

Γ2 ≤ 48.

Proof Since zi are identically distributed,

Γ2 = max
j,k∈[p]

var
(
zjzk

)
.

We have,

var(zjzk) ≤ E[(zjzk)
2]

(1)

≤
√

E[z4
i ]E[z4

j ]

(2)
= E[z4

i ].
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In the above display we used the Cauchy-Schwarz Inequality to obtain the inequality marked (1)
and the fact that zi and zj have the same marginal distribution in the equality marked (2). To bound
E[z4

i ] we use the concentration result proved in Lemma 35.

E[z4
i ] =

∫ ∞
0

P(z4
i > t) dt

=

∫ ∞
0

P(|zi| > t1/4) dt

(3)

≤
∫ ∞

0
2 exp(−t1/4) dt

= 48.

In the above display, we used Lemma 35 for the inequality marked (3).

We can now apply Theorem 4.1 of Kuchibhotla and Chakrabortty (2018) to control ‖Σ− Σ̂‖∞ and
hence control |λ̃(k,Σ1/2)− λ̃(k, Σ̂1/2)|.

Lemma 37 Let δ ∈ (0, 1) be an arbitrary confidence parameter. With probability 1− δ,

|λ̃(k,Σ1/2)−λ̃(k, Σ̂1/2)| ≤ Ck

(√
(log(3/δ) + 2 log(p))

n
+

log2(n)(log(3/δ) + 2 log(p))2

n

)
.

In the above display C is a universal constant.

Proof From Lemma 35, we know that the log-transformed covariates are marginally subexponen-
tial. Applying Theorem 4.1 of Kuchibhotla and Chakrabortty (2018) for marginally subexponential
random variables, we have with probability atleast 1− 3e−t,

‖Σ− Σ̂‖∞ ≤ C

(√
Γ(t+ 2 log(p))

n
+

log2(n)(t+ 2 log(p))2

n

)
,

where C is a universal constant. Substituting the bound on Γ from Lemma 36 and then applying
Lemma 34 we get,

|λ̃(k,Σ1/2)− λ̃(k, Σ̂1/2)| ≤ Ck

(√
(t+ 2 log(p))

n
+

log2(n)(t+ 2 log(p))2

n

)
.

Substituting t = log(3/δ) gives us the required bound.

We are now ready to present the proof of Theorem 4 which is restated and proved below.

Theorem 38 Let δ ∈ (0, 1) be an arbitrary confidence parameter. Suppose the covariance matrix
Φ satisfies Φi,i = 1, ∀i ∈ [p] and maxi 6=j |Φi,j | < 1− ε. Then, we have that log-transformed design
matrix satisfies the restricted eigenvalue bound:

λ̃(k, Σ̂1/2) ≥ 1

5

√
ε

log(16k) + 2
,
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with probability 1− δ, provided,

n ≥ Ck2

ε
log2

(
2pk

δ

)
log2

(
k

ε
log

(
2pk

δ

))
.

In the above display, C is a universal constant.

Proof For the ease of notation, we define |ρmax| = 1− ε. From Theorem C.2.2, we know that,

λ̃(k,Σ1/2) ≥ 2

5

 2 log
(

1
1−ε

)
log
(

16k
1−ε

)
+ max{2, log

(
1

1−ε

)
}


1/2

(1)

≥ 2

5

√√√√√ 2 log
(

1
1−ε

)
log(16k) + 2 + 2 log

(
1

1−ε

)
(2)

≥
√

2

5
min

1,

√√√√ log
(

1
1−ε

)
2 + log(16k)


In the display marked above, we used the fact that max(a, b) ≤ a+ b in the inequality marked (1).
In the inequality marked (2) we used the fact for any x, c ≥ 0, we have x

x+c ≥
1
2 min

(
x
c , 1
)
. By

Lemma 37, we know that with probability 1− δ,

λ̃(k, Σ̂1/2) ≥
√

2

5
min

1,

√√√√ log
(

1
1−ε

)
2 + log(16k)


− Ck

(√
(log(3/δ) + 2 log(p))

n
+

log2(n)(log(3/δ) + 2 log(p))2

n

)
.

Hence there exists a constant C such that if,

n

log2(n)
≥ Ck2

(
log(3/δ) + 2 log(p)

)2
max

1,
log(16k) + 2

log
(

1
1−ε

)
 ,

we have that Σ̂ satisfies the restricted eigenvalue bound:

λ̃(k, Σ̂1/2) ≥ 1

5
min

1,

√√√√ log
(

1
1−ε

)
2 + log(16k)


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Finally, we clean up this bound. First we note that log
(

1
1−ε

)
≥ ε. Hence, if n is large enough so

that,

n

log2(n)
≥ Ck2 log(2k)

ε
log2

(
2p

δ

)
,

we have, with probability 1− δ,

λ̃(k, Σ̂1/2) ≥ 1

5

√
ε

2 + log(16k)

Finally, we note to satisfy the requirement on the sample size, it is sufficient that,

n ≥ Ck2 log(2k)

ε
log2

(
2p

δ

)
log2

(
k log(2k)

ε
log

(
2p

δ

))
.

Appendix E. Proof of the Gershgorin’s Circle Theorem for Restricted Eigenvalue

In this section, we prove the Gershgorin’s theorem for the restricted eigenvalue. Let A be a p × p
symmetric matrix and S be an arbitrary subset of [p]. Let λ̃(α, S,A1/2) denote the Restricted
eigenvalue defined as:

λ̃(α, S,A1/2) = min vTAv subject to: ‖v‖2 = 1, ‖vSc‖1 ≤ α‖vS‖1.

The goal is to prove the following theorem.

Theorem 39 For α ≥ 1, we have,

λ̃(α, S,A1/2) ≥ min
i∈[p]

Ai,i − (1 + α)2 · |S| ·max
i 6=j
|Aij |.

Let v? be the optimizer of the Restricted Eigenvalue problem. To simplify notation, we will short
hand the optimal objective λ̃(α, S,A1/2) as λ?. Without loss of generality we can assume |v?i | >
0 ∀i ∈ [p]. This is because of the following reason: Let T denote the support of the optimal v?. It
is straightforward to see that λ? and v?(T ) are the optimal objective value and the optimizer of the
following problem:

min vTA(T, T )v subject to: ‖v‖2 = 1, ‖vT∩Sc‖1 ≤ α‖vT∩S‖1.

If T 6= [p], then we can make the arguments that follow for the optimization problem defined in the
display above.

The proof of the usual Gershgorin Theorem begins with the optimality condition for the un-
constrained eigenvalue problem. Taking cue from the original proof, we first derive an optimality
condition for the restricted eigenvalue problem. We then utilize this to prove a lower bound on λ?.
Proof We first write the local optimality condition at v?. For λ ∈ R and q ≥ 0, we form the
Lagrangian:

L(v, λ, q) = vTAv − λ‖v‖22 + 2q
(
‖vSc‖1 − α‖vS‖1

)
.
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Since |v?i | > 0 ∀i, by the method of Lagrange multipliers, the local optimality condition at v? is:

∃λ ∈ R, q ≥ 0 such that∇vL(v?, λ, q) = 0.

This means,

Av? − λv? − qu = 0. (11)

Where, the vector u ∈ Rp is defined as:

ui =

{
αsign(v?i ) i ∈ S
−sign(v?i ) i 6∈ S.

Taking dot-product with v? on both sides of equation 11, we get,

λ? = λ+ q(α‖vS‖1 − ‖vSc‖1)

≥ λ.

Hence to lower bound λ?, it is sufficient to lower bound λ. Let i be the coordinate that maximizes
|v?i |. Then, we have, ∑

j 6=i
Aijv

?
j +Aiiv

?
i − λv?i = qui. (12)

However, since q is unknown, to eliminate it we consider another coordinate k. This coordinate k
is chosen so that: If i ∈ S, k 6∈ S and if i 6∈ S, then k ∈ S. We have,∑

j 6=k
Akjv

?
j +Akkv

?
k − λv?k = quk. (13)

Hence, we can eliminate q between equations 12 and 13,

v?i
ui
Aii −

v?k
uk
Akk − λ

(
v?i
ui
−
v?k
uk

)
=

1

uk

∑
j 6=k

Akjv
?
j

− 1

ui

∑
j 6=i

Aijv
?
j

 .

Taking absolute values,∣∣∣∣∣v?iuiAii − v?k
uk
Akk − λ

(
v?i
ui
−
v?k
uk

)∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

uk

∑
j 6=k

Akjv
?
j

− 1

ui

∑
j 6=i

Aijv
?
j


∣∣∣∣∣∣∣ .

Dividing throughout by |v
?
i
ui
|:∣∣∣∣∣∣Aii − v?kui

ukv
?
i

Akk − λ

(
1−

v?kui
v?i uk

)∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
ui
uk

∑
j 6=k

Akj
v?j
v?i

−
∑
j 6=i

Aij
v?j
v?i


∣∣∣∣∣∣∣

≤ |S| · (1 + α) ·
(

max
l 6=m
|Alm|

)
·
(
|ui|
|uk|

+ 1

)
≤ |S| · (1 + α)2 ·

(
max
l 6=m
|Alm|

)
.
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Next we note because of the choice of k (if i ∈ S, k 6∈ S, if i 6∈ S, k ∈ S) and the definition of u,

ρ := −
v?kui
ukv

?
i

≥ 0.

Dividing through out by 1 + ρ gives,∣∣∣∣Aii + ρAkk
1 + ρ

− λ
∣∣∣∣ ≤ |S| · (1 + α)2 ·

(
maxl 6=m |Alm|

)
1 + ρ

≤ |S| · (1 + α)2 ·
(

max
l 6=m
|Alm|

)
.

Next noting that,

Aii + ρAkk
1 + ρ

≥ min
i
Aii,

we have the following lower bound,

λ? ≥ λ ≥ (min
i
Aii)− |S| · (1 + α)2 ·

(
max
l 6=m
|Alm|

)
.
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