
Proceedings of Machine Learning Research vol 98:1–26, 2019 30th International Conference on Algorithmic Learning Theory

Online Non-Additive Path Learning
under Full and Partial Information

Corinna Cortes corinna@google.com
Google Research, New York, NY

Vitaly Kuznetsov vitalyk@google.com
Google Research, New York, NY

Mehryar Mohri mohri@cims.nyu.edu
Google Research and Courant Institute, New York, NY

Holakou Rahmanian∗ holakou@microsoft.com
Microsoft Corporation, Redmond, WA

Manfred K. Warmuth manfred@ucsc.edu

Google Inc., Zürich and UC Santa Cruz, CA

Editors: Aurélien Garivier and Satyen Kale

Abstract

We study the problem of online path learning with non-additive gains, which is a
central problem appearing in several applications, including ensemble structured prediction.
We present new online algorithms for path learning with non-additive count-based gains
for the three settings of full information, semi-bandit and full bandit with very favorable
regret guarantees. A key component of our algorithms is the definition and computation of
an intermediate context-dependent automaton that enables us to use existing algorithms
designed for additive gains. We further apply our methods to the important application
of ensemble structured prediction. Finally, beyond count-based gains, we give an efficient
implementation of the EXP3 algorithm for the full bandit setting with an arbitrary (non-
additive) gain.

Keywords: online learning, non-additive gains, finite-state automaton

1. Introduction

One of the core combinatorial online learning problems is that of learning a minimum loss
path in a directed graph. Examples can be found in structured prediction problems such
as machine translation, automatic speech recognition, optical character recognition and
computer vision. In these problems, predictions (or predictors) can be decomposed into
possibly overlapping substructures that may correspond to words, phonemes, characters, or
image patches. They can be represented in a directed graph where each edge represents a
different substructure.

The number of paths, which serve as experts, is typically exponential in the size of
the graph. Extensive work has been done to design efficient algorithms when the loss is

∗ Research done in part while the author was visiting Courant Institute and interning at Google Research,
NYC as a Ph.D. student from UCSC.

c© 2019 C. Cortes, V. Kuznetsov, M. Mohri, H. Rahmanian & M.K. Warmuth.

Online Non-Additive Path Learning

0 1 2 3 4 5 6

He

She

would

would

like

love

to

to

have

drink

tea

chai

Figure 1: Combining outputs of two different translators (blue and red). There are 64
interleaved translations represented as paths. The BLEU score measures the overlap in
n-grams between sequences. Here, an example of a 4-gram is “like-to-drink-tea”.

additive, that is when the loss of the path is the sum of the losses of the edges along that
path. Several efficient algorithms with favorable guarantees have been designed both for the
full information setting (Takimoto and Warmuth, 2003; Kalai and Vempala, 2005; Koolen
et al., 2010) and different bandit settings (György et al., 2007; Cesa-Bianchi and Lugosi,
2012) by exploiting the additivity of the loss.

However, in modern machine learning applications such as machine translation, speech
recognition and computational biology, the loss of each path is often not additive in the edges
along the path. For instance, in machine translation, the BLEU score similarity determines
the loss. The BLEU score can be closely approximated by the inner product of the count
vectors of the n-gram occurrences in two sequences, where typically n = 4 (see Figure 1).
In computational biology tasks, the losses are determined based on the inner product of
the (discounted) count vectors of occurrences of n-grams with gaps (gappy n-grams). In
other applications, such as speech recognition and optical character recognition, the loss is
based on the edit-distance. Since the performance of the algorithms in these applications is
measured via non-additive loss functions, it is natural to seek learning algorithms optimizing
these losses directly. This motivates our study of online path learning for non-additive losses.

One of the applications of our algorithm is ensemble structured prediction. Online learn-
ing of ensembles of structured prediction experts can significantly improve the performance
of algorithms in a number of areas including machine translation, speech recognition, other
language processing areas, optical character recognition, and computer vision (Cortes et al.,
2014). In general, ensemble structured prediction is motivated by the fact that one partic-
ular expert may be better at predicting one substructure while some other expert may be
more accurate at predicting another substructure. Therefore, it is desirable to interleave
the substructure predictions of all experts to obtain the more accurate prediction. This
application becomes important, particularly in the bandit setting. Suppose one wishes to
combine the outputs of different translators as in Figure 1. Instead of comparing oneself
to the outputs of the best translator, the comparator is the best “interleaved translation”
where each word in the translation can come from a different translator. However, comput-
ing the loss or the gain (such as BLEU score) of each path can be costly and may require
the learner to resort to learning from partial feedback only.

Online path learning with non-additive losses has been previously studied by Cortes et al.
(2015). That work focuses on the full information case providing an efficient implementa-
tions of Expanded Hedge (Takimoto and Warmuth, 2003) and Follow-the-Perturbed-Leader
(Kalai and Vempala, 2005) algorithms under some technical assumptions on the outputs of
the experts.

In this paper, we design algorithms for online path learning with non-additive gains
or losses in the full information, as well as in several bandit settings specified in detail

2

Online Non-Additive Path Learning

in Section 2. In the full information setting, we design an efficient algorithm that enjoys
regret guarantees that are more favorable than those of Cortes et al. (2015), while not
requiring any additional assumption. In the bandit settings, our algorithms, to the best of
our knowledge, are the first efficient methods for learning with non-additive losses.

The key technical tools used in this work are weighted automata and transducers (Mohri,
2009). We transform the original path graph A (e.g. Figure 1) into an intermediate graph
A′. The paths in A are mapped to the paths in A′, but now the losses in A′ are additive
along the paths. Remarkably, the size of A′ does not depend on the size of the alphabet
(word vocabulary in translation tasks) from which the output labels of edges are drawn. The
construction of A′ is highly non-trivial and is our primary contribution. This alternative
graph A′, in which the losses are additive, enables us to extend many well-known algorithms
in the literature to the path learning problem.

The paper is organized as follows. We introduce the path learning setup in Section 2. In
Section 3, we explore the wide family of non-additive count-based gains and introduce the
alternative graph A′ using automata and transducers tools. We present our algorithms in
Section 4 for the full information, semi- and full bandit settings for the count-based gains.
Next, we extend our results to gappy count-based gains in Section 5. The application of our
method to the ensemble structured prediction is detailed in Appendix A. In Appendix B,
we go beyond count-based gains and consider arbitrary (non-additive) gains. Even with
no assumption about the structure of the gains, we can efficiently implement the EXP3
algorithm in the full bandit setting. Naturally, the regret bounds for this algorithm are
weaker, however, since no special structure of the gains can be exploited in the absence of
any assumption.

2. Basic Notation and Setup

We describe our path learning setup in terms of finite automata. Let A denote a fixed
acyclic finite automaton. We call A the expert automaton. A admits a single initial state
and one or several final states which are indicated by bold and double circles, respectively,
see Figure 2(a). Each transition of A is labeled with a unique name. Denote the set of all
transition names by E. An automaton with a single initial state is deterministic if no two
outgoing transitions from a given state admit the same name. Thus, our automaton A is
deterministic by construction since the transition names are unique. An accepting path is
a sequence of transitions from the initial state to a final state. The expert automaton A

can be viewed as an indicator function over strings in E∗ such that A(π) = 1 iff π is an
accepting path. Each accepting path serves as an expert and we equivalently refer to it as
a path expert. The set of all path experts is denoted by P. At each round t = 1, . . . , T ,
each transition e ∈ E outputs a symbol from a finite non-empty alphabet Σ, denoted by
outt(e) ∈ Σ. The prediction of each path expert π ∈ E∗ at round t is the sequence of output
symbols along its transitions at that round and is denoted by outt(π) ∈ Σ∗. We also denote
by outt(A) the automaton with the same topology as A where each transition e is labeled
with outt(e), see Figure 2(b). At each round t, a target sequence yt ∈ Σ∗ is presented to the
learner. The gain/loss of each path expert π is U(outt(π), yt) where U : Σ∗ × Σ∗ −→ R≥0.
Our focus is the U functions that are not necessarily additive along the transitions in A. For

3

Online Non-Additive Path Learning

(a) 2

0 1

3 4

e1

e2

e3 e4

e5

e6

e7

(b) 2

0 1

3 4

a

b

a b

a
b

a

(c) 2

0 1

3 4

e1 : a

e2 : b
e3 : a

e4 : b
e5 : a

e6 : b

e7 : a

Figure 2: (a) The expert automaton denoted by A labeled with transition names. (b) The
output of expert automaton at round t denoted by outt(A) labeled with the outputs outt(e)
for each transition e. (c) The name and output of each transition together separated by a
‘:’.

(a) 2

0 1

3 4

e1 : a

e2 : b
e3 : a

e4 : b
e5 : a

e6 : b

e7 : a

(b) 2

0 1

3 4

e1 : ?

e2 :b
e3 : ?

e4 : ?
e5 :a

e6 : ?

e7 :a

(c) 2

0 1

3 4

e1 : ?

e2 : ?
e3 : ?

e4 : ?e5 : ?

e6 : ?

e7 : ?

Figure 3: Information revealed in different settings: (a) full information (b) semi-bandit (c)
full bandit. The name of each transition e and its output symbol (if revealed) are shown
next to it separated by a ‘:’. The blue path indicates the path expert predicted by the
learner at round t.

example, U can be either a distance function (e.g. edit-distance) or a similarity function
(e.g. n-gram gain with n ≥ 2).

We consider standard online learning scenarios of prediction with path experts. At
each round t ∈ [T], the learner picks a path expert πt and predicts with its prediction
outt(πt). The learner receives the gain of U(outt(πt), yt). Depending on the setting, the
adversary may reveal some information about yt and the output symbols of the transitions
(see Figure 3). In the full information setting, yt and outt(e) are revealed to the learner
for every transition e in A. In the semi-bandit setting, the adversary reveals yt and outt(e)
for every transition e along πt. In full bandit setting, U(outt(πt), yt) is the only information
that is revealed to the learner. The goal of the learner is to minimize the regret which
is defined as the cumulative gain of the best path expert chosen in hindsight minus the
cumulative expected gain of the learner.

3. Count-Based Gains

Many of the most commonly used non-additive gains in applications belong to the broad
family of count-based gains, which are defined in terms of the number of occurrences of a
fixed set of patterns, θ1, θ2, . . . , θp, in the sequence output by a path expert. These patterns
may be n-grams, that is sequences of n consecutive symbols, as in a common approximation
of the BLEU score in machine translation, a set of relevant subsequences of variable-length
in computational biology, or patterns described by complex regular expressions in pronun-
ciation modeling.

4

Online Non-Additive Path Learning

For any sequence y ∈ Σ∗, let Θ(y) ∈ Rp denote the vector whose kth component is the
number of occurrences of θk in y, k ∈ [p].1 The count-based gain function U at round t for
a path expert π in A given the target sequence yt is then defined as a dot product:

U(outt(π), yt) := Θ(outt(π)) ·Θ(yt) ≥ 0. (1)

Such gains are not additive along the transitions and the standard online path learning
algorithms for additive gains cannot be applied. Consider, for example, the special case of
4-gram-based gains in Figure 1. These gains cannot be expressed additively if the target
sequence is, for instance, “He would like to eat cake” (see Appendix F). The challenge of
learning with non-additive gains is even more apparent in the case of gappy count-based
gains which allow for gaps of varying length in the patterns of interest. We defer the study
of gappy-count based gains to Section 5.

How can we design algorithms for online path learning with such non-additive gains?
Can we design algorithms with favorable regret guarantees for all three settings of full
information, semi- and full bandit? The key idea behind our solution is to design a new
automaton A′ whose paths can be identified with those of A and, crucially, whose gains are
additive. We will construct A′ by defining a set of context-dependent rewrite rules, which
can be compiled into a finite-state transducer TA defined below. The context-dependent
automaton A′ can then be obtained by composition of the transducer TA with A. In addition
to playing a key role in the design of our algorithms (Section 4), A′ provides a compact
representation of the gains since its size is substantially less than the dimension p (number
of patterns).

3.1. Context-Dependent Rewrite Rules

We will use context-dependent rewrite rules to map A to the new representation A′. These
are rules that admit the following general form:

φ→ ψ/λ ρ,

where φ, ψ, λ, and ρ are regular expressions over the alphabet of the rules. These rules must
be interpreted as follows: φ is to be replaced by ψ whenever it is preceded by λ and followed
by ρ. Thus, λ and ρ represent the left and right contexts of application of the rules. Several
types of rules can be considered depending on their being obligatory or optional, and on their
direction of application, from left to right, right to left or simultaneous application (Kaplan
and Kay, 1994). We will be only considering rules with simultaneous applications. Such
context-dependent rules can be efficiently compiled into a finite-state transducer (FST),
under the technical condition that they do not rewrite their non-contextual part (Mohri
and Sproat, 1996; Kaplan and Kay, 1994).2 An FST T over an input alphabet Σ and
output alphabet Σ′ defines an indicator function over the pairs of strings in Σ∗×Σ′∗. Given
x ∈ Σ∗ and y ∈ Σ′∗, we have T(x, y) = 1 if there exists a path from an initial state to a
final state with input label x and output label y, and T(x, y) = 0 otherwise.

1. This can be extended to the case of weighted occurrences where more emphasis is assigned to some
patterns θk whose occurrences are then multiplied by a factor αk > 1, and less emphasis to others.

2. Additionally, the rules can be augmented with weights, which can help us cover the case of weighted
count-based gains, in which case the result of the compilation is a weighted transducer (Mohri and
Sproat, 1996). Our algorithms and theory can be extended to that case.

5

Online Non-Additive Path Learning

A

(a)

0

1

2

e1

e2

e3

TA

(b) ε e1 #e1e3
e1: ε

e2: ε
e3: ε

e3: #e1e3
e2: ε

e1: ε e1: ε

e2: ε

e3: ε

Figure 4: (a) An expert automaton A; (b) associated context-dependent transducer TA for
bigrams. ε denotes the empty string. Inputs and outputs are written next to the transitions
separated by a ‘:’.

To define our rules, we first introduce the alphabet E′ as the set of transition names for
the target automaton A′. These capture all possible contexts of length r, where r is the
length of pattern θk:

E′ =
{

#e1 · · · er | e1 · · · er is a path segment of length r in A, r ∈
{
|θ1|, . . . , |θp|

}}
,

where the ‘#’ symbol “glues” e1, . . . , er ∈ E together and forms one single symbol in E′. We
will have one context-dependent rule of the following form for each element #e1 · · · er ∈ E′:

e1 · · · er → #e1 · · · er/ε ε. (2)

Thus, in our case, the left- and right-contexts are the empty strings3, meaning that the rules
can apply (simultaneously) at every position. In the special case where the patterns θk are
the set of n-grams, then r is fixed and equal to n. Figure 4 shows the result of the rule
compilation in that case for n = 2. This transducer inserts #e1e3 whenever e1 and e3 are
found consecutively and otherwise outputs the empty string. We will denote the resulting
FST by TA.

3.2. Context-Dependent Automaton A′

To construct the context-dependent automaton A′, we will use the composition operation.
The composition of A and TA is an FST denoted by A ◦ TA and defined as the following
product of two 0/1 outcomes for all inputs:

∀x ∈ E∗, ∀y ∈ E′∗ : (A ◦ TA)(x, y) := A(x) · TA(x, y).

There is an efficient algorithm for the composition of FSTs and automata (Pereira and
Riley, 1997; Mohri et al., 1996; Mohri, 2009), whose worst-case complexity is in O(|A| |TA|).
The automaton A′ is obtained from the FST (A ◦ TA) by projection, that is by simply
omitting the input label of each transition and keeping only the output label. Thus if we
denote by Π the projection operator, then A′ is defined as A′ = Π(A ◦ TA).

Observe that A′ admits a fixed topology (states and transitions) at any round t ∈ [T]. It
can be constructed in a pre-processing stage using the FST operations of composition and
projection. Additional FST operations such as ε-removal and minimization can help further

3. Context-dependent rewrite rules are powerful tools for identifying different patterns using their left-
and right-contexts. For our application of count-based gains, however, identifying these patterns are
independent of their context and we do not need to fully exploit the strength of these rewrite rules.

6

Online Non-Additive Path Learning

A

(a) 0 1 2 3

e1

e4

e2

e5

e3

e6

A′

(b) 0

2

2’

3

#e1e2

#e4e2

#e1e5

#e4e5

#e2e3

#e2e6

#e5e3

#e5e6

Figure 5: (a) An example of the expert automaton A. (b) the associated context-dependent
automaton A′ with bigrams as patterns. The path π = e1e5e3 in A and its corresponding
path π′ = #e1e5#e5e3 in A′ are marked in blue.

optimize the automaton obtained after projection (Mohri, 2009). Proposition 1, proven in
Appendix D, ensures that for every accepting path π in A, there is a unique corresponding
accepting path in A′. Figure 5 shows the automata A and A′ in a simple case and how a
path π in A is mapped to another path π′ in A′.

Proposition 1 Let A be an expert automaton and let TA be a deterministic transducer
representing the rewrite rules (2). Then, for each accepting path π in A, there exists a
unique corresponding accepting path π′ in A′ = Π(A ◦ TA).

The size of the context-dependent automaton A′ depends on the expert automaton A and
the lengths of the patterns. Notice that, crucially, its size is independent of the size of
the alphabet Σ. Appendix A analyzes more specifically the size of A′ in the important
application of ensemble structure prediction with n-gram gains.

At any round t∈ [T] and for any #e1 · · · er∈E′, let outt(#e1 · · · er) denote the sequence
outt(e1) · · · outt(er), that is the sequence obtained by concatenating the outputs of e1, . . . , er.
Let outt(A

′) be the automaton with the same topology as A′ where each label e′ ∈ E′
is replaced by outt(e

′). Once yt is known, the representation Θ(yt) can be found, and
consequently, the additive contribution of each transition of A′ can be computed. The
following theorem, which is proved in Appendix D, shows the additivity of the gains in A′.
See Figure 6 for an example.

Theorem 2 At any round t ∈ [T], define the gain ge′,t of the transition e′ ∈ E′ in A′ by
ge′,t := [Θ(yt)]k if outt(e

′) = θk for some k ∈ [p] and ge′,t := 0 if no such k exists. Then, the
gain of each path π in A at trial t can be expressed as an additive gain of the corresponding
unique path π′ in A′:

∀t ∈ [T], ∀π ∈ P : U(outt(π), yt) =
∑
e′∈π′

ge′,t .

4. Algorithms

In this section, we present algorithms and associated regret guarantees for online path
learning with non-additive count-based gains in the full information, semi-bandit and full
bandit settings. The key component of our algorithms is the context-dependent automaton
A′. In what follows, we denote the length of the longest path in A′ by K, an upper-bound
on the gain of each transition in A′ by B, the number of path experts by N , and the number
of transitions and states in A′ by M and Q, respectively. We note that K is at most the
length of the longest path in A since each transition in A′ admits a unique label.

7

Online Non-Additive Path Learning

outt(A)

(a) 0 1 2 3

a

b

b

b

a

a

outt(A
′)

(b) 0

2

2’

3

ab,1

bb,0

ab,1

bb,0

ba,1

ba,1

ba,1

ba,1

Figure 6: (a) the automaton outt(A) of A in Figure 5(a), with bigram gains and Σ = {a, b}.
(b) the automaton outt(A

′) given yt = aba. Here, the patterns are (θ1, θ2, θ3, θ4) =
(aa, ab, ba, bb), and thus, Θ(yt) = [0, 1, 1, 0]T . The additive gain contributed by each transi-
tion e′∈E′ in A′ is written on it separated by a comma from outt(e

′).

Remark. The number of accepting paths in A′ is often equal to but sometimes less than
the number of accepting paths in A. In some degenerate cases, several paths π1, . . . , πk
in A may correspond to one single path4 π′ in A′. This implies that π1, . . . , πk in A will
always consistently have the same gains in every round and that is the additive gain of π′

in A′. Thus, if π′ is predicted by the algorithm in A′, any of the paths π1, . . . , πk can be
equivalently used for prediction in the original expert automaton A.

4.1. Full Information: Context-dependent Component Hedge Algorithm

Koolen et al. (2010) gave an algorithm for online path learning with non-negative additive
losses in the full information setting, the Component Hedge (CH) algorithm. For count-
based losses, Cortes et al. (2015) provided an efficient Rational Randomized Weighted
Majority (RRWM) algorithm. This algorithm requires the use of determinization (Mohri,
2009) which is only shown to have polynomial computational complexity under some addi-
tional technical assumptions on the outputs of the path experts. In this section, we present
an extension of CH, the Context-dependent Component Hedge (CDCH), for the online path
learning problem with non-additive count-based gains. CDCH admits more favorable re-
gret guarantees than RRWM and can be efficiently implemented without any additional
assumptions.

Our CDCH algorithm requires a modification of A′ such that all paths admit an equal
number K of transitions (same as the longest path). This modification can be done by
adding at most (K − 2)(Q − 2) + 1 states and zero-gain transitions (György et al., 2007).
Abusing the notation, we will denote this new automaton by A′ in this subsection. At
each iteration t, CDCH maintains a weight vector wt in the unit-flow polytope P over A′,
which is a set of vectors w ∈ RM satisfying the following conditions: (1) the weights of
the outgoing transitions from the initial state sum up to one, and (2) for every non-final
state, the sum of the weights of incoming and outgoing transitions are equal. For each
t ∈ {1, . . . , T}, we observe the gain of each transition gt,e′ , and define the loss of that
transition as `e′ = B − gt,e′ . After observing the loss of each transition e′ in A′, CDCH
updates each component of w as ŵ(e′)← wt(e

′) exp(−η `t,e′) (where η is a specified learning
rate), and sets wt+1 to the relative entropy projection of the updated ŵ back to the unit-flow

polytope, i.e. wt+1 = argminw∈P
∑

e′∈E′ w(e′) ln w(e′)
ŵ(e′) + ŵ(e′)− w(e′).

4. For example, in the case of n-gram gains, all the paths in A with a length less than n correspond to
path with empty output in A′ and will always have a gain of zero.

8

Online Non-Additive Path Learning

CDCH predicts by decomposing wt into a convex combination of at most |E′| paths in
A′ and then sampling a single path according to this mixture as described below. Recall
that each path in A′ identifies a path in A which can be recovered in time K. Therefore,
the inference step of the CDCH algorithm takes at most time polynomial in |E′| steps. To
determine a decomposition, we find a path from the initial state to a final state with non-
zero weights on all transitions, remove the largest weight on that path from each transition
on that path and use it as a mixture weight for that path. The algorithm proceeds in this
way until the outflow from initial state is zero. The following theorem from (Koolen et al.,
2010) gives a regret guarantee for the CDCH algorithm.

Theorem 3 With proper tuning of the learning rate η, the regret of CDCH is bounded as
below:

∀ π∗ ∈ P :

n∑
t=1

U(outt(π
∗), yt)− U(outt(πt), yt) ≤

√
2T B2K2 log(KM) +BK log(KM).

The regret bounds of Theorem 3 are in terms of the count-based gain U(·, ·). Cortes et al.
(2015) gave regret guarantees for the RRWM algorithm with count-based losses defined
by − logU(·, ·). In Appendix E, we show that the regret associated with − logU is upper-
bounded by the regret bound associated with U. Observe that, even with this approxi-
mation, the regret guarantees that we provide for CDCH are tighter by a factor of K. In
addition, our algorithm does not require additional assumptions for an efficient implemen-
tation compared to the RRWM algorithm of Cortes et al. (2015).

4.2. Semi-Bandit: Context-dependent Semi-Bandit Algorithm

György et al. (2007) gave an efficient algorithm for online path learning with additive losses
in the semi-bandit setting. In this section, we present a Context-dependent Semi-Bandit
(CDSB) algorithm extending that work to solving the problem of online path learning with
count-based gains in a semi-bandit setting. To the best of our knowledge, this is the first
efficient algorithm with favorable regret bounds for this problem.

As with the algorithm of György et al. (2007), CDSB makes use of a set C of covering
paths with the property that, for each e′ ∈ E′, there is an accepting path π′ in C such that
e′ belongs to π′. At each round t, CDSB keeps track of a distribution pt over all N path
experts by maintaining a weight wt(e

′) on each transition e′ in A′ such that the weights of
outgoing transitions for each state sum up to 1 and pt(π

′) =
∏
e′∈π′ wt(e

′), for all accepting
paths π′ in A′. Therefore, we can sample a path π′ from pt in at most K steps by selecting
a random transition at each state according to the distribution defined by wt. To make
a prediction, we sample a path in A′ according to a mixture distribution (1 − γ)pt + γµ,
where µ is a uniform distribution over paths in C. We select pt with probability 1− γ or µ
with probability γ and sample a random path π′ from the randomly chosen distribution.

Once a path π′t in A′ is sampled, we observe the gain of each transition e′ of π′t,
denoted by gt,e′ . CDSB sets ŵt(e

′) = wt(e
′) exp(ηg̃t,e′), where g̃t,e′ = (gt,e′ + β)/qt,e′ if

e′ ∈ π′t and g̃t,e′ = β/qt,e′ otherwise. Here, η, β, γ > 0 are parameters of the algorithm
and qt,e′ is the flow through e′ in A′, which can be computed using a standard shortest-
distance algorithm over the probability semiring (Mohri, 2009). The updated distribution

9

Online Non-Additive Path Learning

is pt+1(π
′) ∝

∏
e′∈π′ ŵt(e

′). Next, the weight pushing algorithm (Mohri, 1997) is applied
(see Appendix C), which results in new transition weights wt+1 such that the total outflow
out of each state is again one and the updated probabilities are pt+1(π

′) =
∏
e′∈π′ wt+1(e

′),
thereby facilitating sampling. The computational complexity of each of the steps above is
polynomial in the size of A′. The following theorem from György et al. (2007) provides a
regret guarantee for CDSB algorithm.

Theorem 4 Let C denote the set of “covering paths” in A′. For any δ ∈ (0, 1), with proper
tuning of the parameters η, β, and γ, the regret of the CDSB algorithm can be bounded as
follows with probability 1− δ:

∀ π∗ ∈ P :

n∑
t=1

U(outt(π
∗), yt)− U(outt(πt), yt) ≤ 2B

√
TK

(√
4K|C| lnN +

√
M ln M

δ

)
.

4.3. Full Bandit: Context-dependent ComBand Algorithm

Here, we present an algorithm for online path learning with count-based gains in the full
bandit setting. Cesa-Bianchi and Lugosi (2012) gave an algorithm for online path learning
with additive gains, ComBand. Our generalization, called Context-dependent ComBand
(CDCB), is the first efficient algorithm with favorable regret guarantees for learning with
count-based gains in this setting. For the full bandit setting with arbitrary gains, we develop
an efficient execution of EXP3, called EXP3-AG, in Appendix B.

As with CDSB, CDCB maintains a distribution pt over all N path experts using weights
wt on the transitions such that the outflow of each state is one and the probability of each
path experts is the product of the weights of the transitions along that path. To make a
prediction, we sample a path in A′ according to a mixture distribution qt = (1− γ)pt + γµ,
where µ is a uniform distribution over the paths in A′. Note that this sampling can be
efficiently implemented as follows. As a pre-processing step, define µ using a separate set
of weights w(µ) over the transitions of A′ in the same form. Set all the weights w(µ) to
one and apply the weight-pushing algorithm to obtain a uniform distribution over the path
experts. Next, we select pt with probability 1 − γ or µ with probability γ and sample a
random path π′ from the randomly chosen distribution.

After observing the scalar gain gπ′ of the chosen path, CDCB computes a surrogate
gain vector for all transitions in A′ via g̃t = gπ′Pvπ′ , where P is the pseudo-inverse of
E[vπ′v

T
π′] and vπ′ ∈ {0, 1}M is a bit representation of the path π′. As for CDSB, we set

ŵ(e′) = wt(e
′) exp(−ηg̃t,e′) and update A′ via weighted-pushing to compute wt+1. We

obtain the following regret guarantees from Cesa-Bianchi and Lugosi (2012) for CDCB:

Theorem 5 Let λmin denote the smallest non-zero eigenvalue of E[vπ′v
T
π′] where vπ′ ∈

{0, 1}M is the bit representation of the path π′ which is distributed according to the uniform
distribution µ. With proper tuning of the parameters η and γ, the regret of CDCB can be
bounded as follows:

∀ π∗ ∈ P :

n∑
t=1

U(outt(π
∗), yt)− U(outt(πt), yt) ≤ 2B

√(
2K

Mλmin
+ 1

)
TM lnN.

10

Online Non-Additive Path Learning

5. Extension to Gappy Count-Based Gains

Here, we generalize the results of Section 3 to a broader family of non-additive gains called
gappy count-based gains: the gain of each path depends on the discounted counts of gappy
occurrences of a fixed set of patterns θ1, . . . , θp in the sequence output by that path. In
a gappy occurrence, there can be “gaps” between symbols of the pattern. The count of a
gappy occurrence is discounted multiplicatively by γk where γ ∈ [0, 1] is a fixed discount
rate and k is the total length of gaps. For example, the gappy occurrences of the pattern
θ = aab in a sequence y = babbaabaa with discount rate γ are

• b a b b a a b a a, length of gap = 0, discount factor = 1;

• b a b b a a b a a, length of gap = 3, discount factor = γ3;

• b a b b a a b a a, length of gap = 3, discount factor = γ3,

which makes the total discounted count of gappy occurrences of θ in y to be 1 + 2 ·γ3. Each
sequence of symbols y ∈ Σ∗ can be represented as a discounted count vector Θ(y) ∈ Rp of
gappy occurrences of the patterns whose ith component is “the discounted number of gappy
occurrences of θi in y”. The gain function U is defined in the same way as in Equation (1).5

A typical instance of such gains is gappy n-gram gains where the patterns are all |Σ|n-many
n-grams.

The key to extending our results in Section 3 to gappy n-grams is an appropriate def-
inition of the alphabet E′, the rewrite rules, and a new context-dependent automaton A′.
Once A′ is constructed, the algorithms and regret guarantees presented in Section 4 can be
extended to gappy count-based gains. To the best of our knowledge, this provides the first
efficient online algorithms with favorable regret guarantees for gappy count-based gains in
full information, semi-bandit and full bandit settings.

Context-Dependent Rewrite Rules. We extend the definition of E′ so that it also en-

codes the total length k of the gaps: E′ =
{

(#e1 · · · er)k | e1 · · · er ∈ E, r ∈ {|θ1|, . . . , |θp|},

k ∈ Z, k ≥ 0
}

. Note that the discount factor in gappy occurrences does not depend on the

position of the gaps. Exploiting this fact, for each pattern of length n and total gap length
k, we reduce the number of output symbols by a factor of

(
k+n−2

k

)
by encoding the number

of gaps as opposed to the position of the gaps.
We extend the rewrite rules in order to incorporate the gappy occurrences. Given

e′ = (#ei1ei2 . . . ein)k, for all path segments ej1ej2 . . . ejn+k of length n + k in A where

{is}ns=1 is a subsequence of {jr}n+kr=1 with i1 = j1 and in = jn+k, we introduce the rule:

ej1ej2 . . . ejn+k −→ (#ei1ei2 . . . ein)k/ε ε.

As with the non-gappy case in Section 3, the simultaneous application of all these rewrite
rules can be efficiently compiled into a FST TA. The context-dependent transducer TA maps
any sequence of transition names in E into a sequence of corresponding gappy occurrences.

5. The regular count-based gain can be recovered by setting γ = 0.

11

Online Non-Additive Path Learning

The example below shows how TA outputs the gappy trigrams given a path segment of
length 5 as input:

e1, e2, e3, e4, e5
TA−−→(#e1e2e3)0, (#e2e3e4)0, (#e3e4e5)0, (#e1e2e4)1, (#e1e3e4)1, (#e2e3e5)1,

(#e2e4e5)1, (#e1e2e5)2, (#e1e4e5)2, (#e1e3e5)2.

Context-Dependent Automaton A′. As in Section 3.2, we construct the context-
dependent automaton as A′ := Π(A◦TA), which admits a fixed topology through trials.
The rewrite rules are constructed in a way such that different paths in A are rewritten dif-
ferently. Therefore, TA assigns a unique output to a given path expert in A. Proposition 1
ensures that for every accepting path π in A, there is a unique corresponding accepting
path in A′.

For any round t∈ [T] and any e′=(#ei1ei2 · · · ein)k, define outt(e
′) := outt(ei1) . . . outt(ein).

Let outt(A
′) be the automaton with the same topology as A′ where each label e′ ∈ E′ is

replaced by outt(e
′). Given yt, the representation Θ(yt) can be found, and consequently,

the additive contribution of each transition of A′. Again, we show the additivity of the gain
in A′ (see Appendix D for the proof).

Theorem 6 Given the trial t and discount rate γ ∈ [0, 1], for each transition e′ ∈ E′ in
A′, define the gain ge′,t := γk [Θ(yt)]i if outt(e

′) = (θi)k for some i and k and ge′,t := 0 if
no such i and k exist. Then, the gain of each path π in A at trial t can be expressed as an
additive gain of π′ in A′:

∀t ∈ [1, T], ∀π ∈ P, U(outt(π), yt) =
∑
e′∈π′

ge′,t .

We can extend the algorithms and regret guarantees presented in Section 4 to gappy count-
based gains. To the best of our knowledge, this provides the first efficient online algorithms
with favorable regret guarantees for gappy count-based gains in full information, semi-bandit
and full bandit settings.

6. Conclusion and Open Problems

We presented several new algorithms for online non-additive path learning with very favor-
able regret guarantees for the full information, semi-bandit, and full bandit scenarios. We
conclude with two open problems: (1) Non-acyclic expert automata: we assumed here that
the expert automaton A is acyclic and the language of patterns L = {θ1, . . . , θp} is finite.
Solving the non-additive path learning problem with cyclic expert automaton together with
(infinite) regular language L of patterns remains an open problem; (2) Incremental con-
struction of A′: in this work, regardless of the data and the setting, the context-dependent
automaton A′ is constructed in advance as a pre-processing step. Is it possible to construct
A′ gradually as the learner goes through trials? Can we build A′ incrementally in different
settings and keep it as small as possible as the algorithm is exploring the set of paths and
learning about the revealed data?

12

Online Non-Additive Path Learning

Acknowledgments

The work of MM was partly funded by NSF CCF-1535987 and NSF IIS-1618662. Part of this
work was done while MKW was at UC Santa Cruz, supported by NSF grant IIS-1619271.

References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. Open-
Fst: a general and efficient weighted finite-state transducer library. In Proceedings of
CIAA, pages 11–23. Springer, 2007.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and
System Sciences, 78(5):1404–1422, 2012.

Corinna Cortes, Vitaly Kuznetsov, and Mehryar Mohri. Ensemble methods for structured
prediction. In Proceedings of ICML, 2014.

Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, and Manfred K. Warmuth. On-line
learning algorithms for path experts with non-additive losses. In Proceedings of The
28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, pages
424–447, 2015.

András György, Tamás Linder, Gábor Lugosi, and György Ottucsák. The on-line shortest
path problem under partial monitoring. Journal of Machine Learning Research, 8(Oct):
2369–2403, 2007.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Jour-
nal of Computer and System Sciences, 71(3):291–307, 2005.

Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems. Compu-
tational Linguistics, 20(3):331–378, 1994.

Wouter M. Koolen, Manfred K. Warmuth, and Jyrki Kivinen. Hedging structured concepts.
In Proceedings of COLT, pages 93–105, 2010.

Mehryar Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2):269–311, 1997.

Mehryar Mohri. Weighted automata algorithms. In Handbook of Weighted Automata, pages
213–254. Springer, 2009.

Mehryar Mohri and Richard Sproat. An efficient compiler for weighted rewrite rules. In
Proceedings of the 34th annual meeting on Association for Computational Linguistics,
pages 231–238. Association for Computational Linguistics, 1996.

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted automata in text and
speech processing. In Proceedings of ECAI-96 Workshop on Extended finite state models
of language, 1996.

13

Online Non-Additive Path Learning

Fernando Pereira and Michael Riley. Speech recognition by composition of weighted finite
automata. In Finite-State Language Processing, pages 431–453. MIT Press, 1997.

Gilles Stoltz. Information incomplete et regret interne en prédiction de suites individuelles.
PhD thesis, Ph. D. thesis, Univ. Paris Sud, 2005.

Eiji Takimoto and Manfred K. Warmuth. Path kernels and multiplicative updates. JMLR,
4:773–818, 2003.

14

Online Non-Additive Path Learning

Appendix A. Applications to Ensemble Structured Prediction

The algorithms discussed in Section 4 can be used for the online learning of ensembles of
structured prediction experts, and consequently, significantly improve the performance of
algorithms in a number of areas including machine translation, speech recognition, other
language processing areas, optical character recognition, and computer vision. In structured
prediction problems, the output associated with a model h is a structure y that can be
decomposed and represented by ` substructures y1, . . . , y`. For instance, h may be a machine
translation system and yi a particular word.

The problem of ensemble structured prediction can be described as follows. The learner
has access to a set of r experts h1, . . . , hr to make an ensemble prediction. Therefore, at
each round t ∈ [1, T], the learner can use the outputs of the r experts outt(h1), . . . , outt(hr).
As illustrated in Figure 7(a), each expert hj consists of ` substructures hj = (hj,1, . . . , hj,`).

h1

...
...

hr

(a)

0

0

1

1

· · ·

· · ·

`

`

h1,1 h1,2 h1,`

hr,1 hr,2 hr,` A

(b)

0 1 · · · `

h1,1

hr,1

. . .

h1,2

hr,2

. . .

h1,`

hr,`

. . .

Figure 7: (a) the structured experts h1, . . . , hr. (b) the expert automaton A allowing all
combinations.

Represented by paths in an automaton, the substructures of these experts can be com-
bined together. Allowing all combinations, Figure 7(b) illustrates the expert automaton A

induced by r structured experts with ` substructures. The objective of the learner is to
find the best path expert which is the combination of substructures with the best expected
gain. This is motivated by the fact that one particular expert may be better at predicting
one substructure while some other expert may be more accurate at predicting another sub-
structure. Therefore, it is desirable to combine the substructure predictions of all experts
to obtain the more accurate prediction.

Consider the online path learning problem with expert automaton A in Figure 7(b) with
non-additive n-gram gains described in Section 3 for typical small values of n (e.g. n = 4).
We construct the context-dependent automaton A′ via a set of rewrite rules. The rewrite
rules are as follows:

hj1,i+1, hj2,i+2, . . . , hjn,i+n → #hj1,i+1hj2,i+2 . . . hjn,i+n / ε ε,

for all j1, . . . , jn ∈ [1, r], i ∈ [0, ` − n]. The number of rewrite rules is (` − n + 1) rn. We
compile these rewrite rules into the context-dependent transducer TA, and then construct
the context-dependent automaton A′ = Π(A ◦ TA).

The context-dependent automaton A′ is illustrated in Figure 8. The transitions in A′

are labeled with n-grams of transition names hi,j in A. The context-dependent automaton
A′ has `−n+1 layers of states each of which acts as a “memory” indicating the last observed

15

Online Non-Additive Path Learning

0 1 i− 1 i `− n+ 1

...
...

...
... rn−1

#h∗,1 . . . h∗,n

#h∗,i . . . h∗,i+n−1

Figure 8: The context-dependent automaton A′ for the expert automaton A depicted in
Figure 7(b).

(n − 1)-gram of transition names hi,j . With each intermediate state (i.e. a state which is
neither the initial state nor a final state), a (n− 1)-gram is associated. Each layer contains
rn−1 many states encoding all combinations of (n − 1)-grams ending at that state. Each
intermediate state has r incoming transitions which are the n-grams ending with (n − 1)-
gram associated with the state. Similarly each state has r outgoing transitions which are
the n-grams starting with (n− 1)-gram associated with the state.

The number of states and transitions in A′ are Q = 1+rn(`−n) and M = rn(`−n+1),
respectively. Note that the size of A′ does not depend on the size of the output alphabet
Σ. Also notice that all paths in A′ have equal length of K = ` − n + 1. Furthermore the
number of paths in A′ and A are the same and equal to N = r`.

We now apply the algorithms introduced in Section 4.

A.1. Full Information: Context-dependent Component Hedge Algorithm

We apply the CDCH algorithm to this application in full information setting. The context-
dependent automaton A′ introduced in this section is highly structured. We can exploit
this structure and obtain better bounds comparing to the general bounds of Theorem 3 for
CDCH.

Theorem 7 Let B denote an upper-bound for the gains of all the transitions in A′, and T
be the time horizon. The regret of CDCH algorithm on ensemble structured prediction with
r predictors consisting of ` substructures with n-gram gains can be bounded as

RegretCDCH ≤
√

2T B2 (`− n+ 1)2 n log r +B (`− n+ 1)n log r.

Proof First, note that all paths in A′ have equal length of K = `−n+ 1. Therefore there
is no need of modifying A′ to make all paths of the same length. At each trial t ∈ [T], we

16

Online Non-Additive Path Learning

define the loss of each transition as `t,e′ := B − gt,e′ . Extending the results of Koolen et al.
(2010), the general regret bound of CDCH is

RegretCDCH ≤
√

2T K B2 ∆(vπ∗ ||w1) +B∆(vπ∗ ||w1), (3)

where vπ∗ ∈ {0, 1}M is a bit vector representation of the best comparator π∗, w1 ∈ [0, 1]M

is the initial weight vector in the unit-flow polytope, and

∆(w||ŵ) :=
∑
e′∈E′

(
we′ ln

we′

ŵe′
+ ŵe′ − we′

)
.

Since the initial state has rn outgoing transitions, and all the intermediate states have
r incoming and outgoing transitions, the initial vector w1 = 1

rn1 falls into the unit-flow
polytope, where 1 is a vector of all ones. Also vπ∗ has exactly K = ` − n + 1 many ones.
Therefore:

∆(vπ∗ ||w1) = (`− n+ 1)n log r (4)

Combining the Equations (3) and (4) gives us the desired regret bound.

A.2. Semi-Bandit: Context-dependent Semi-Bandit Algorithm

In order to apply the algorithm CDSB in semi-bandit setting in this application, we need
to introduce a set of “covering paths” C in A′. We introduce C by partitioning all the
transitions in A′ into rn paths of length `− n+ 1 iteratively as follows. At each iteration,
choose an arbitrary path π from the initial state to a final state. Add π to the set C
and remove all its transitions from A′. Notice that the number of incoming and outgoing
transitions for each intermediate state are always equal throughout the iterations. Also
note that in each iteration, the number of outgoing edges from the initial state decreases
by one. Therefore after rn iterations, C contains a set of rn paths that partition the set of
transitions in A′.

Furthermore, observe that the number of paths in A′ and A are the same and equal to
N = r`. The Corollary below is a direct result of Theorem 4 with |C| = rn.

Corollary 8 For any δ ∈ (0, 1), with proper tuning, the regret of the CDSB algorithm can
be bounded, with probability 1− δ, as:

RegretCDSB ≤ 2B (`− n+ 1)
√
T

(
√

4 rn ` ln r +

√
rn ln

rn(`− n+ 1)

δ

)
.

A.3. Full Bandit: Context-dependent ComBand Algorithm

We apply the CDCB algorithm to this application in full bandit setting. The Corollary
below, which is a direct result of Theorem 5, give regret guarantee for CDCB algorithm.

17

Online Non-Additive Path Learning

Corollary 9 Let λmin denote the smallest non-zero eigenvalue of E[vπv
T
π] where vπ ∈

{0, 1}M is the bit representation of the path π which is distributed according to the uniform
distribution µ. With proper tuning, the regret of CDCB can be bounded as follows:

RegretCDCB ≤ 2B

√√√√T

(
2(`− n+ 1)

rn(`− n+ 1)λmin
+ 1

)
rn (`− n+ 1) ` ln r.

Appendix B. Path Learning for Full Bandit and Arbitrary Gain

So far, we have discussed the count-based gains as a wide family of non-additive gains in
full information, semi- and full bandit settings. We developed learning algorithms that
exploit the special structure of count-based gains. In this section, we go beyond the count-
based gains in the full bandit setting and consider the scenario where the gain function
is arbitrary and admits no known structure. In other words, any two paths can have
completely independent gains regardless of the number of overlapping transitions they may
share. Clearly, the CDCB algorithm of Section 4 cannot be applied to this case as it is
specialized to (gappy) count-based gains. However, we present a general algorithm for path
learning in the full bandit setting, when the gain function is arbitrary. This algorithm
(called EXP3-AG) admits weaker regret bounds since no special structure of the gains can
be exploited in the absence of any assumption. The algorithm is essentially an efficient
implementation of EXP3 for path learning with arbitrary gains using weighted automata
and graph operations.

We start with a brief description of the EXP3 algorithm of Auer et al. (2002), which
is an online learning algorithm designed for the full bandit setting over a set of N experts.
The algorithm maintains a distribution wt over the set of experts, with w1 initialized
to the uniform distribution. At each round t ∈ [T], the algorithm samples an expert It
according to wt and receives (only) the gain gt,It associated to that expert. It then updates
the weights multiplicatively via the rule wt+1,i ∝ wt,i exp(η g̃t,i) for all i ∈ [N], where
g̃t,i =

gt,i
wt,i

1{It = i} is an unbiased surrogate gain associated with expert i. The weights

wt+1,i are then normalized to sum to one.6

In our learning scenario, each expert is a path in A. Since the number of paths is
exponential in the size of A, maintaining a weight per path is computationally intractable.
We cannot exploit the properties of the gain function since it does not admit any known
structure. However, we can make use of the graph representation of the experts. We
will show that the weights of the experts at round t can be compactly represented by a
deterministic weighted finite automaton (WFA) Wt. We will further show that sampling a
path from Wt and updating Wt can be done efficiently.

A deterministic WFA W is a deterministic finite automaton whose transitions and final
states carry weights. Let w(e) denote the weight of a transition e and wf (q) the weight
at a final state q. The weight W(π) of a path π ending in a final state is defined as the
product of its constituent transition weights and the weight at the final state: W(π) :=
(
∏
e∈π w(e)) · wf (dest(π)), where dest(π) denotes the destination state of π.

6. The original EXP3 algorithm of Auer et al. (2002) mixes the weight vector with the uniform distribution
in each trial. Later Stoltz (2005) showed that the mixing step is not necessary.

18

Online Non-Additive Path Learning

Vt

0|1 1|1 2|1

else|1

· · · k|exp(
η gπt,t
Wt(πt)

)
e1|1

ρ|1

e2|1
ρ|1

e3|1

ρ|1

ek|1
ρ|1

E|1

E|1

Figure 9: The update WFA Vt. The
weight of each state and transition is
written next to its name separated by “|”:
e|weight−−−−−−→

1: W1 ←− A

2: For t = 1, . . . , T
3: Wt ←−WeightPush(Wt)
4: πt ←− Sample(Wt)
5: gπt,t ←− ReceiveGain(πt)
6: Vt ←− UpdateWFA(πt,Wt(πt), gt,πt)
7: Wt+1 ←−Wt ◦ Vt

Figure 10: Algorithm EXP3-AG

Sampling paths from a deterministic WFA W is straightforward when it is stochastic,
that is when the weights of all outgoing transitions and the final state weight (if the state
is final) sum to one at every state: starting from the initial state, we can randomly draw
a transition according to the probability distribution defined by the outgoing transition
weights and proceed similarly from the destination state of that transition, until a final
state is reached. The WFA we obtain after an update may not be stochastic, but we can
efficiently compute an equivalent stochastic WFA W′ from any W using the weight-pushing
algorithm (Mohri, 1997, 2009; Takimoto and Warmuth, 2003): W′ admits the same states
and transitions as W and assigns the same weight to a path from the initial state to a
final state; but the weights along paths are redistributed so that W′ is stochastic. For
an acyclic input WFA such as those we are considering, the computational complexity of
weight-pushing is linear in the sum of the number of states and transitions of W, see the
Appendix C for details.

We now show how Wt can be efficiently updated using the standard WFA operation of
intersection (or composition) with a WFA Vt representing the multiplicative weights that
we will refer to as the update WFA at time t.

Vt is a deterministic WFA that assigns weight exp(η g̃t,π) to path π. Thus, since g̃t,π = 0
for all paths but the path πt sampled at time t, Vt assigns weight 1 to all paths π 6= πt and
weight exp

(ηgt,πt
Wt(πt)

)
to πt. Vt can be constructed deterministically as illustrated in Figure 9,

using ρ-transitions (marked with ρ in green). A ρ-transition admits the semantics of the
rest : it matches any symbol that is not labeling an existing outgoing transition at that state.
For example, the ρ-transition at state 1 matches any symbol other than e2. ρ-transitions
lead to a more compact representation not requiring the knowledge of the full alphabet.
This further helps speed up subsequent intersection operations (Allauzen et al., 2007).

To update the weights Wt, we use the intersection (or composition) of WFAs. By
definition, the intersection of Wt and Vt is a WFA denoted by (Wt ◦Vt) that assigns to each
path expert π the product of the weights assigned by Wt and Vt:

7

∀π ∈ P : (Wt ◦ Vt)(π) = Wt(π) · Vt(π).

7. The terminology of intersection is motivated by the case where the weights are either 0 or 1, in which
case the set of paths with non-zero weights in Wt ◦ Vt is the intersection of the sets of paths with with
weight 1 in Wt and Vt.

19

Online Non-Additive Path Learning

There exists a general an efficient algorithm for computing the intersection of two WFAs
(Pereira and Riley, 1997; Mohri et al., 1996; Mohri, 2009): the states of the intersection
WFA are formed by pairs of a state of the first WFA and a state of the second WFA, and
the transitions obtained by matching pairs of transitions from the original WFAs, with their
weights multiplied, see Appendix C for more details. Since both Wt and Vt are deterministic,
their intersection (Wt ◦ Vt) is also deterministic (Cortes et al., 2015).

The following lemma (proven in Appendix D) shows that the weight assigned by EXP3-
AG to each path expert coincides with those defined by EXP3.

Lemma 10 At each round t ∈ [T] in EXP3-AG, the following properties hold for Wt and
Vt:

Wt+1(π) ∝ exp(η

t∑
s=1

g̃s,π), Vt(π) = exp(η g̃t,π), s.t. g̃s,π = (gs,π/Ws(π)) · 1{π = πs}.

Figure 10 gives the pseudocode of EXP3-AG. The time complexity of EXP3-AG is dom-
inated by the cost of the intersection operation (line 7). The worst-case space and time
complexity of the intersection of two deterministic WFA is linear in the size of the automa-
ton the algorithm returns. Due to the specific structure of Vt, the size of Wt ◦ Vt can be
shown to be at most O(|Wt|+ |Vt|) where |Wt| is the sum of the number of states and transi-
tions in Wt. This is significantly better than the worst case size of the intersection in general
(i.e. O(|Wt||Vt|). Recall that Wt+1 is deterministic. Thus, unlike the algorithms of Cortes
et al. (2015), no further determinization is required. The following Lemma guarantees the
efficiency of EXP3-AG algorithm. See Appendix D for the proof.

Lemma 11 The time complexity of EXP3-AG at round t is in O(|Wt|+ |Vt|). Moreover,
in the worst case, the growth of |Wt| over time is at most linear in K where K is the length
of the longest path in A.

The following upper bound holds for the regret of EXP3-AG, as a direct consequence of
existing guarantees for EXP3 (Auer et al., 2002).

Theorem 12 Let U > 0 be an upper bound on all path gains: gt,π ≤ U for all t ∈ [T]
and all path π. Then, the regret of EXP3-AG with N path experts is upper bounded by
U
√

2T N logN .

The
√
N dependency of the bound suggests that the guarantee will not be informative

for large values of N . However, the following known lower bound shows that, in the absence
of any assumption about the structure of the gains, this dependency cannot be improved
in general (Auer et al., 2002).

Theorem 13 Let U > 0 be an upper bound on all path gains: gt,π ≤ U for all t ∈ [T]
and all path π. Then, For any number of path experts N ≥ 2 there exists a distribution
over the assignment of gains to path experts such that the regret of any algorithm is at least
1
20U min{

√
T N, T}.

20

Online Non-Additive Path Learning

Appendix C. Weighted Finite Automata

In this section, we formally describe several WFA operations relevant to this paper, as well
as their properties.

C.1. Intersection of WFAs

The intersection of two WFAs A1 and A2 is a WFA denoted by A1 ◦ A2 that accepts the
set of sequences accepted by both A1 and A2 and is defined for all π by

(A1 ◦A2)(π) = A1(π) ·A2(π).

There exists a standard efficient algorithm for computing the intersection WFA (Pereira
and Riley, 1997; Mohri et al., 1996; Mohri, 2009). States Q ⊆ Q1 × Q2 of A1 ◦ A2 are
identified with pairs of states Q1 of A1 and Q2 of A2, as are the set of initial and final
states. Transitions are obtained by matching pairs of transitions from each WFA and
multiplying their weights:(

q1
a|w1−→ q′1, q2

a|w2−→ q′2

)
⇒ (q1, q2)

a|w1·w2−→ (q′1, q
′
2).

The worst-case space and time complexity of the intersection of two deterministic WFAs is
linear in the size of the automaton the algorithm returns. In the worst case, this can be
as large as the product of the sizes of the WFA that are intersected (i.e. O(|A1||A2|). This
corresponds to the case where every transition of A1 can be paired up with every transition
of A2. In practice, far fewer transitions can be matched.

Notice that, when both A1 and A2 are deterministic, then A1 ◦A2 is also deterministic
since there is a unique initial state (pair of initial states of each WFA) and since there is at
most one transition leaving q1 ∈ Q1 or q2 ∈ Q2 labeled with a given symbol a ∈ Σ.

C.2. Weight Pushing

Given a WFA W, the weight pushing algorithm (Mohri, 1997, 2009) computes an equivalent
stochastic WFA. The weight pushing algorithm is defined as follows. For any state q in W,
let d[q] denote the sum of the weights of all paths from q to final states:

d[q] =
∑
π∈P(q)

(∏
e∈π

w(e)

)
· wf (dest(π)),

where P(q) denotes the set of paths from q to final states in W. The weights d[q]s can be
computed be simultaneously for all qs using standard shortest-distance algorithms over the
probability semiring (?). The weight pushing algorithm performs the following steps. For
any transition (q, q′) ∈ E such that d[q] 6= 0, its weight is updated as below:

w(q, q′)← d[q]−1w(q, q′) d[q′].

For any final state q, the weight is updated as follows:

wf (q)← wf (q) d[q]−1.

The resulting WFA is guaranteed to preserve the path expert weights and to be stochastic
(Mohri, 2009).

21

Online Non-Additive Path Learning

Appendix D. Proofs

Lemma 10 At each round t ∈ [T], the following properties hold for Wt and Vt:

Wt+1(π) ∝ exp(η
t∑

s=1

g̃s,π), Vt(π) = exp(η g̃t,π), s.t. g̃s,π =

{
gs,π

Ws(π)
π = πs

0 otherwise.

Proof Consider Vt in Figure 9 and let πt = e1e2 . . . ek be the path chosen by the learner.
Every state in Vt is a final state. Therefore, Vt accepts any sequence of transitions names.
Moreover, since the weights of all transitions are 1, the weight of any accepting path is
simply the weight of its final state. The construction of Vt ensures that the weight of every
sequence of transition names is 1, except for πt = e1e2 . . . ek. Thus, the property of Vt is
achieved:

Vt(π) =

{
exp

(
η gt,π
Wt(π)

)
π = πt

1 otherwise

To proof of the result for Wt+1 is by induction on t. Consider the base case of t = 0. W1

is initialized to the automaton A with all weights being one. Thus, the weights of all paths
are equal to 1 before weight pushing (i.e. W1(π) ∝ 1). The inductive step is as follows:

Wt+1(π) ∝Wt(π) · Vt(π) (definition of composition)

= exp(η

t−1∑
s=1

g̃s,π) · exp(η g̃t,π) (induction hypothesis)

= exp(η

t∑
s=1

g̃s,π),

which completes the proof.

Lemma 11 The time complexity of EXP3-AG at round t is in O(|Wt|+ |Vt|). Moreover,
in the worst case, the growth of |Wt| over time is at most linear in K where K is the length
of the longest path in A.

Proof Figure 10 gives the pseudocode of EXP3-AG. The time complexity of the weight-
pushing step is in O(|Wt|), where |Wt| is the sum of the number of states and transitions
in Wt. Lines 4 and 6 in Algorithm 10 take O(|Vt|) time. Finally, regarding line 7, the
worst-case space and time complexity of the intersection of two deterministic WFA is linear
in the size of the automaton the algorithm returns. However, the size of the intersection
automaton Wt ◦Vt is significantly smaller than the general worst case (i.e. O(|Wt||Vt|)) due
to the state “else” with all in-coming ρ-transitions (see Figure 9). Since Wt is deterministic,
in the construction of Wt ◦ Vt, each state of Vt except from the “else” state is paired up
only with one state of Wt. For example, if the state is the one reached by e1e2e3, then
it is paired up with the single state of Wt reached when reading e1e2e3 from the initial
state. Thus |Wt ◦Vt| ≤ |Wt|+ |Vt|, and therefore, the intersection operation in line 7 takes
O(|Wt|+ |Vt|) time, which also dominates the time complexity of EXP3-AG algorithm.

22

Online Non-Additive Path Learning

Additionally, observe that the size |Vt| is in O(K) where K is the length of the longest
path in A. Since |Wt+1| = |Wt ◦ Vt| ≤ |Wt| + |Vt|, in the worst case, the growth of |Wt|
over time is at most linear in K.

Proposition 1 Let A be an expert automaton and let TA be a deterministic transducer
representing the rewrite rules (2). Then, for each accepting path π in A there exists a
unique corresponding accepting path π′ in A′ = Π(A ◦ TA).

Proof To establish the correspondence, we introduce TA as a mapping from the accepting
paths in A to the accepting paths in A′. Since TA is deterministic, for each accepting path
π in A (i.e. A(π) = 1), TA assigns a unique output π′, that is TA(π, π′) = 1. We show that
π′ is an accepting path in A′. Observe that

(A ◦ TA)(π, π′) = A(π) · TA(π, π′) = 1× 1 = 1,

which implies that A′(π′) = Π(A ◦ TA)(π′) = 1. Thus for each accepting path π in A there
is a unique accepting path π′ in A′.

Theorem 2 Given the trial t, for each transition e′ ∈ E′ in A′ define the gain ge′,t :=
[Θ(yt)]i if outt(e

′) = θi for some i and ge′,t := 0 if no such i exists. Then, the gain of each
path π in A at trial t can be expressed as an additive gain of π′ in A′:

∀t ∈ [1, T], ∀π ∈ P : U(outt(π), yt) =
∑
e′∈π′

ge′,t .

Proof By definition, the ith component of Θ(outt(π)) is the number of occurrences of
θi in outt(π). Also, by construction of the context-dependent automaton based on rewrite
rules, π′ contains all path segments of length |θi| of π in A as transition labels in A′. Thus
every occurrence of θi in outt(π) will appear as a transition label in outt(π

′). Therefore the
number of occurrences of θi in outt(π) is

[Θ(outt(π))]i =
∑
e′∈π′

1{outt(e
′) = θi}, (5)

where 1{·} is the indicator function. Thus, we have that

U(outt(π), yt) = Θ(yt) ·Θ(outt(π)) (definition of U)

=
∑
i

[Θ(yt)]i [Θ(outt(π))]i

=
∑
i

[Θ(yt)]i
∑
e′∈π′

1{outt(e
′) = θi} (Equation (5))

=
∑
e′∈π′

∑
i

[Θ(yt)]i 1{outt(e
′) = θi}︸ ︷︷ ︸

=ge′,t

,

which concludes the proof.

23

Online Non-Additive Path Learning

Theorem 14 Given the trial t and discount rate γ ∈ [0, 1], for each transition e′ ∈ E′ in
A′ define the gain ge′,t := γk [Θ(yt)]i if outt(e

′) = (θi)k for some i and k and ge′,t := 0 if
no such i and k exist. Then, the gain of each path π in A at trial t can be expressed as an
additive gain of π′ in A′:

∀t ∈ [1, T], ∀π ∈ P : U(outt(π), yt) =
∑
e′∈π′

ge′,t .

Proof By definition, the ith component of Θ(outt(π)) is the discounted count of gappy
occurrences of θi in outt(π). Also, by construction of the context-dependent automaton
based on rewrite rules, π′ contains all gappy path segments of length |θi| of π in A as
transition labels in A′. Thus every gappy occurrence of θi with k gaps in outt(π) will
appear as a transition label (θi)k in outt(π

′). Therefore the discounted counts of gappy
occurrences of θi in outt(π) is

[Θ(outt(π))]i =
∑
e′∈π′

∑
k

γk 1{outt(e
′) = (θi)k}. (6)

Therefore, the following holds:

U(outt(π), yt) = Θ(yt) ·Θ(outt(π)) (definition of U)

=
∑
i

[Θ(yt)]i [Θ(outt(π))]i

=
∑
i

[Θ(yt)]i
∑
e′∈π′

∑
k

γk 1{outt(e
′) = (θi)k} (Equation (6))

=
∑
e′∈π′

∑
i

∑
k

γk [Θ(yt)]i 1{outt(e
′) = (θi)k}︸ ︷︷ ︸

=ge′,t

,

and the proof is complete.

Appendix E. Gains U vs Losses − log(U)

Let U be a non-negative gain function. Also let π∗ ∈ P be the best comparator over the T
rounds. The regret associated with U and − logU, which are respectively denoted by RG
and RL, are defined as below:

RG :=

T∑
t=1

U(outt(π
∗), yt)− U(outt(πt), yt),

RL :=

T∑
t=1

− log(U(outt(πt), yt))− (− log(U(outt(π
∗), yt))).

Observe that if U(outt(πt), yt) = 0 for any t, then RL is unbounded. Otherwise, let us
assume that there exists a positive constant α > 0 such that U(outt(πt), yt) ≥ α for all t ∈
[T]. Note, for count-based gains, we have α ≥ 1, since all components of the representation
Θ(·) are non-negative integers. Thus, the next proposition shows that for count-based gains
we have RL ≤ RG.

24

Online Non-Additive Path Learning

Proposition 15 Let U be a non-negative gain function. Assume that there exists α > 0
such that U(outt(πt), yt) ≥ α for all t ∈ [T]. Then, the following inequality holds: RL ≤
1
αRG.

Proof The following chain of inequalities hold:

RL =
T∑
t=1

− log(U(outt(πt), yt))− (− log(U(outt(π
∗), yt)))

=
T∑
t=1

log

[
U(outt(π

∗), yt)

U(outt(πt), yt)

]

=

T∑
t=1

log

[
1 +

U(outt(π
∗), yt)− U(outt(πt), yt)

U(outt(πt), yt)

]

≤
T∑
t=1

U(outt(π
∗), yt)− U(outt(πt), yt)

U(outt(πt), yt)
(since log(1 + x) ≤ x)

≤ 1

α

T∑
t=1

U(outt(π
∗), yt)− U(outt(πt), yt) (since U(outt(πt), yt) ≥ α)

≤ 1

α
RG,

which completes the proof.

Appendix F. Non-Additivity of the Count-Based Gains

Here we show that the count-based gains are not additive in general. Consider the special
case of 4-gram-based gains in Figure 1. Suppose the count-based gain defined in Equa-
tion (1) can be expressed additively along the transitions (proof by contradiction). Let the
target sequence y be as below:

y = He would like to eat cake

Then the only 4-gram in Figure 1 with positive gain is “He-would-like-to”. Thus, if
a path contains this 4-gram, it will have a gain of 1. Otherwise, its gain will be 0. Suppose
that the transitions are labeled as depicted in Figure 11 and each transition e ∈ E carries
an additive gain of g(e). Consider the following four paths:

π1 = e1e2e3e4e5e6

π2 = e′1e2e3e4e5e6

π3 = e1e2e
′
3e4e5e6

π4 = e′1e2e
′
3e4e5e6

25

Online Non-Additive Path Learning

0 1 2 3 4 5 6

e1:He

e′1:She

e2:would

e′2:would

e3:like

e′3:love

e4:to

e′4:to

e5:have

e′5:drink

e6:tea

e′6:chai

Figure 11: Additive gains carried by the transitions.

Due to the additivity of gains, we can obtain:

U(outt(π1), y) + U(outt(π4), y) = g(e1) + g(e′1) + g(e3) + g(e′3)

+ 2g(e2) + 2g(e4) + 2g(e5) + 2g(e6)

= U(outt(π2), y) + U(outt(π3), y)

This, however, contradicts the definition of the count-based gains in Equation (1):

U(outt(π1), y)︸ ︷︷ ︸
=1

+U(outt(π4), y)︸ ︷︷ ︸
=0

6= U(outt(π2), y)︸ ︷︷ ︸
=0

+U(outt(π3), y)︸ ︷︷ ︸
=0

26

	Introduction
	Basic Notation and Setup
	Count-Based Gains
	Context-Dependent Rewrite Rules
	Context-Dependent Automaton A'

	Algorithms
	Full Information: Context-dependent Component Hedge Algorithm
	Semi-Bandit: Context-dependent Semi-Bandit Algorithm
	Full Bandit: Context-dependent ComBand Algorithm

	Extension to Gappy Count-Based Gains
	Conclusion and Open Problems
	Applications to Ensemble Structured Prediction
	Full Information: Context-dependent Component Hedge Algorithm
	Semi-Bandit: Context-dependent Semi-Bandit Algorithm
	Full Bandit: Context-dependent ComBand Algorithm

	Path Learning for Full Bandit and Arbitrary Gain
	Weighted Finite Automata
	Intersection of WFAs
	Weight Pushing

	Proofs
	Gains U vs Losses -log(U)
	Non-Additivity of the Count-Based Gains

