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Abstract

In recent years, constrained optimization has become increasingly relevant to the machine learning
community, with applications including Neyman-Pearson classification, robust optimization, and fair
machine learning. A natural approach to constrained optimization is to optimize the Lagrangian, but
this is not guaranteed to work in the non-convex setting, and, if using a first-order method, cannot
cope with non-differentiable constraints (e.g. constraints on rates or proportions).

The Lagrangian can be interpreted as a two-player game played between a player who seeks to
optimize over the model parameters, and a player who wishes to maximize over the Lagrange
multipliers. We propose a non-zero-sum variant of the Lagrangian formulation that can cope with
non-differentiable—even discontinuous—constraints, which we call the “proxy-Lagrangian”. The
first player minimizes external regret in terms of easy-to-optimize “proxy constraints”, while the
second player enforces the original constraints by minimizing swap regret.

For this new formulation, as for the Lagrangian in the non-convex setting, the result is a stochastic
classifier. For both the proxy-Lagrangian and Lagrangian formulations, however, we prove that this
classifier, instead of having unbounded size, can be taken to be a distribution over no more than
m+ 1 models (where m is the number of constraints). This is a significant improvement in practical
terms.

1. Introduction

We consider the general problem of inequality constrained optimization, in which we wish to find a
set of parameters θ ∈ Θ minimizing an objective function subject to m functional constraints:

min
θ∈Θ

g0 (θ) (1)

s.t. ∀i ∈ [m] .gi (θ) ≤ 0

To highlight some of the challenges that arise in non-convex constrained optimization, consider the
specific example of constraining a fairness metric. We cast the fairness problem as that of minimizing
some empirical loss subject to one or more fairness constraints. One of the simplest examples of
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such is the following:

min
θ∈Θ

1

|S|
∑
x,y∈S

` (f (x; θ) , y) (2)

s.t.
1

|S|
∑

x∈Smin

1f(x;θ)>0 ≥
0.8

|S|
∑
x∈S

1f(x;θ)>0

Here, f (·; θ) is a classification function with parameters θ, S is the training dataset, and Smin ⊆ S
represents a minority population. The constraint represents a version of the so-called “80% rule” (e.g.
Biddle, 2005; Vuolo and Levy, 2013), and forces the resulting classifier to make at least 80% of its
positive predictions on the minority population. Unfortunately, several serious challenges arise when
we attempt to optimize this problem:

1. The constraint is data-dependent, and could therefore be very expensive to check.

2. The classification function f may be a badly-behaving function of θ (e.g. a deep neural
network), resulting in non-convex objective and constraint functions.

3. Worse, the constraint is a linear combination of indicators, hence is not even subdifferentiable
w.r.t. θ.

Perhaps the most “familiar” technique for constrained optimization is to formulate the Lagrangian:

Definition 1 The Lagrangian L : Θ× Λ→ R of Equation 1 is:

L (θ, λ) := g0 (θ) +
m∑
i=1

λigi (θ)

where Λ ⊆ Rm+ .

and jointly minimize over θ ∈ Θ and maximize over λ ∈ Λ ⊆ Rm+ . By itself, using this formulation
doesn’t address the challenges we identified above, but we will see that, compared to the alternatives
(Section 2.1), it’s a good starting point for an approach that does.

1.1. Dealing with non-Convexity

Optimizing the Lagrangian can be interpreted as playing a two-player zero-sum game: the first
player chooses θ to minimize L (θ, λ), and the second player chooses λ to maximize it. The essential
difficulty is that, without strong duality—equivalently, unless the minimax theorem holds, giving that
minθ∈Θ maxλ∈Λ L (θ, λ) = maxλ∈Λ minθ∈Θ L (θ, λ)—then the θ-player, who is working on the
primal (minimax) problem, and the λ-player, who is working on the dual (maximin) problem, might
fail to converge to a solution satisfying both players simultaneously (i.e. a pure Nash equilibrium).

If Equation 1 is a convex optimization problem and the action spaces Θ and Λ are compact and
convex, then the minimax theorem holds (von Neumann, 1928), and optimizing the Lagrangian will
work. Otherwise it might not, and in fact it’s quite easy to construct a counterexample: Figure 1
shows a case in which a pure Nash equilibrium of the Lagrangian game does not exist. For this reason,
the standard approach for handling non-convex machine learning problems, i.e. pretending that the
problem is convex and using a stochastic first order algorithm anyway, should not be expected to
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reliably converge to a pure Nash equilibrium—even on a problem as trivial as that in Figure 1—since
there may be none for it to converge to.

Figure 1: The plotted rectangular region is the
domain Θ, the contours are those of
the strictly concave minimization objec-
tive function g0, and the shaded trian-
gle is the feasible region determined by
the three linear inequality constraints
g1, . . . , g3. The red dot is the optimal
feasible point. The Lagrangian L (θ, λ)
is strictly concave in θ for any choice
of λ, so the optimal choice(s) for the
θ-player will always lie on the bound-
ary of the plotted rectangle. However,
these points are infeasible, and therefore
suboptimal for the λ-player.

Under general conditions, however, even when
there is no pure Nash equilibrium, a mixed equi-
librium (i.e. a pair of distributions over θ and
λ) does exist. Such an equilibrium defines a
stochastic classifier: upon receiving an example
x to classify, one would sample θ from its equi-
librium distribution, and then evaluate the classi-
fication function f (x; θ). Furthermore, and this
is our first main contribution, this equilibrium
can be taken to consist of a discrete distribution
over at mostm+1 distinct θs (m being the num-
ber of constraints), and a single non-random λ.
This is a crucial improvement in practical terms,
since a machine learning model consisting of
e.g. a distribution over thousands (or more) of
deep neural networks—or worse, a continuous
distribution—would likely be so unwieldy as to
be unusable.

1.2. Introducing Proxy Constraints

Most real-world machine learning implementa-
tions perform optimization using a first-order
method (even on non-convex problems, e.g.
DNNs). To use such a method, however, one
must have gradients, and gradients are unavailable for non-differentiable constraints like that in the
fairness example of Equation 2, or in the myriad of other situations in which one wishes to constrain
counts or proportions instead of smooth losses (e.g. recall, coverage or churn as in Goh et al. (2016)).
In all of these cases, the constraint functions are piecewise-constant, so their gradients are zero
almost everywhere, and a gradient-based method cannot be expected to succeed.

The obvious solution is to use a surrogate. For example, one could replace the indicators of Equation 2
with sigmoids, and then optimize the Lagrangian. This solves the differentiability problem, but
introduces a new one: a (mixed) Nash equilibrium would correspond to a solution satisfying the
sigmoid-relaxed constraint, instead of the actual constraint. Interestingly, it turns out that we can
seek to satisfy the original un-relaxed constraint, even while using a surrogate. Our proposal is
motivated by the observation that, while differentiating the Lagrangian (Definition 1) w.r.t. θ requires
differentiating the constraint functions gi (θ), to differentiate it w.r.t. λ we only need to evaluate
them. Hence, a surrogate is only necessary for the θ-player; the λ-player can continue to use the
original constraint functions.

We refer to a surrogate that is used by only one of the two players as a “proxy”, and introduce the
notion of “proxy constraints” by taking g̃i (θ) to be a sufficiently-smooth upper bound on gi (θ) for
i ∈ [m], and formulating two functions that we call “proxy-Lagrangians”:
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Definition 2 Given proxy constraint functions g̃i (θ) ≥ gi (θ) for i ∈ [m], the proxy-Lagrangians
Lθ,Lλ : Θ× Λ→ R of Equation 1 are:

Lθ (θ, λ) :=λ1g0 (θ) +

m∑
i=1

λi+1g̃i (θ)

Lλ (θ, λ) :=

m∑
i=1

λi+1gi (θ)

where Λ := ∆m+1 3 λ is the (m+ 1)-dimensional simplex.

As one might expect, the θ-player wishes to minimize Lθ (θ, λ), while the λ-player wishes to
maximize Lλ (θ, λ). Notice that the g̃is are only used by the θ-player. Intuitively, the λ-player
chooses how much to weigh the proxy constraint functions, but—and this is the key to our proposal—
does so in such a way as to satisfy the original constraints.

Unfortunately, because the two players are optimizing different functions, this is a non-zero-sum
game, and finding a (mixed) Nash equilibrium of such a game is known to be PPAD-complete even
in the finite setting (Chen and Deng, 2006). We prove, however, that a weaker type of equilibrium
(a Φ-correlated equilibrium (Rakhlin et al., 2011), i.e. a joint distribution over θ and λ w.r.t. which
neither player can improve)—one that we can find efficiently—suffices to guarantee a nearly-optimal
and nearly-feasible solution to Equation 1 in expectation.

1.3. Contributions

We first focus on the standard Lagrangian formulation, in the non-convex setting. In Section 3,
we provide an algorithm that, given access to an approximate Bayesian optimization oracle, finds
a stochastic classifier that, in expectation, is provably approximately feasible and optimal. Many
previous authors have approached constrained optimization using similar techniques (see Section 2)—
our main contribution is to show how such a classifier can be efficiently “shrunk” to one that is at
least as good, but is supported on only m+ 1 solutions.

Our next major contribution is the introduction of the proxy-Lagrangian formulation, which allows
us to optimize constrained problems with extremely general (even non-differentiable) constraints.
In Section 4, we prove that a particular type of Φ-correlated equilibrium results in a stochastic
classifier that is feasible and optimal, and go on to provide a novel algorithm that converges to
such an equilibrium. Interestingly, to get the “right” sort of equilibrium, the θ-player needs only
minimize the usual external regret, but the λ-player must minimize the swap regret. While the
resulting distribution is supported on a large number of (θ, λ) pairs, applying the same “shrinking”
procedure as before yields a distribution over only m+ 1 θs that is at least as good as the original.

Finally, in Section 5, we tie everything together by describing an end-to-end recipe for provably solv-
ing a non-convex constrained optimization problem with potentially non-differentiable constraints,
yielding a stochastic model that is a supported on at most m+ 1 solutions. In practice, one would
use SGD instead of an oracle, which results in an efficient procedure that can be easily plugged-in to
existing workflows, as is experimentally verified in Section 6.
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2. Related Work

The interpretation of constrained optimization as a two-player game has a long history: Arora
et al. (2012) surveys some such work, and there are several more recent examples (e.g. Kearns
et al., 2017; Narasimhan, 2018; Agarwal et al., 2018). In particular, Agarwal et al. (2018) propose
an algorithm for fair classification that is very similar to the Lagrangian-based approach that we
outline in Section 3—the main differences are our introduction of “shrinking”, and that our setting
(Equation 1) is more general. The recent work of Chen et al. (2017) addresses non-convex robust
optimization, i.e. problems of the form:

min
θ∈Θ

max
i∈[m]

gi (θ)

Like both us and Agarwal et al. (2018), they: (i) model such a problem as a two-player game where
one player chooses a mixture of objective functions, and the other player minimizes the loss of
the mixture, and (ii) they find a distribution over solutions rather than a pure equilibrium. These
similarities are unsurprising in light of the fact that robust optimization can be reformulated as
constrained optimization via the introduction of a slack variable:

min
θ∈Θ,ξ∈Ξ

ξ (3)

s.t. ∀i ∈ [m] .ξ ≥ gi (θ)

Correspondingly, one can transform a robust problem to a constrained one at the cost of an extra
bisection search (e.g. Christiano et al., 2011; Rakhlin and Sridharan, 2013). As this relationship
suggests, our main contributions can be adapted to the robust optimization setting. In particular: (i)
our proposed shrinking procedure can be applied to Equation 3 to yield a distribution over only m+ 1
solutions, and (ii) one could perform robust optimization over non-differentiable (even discontinuous)
losses using “proxy objectives”, just as we use proxy constraints.

2.1. Alternative Approaches

Given the difficulties involved in using a Lagrangian-like formulation for non-convex problems, it’s
natural to wonder whether one should instead favor a procedure based on entirely different principles.
Unfortunately, the alternatives each present their own challenges.

The potential complexity of the constraints all but rules out approaches based on projections (e.g.
projected SGD) or optimization of constrained subproblems (e.g. Frank-Wolfe, as in Hazan and Kale
(2012); Jaggi (2013); Garber and Hazan (2013)). Similarly, attempting to penalize violations (e.g.
Arora et al., 2012; Rakhlin and Sridharan, 2013; Mahdavi et al., 2012; Cotter et al., 2016), for
example by adding γmaxi∈[m] max {0, gi (θ)} to the objective, where γ ∈ R+ is a hyperparameter,
and optimizing the resulting problem using a first order method, fails if the constraint functions
are non-differentiable. Even if they are, they may still be data-dependent, so evaluating gi, or even
determining whether it is positive (as is necessary for such techniques, due to the max with 0),
requires enumerating over the entire dataset. Hence, unlike the Lagrangian and proxy-Lagrangian
formulations, such “penalized” formulations are incompatible with the use of a computationally-
cheap stochastic optimizer.

In response to the idea of proxy constraints, it’s natural to ask “why not just relax the constraints for
both players, instead of just the θ-player?”. This is indeed a popular approach, having been proposed
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e.g. for Neyman-Pearson classification (Davenport et al., 2010; Gasso et al., 2011), more general
rate metrics (Goh et al., 2016), and AUC (Eban et al., 2017). The answer is that in many cases,
particularly when constraints are data dependent, they represent real-world restrictions on how the
learned model is permitted to behave. For example, the “80% rule” of Equation 2 can be found in
the HOPA Act of 1995 (Wikipedia, 2018), and it requires an 80% threshold in terms of the number
of positive predictions—not a relaxation—which is precisely the target that the proxy-Lagrangian
approach will attempt to hit.

This point, in turn, raises the question of generalization: satisfying the correct un-relaxed constraints
on training data does not necessarily mean that they will be satisfied at evaluation time. This issue
is outside the scope of this paper, but is vital. For certain specific applications, the post-training
correction approach of Woodworth et al. (2017) can improve generalization performance, and Cotter
et al. (2018)’s more recent proposal (which is based on our proxy-Lagrangian formulation) can be
applied more generally, but there is still room for future work.

3. Starting Point: Lagrangian Optimization

Our ultimate interest is in constrained optimization, so before we present our proposed algorithm
for optimizing the Lagrangian (Definition 1) in the non-convex setting, we will characterize the
relationship between an approximate Nash equilibrium of the Lagrangian game, and a nearly-optimal
nearly-feasible solution to the original constrained problem (Equation 1):

Theorem 3 Define Λ :=
{
λ ∈ Rm+ : ‖λ‖1 ≤ R

}
, and let θ(1), . . . , θ(T ) ∈ Θ and λ(1), . . . , λ(T ) ∈

Λ be sequences of parameter vectors and Lagrange multipliers that comprise an approximate mixed
Nash equilibrium, i.e.:

max
λ∗∈Λ

1

T

T∑
t=1

L
(
θ(t), λ∗

)
− inf
θ∗∈Θ

1

T

T∑
t=1

L
(
θ∗, λ(t)

)
≤ ε

Define θ̄ as a random variable for which θ̄ = θ(t) with probability 1/T , and let λ̄ :=
(∑T

t=1 λ
(t)
)
/T .

Then θ̄ is nearly-optimal in expectation:

Eθ̄
[
g0

(
θ̄
)]
≤ inf

θ∗∈Θ:∀i.gi(θ∗)≤0
g0 (θ∗) + ε

and nearly-feasible:
max
i∈[m]

Eθ̄
[
gi
(
θ̄
)]
≤ ε

R−
∥∥λ̄∥∥

1

(4)

Additionally, if there exists a θ′ ∈ Θ that satisfies all of the constraints with margin γ (i.e. gi (θ′) ≤
−γ for all i ∈ [m]), then: ∥∥λ̄∥∥

1
≤ ε+Bg0

γ

where Bg0 ≥ supθ∈Θ g0 (θ)− infθ∈Θ g0 (θ) is a bound on the range of the objective function g0.

Proof This is a special case of Theorem 11 and Lemma 12 in Appendix A.

This theorem has a few differences from the more typically-encountered equivalence between
Nash equilibria and optimal feasible solutions in the convex setting. First, it characterizes mixed
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Algorithm 1 Optimizes the Lagrangian formulation (Definition 1) in the non-convex setting via
the use of an approximate Bayesian optimization oracle Oρ (Definition 4) for the θ-player. The
parameter R is the radius of the Lagrange multiplier space Λ :=

{
λ ∈ Rm+ : ‖λ‖1 ≤ R

}
, and the

function ΠΛ projects its argument onto Λ w.r.t. the Euclidean norm.
OracleLagrangian (R ∈ R+,L : Θ× Λ→ R,Oρ : (Θ→ R)→ Θ, T ∈ N, ηλ ∈ R+):

1 Initialize λ(1) = 0
2 For t ∈ [T ]:
3 Let θ(t) = Oρ

(
L
(
·, λ(t)

))
// Oracle optimization

4 Let ∆
(t)
λ be a gradient of L

(
θ(t), λ(t)

)
w.r.t. λ

5 Update λ(t+1) = ΠΛ

(
λ(t) + ηλ∆

(t)
λ

)
// Projected gradient update

6 Return θ(1), . . . , θ(T ) and λ(1), . . . , λ(T )

equilibria, in that uniformly sampling from the sequences θ(t) and λ(t) can be interpreted as defining
distributions over Θ and Λ. A convexity assumption would enable us to eliminate this added
complexity by appealing to Jensen’s inequality to replace these sequences with their averages.
Second, for the technical reason that we require compact domains in order to prove convergence
rates (below), Λ is taken to consist only of sets of Lagrange multipliers with bounded 1-norm1.

As a consequence of this second point, the feasibility guarantee of Equation 4 only holds if the
Lagrange multipliers are, on average, smaller than the maximum 1-norm radius R. Thankfully, as is
shown by the final result of Theorem 3, if there exists a point satisfying the constraints with some
margin γ, then there will exist Rs that are large enough to guarantee feasibility to within O(ε).

Our proposed algorithm (Algorithm 1) requires an oracle that performs approximate non-convex
minimization, similarly to Chen et al. (2017)’s algorithm for robust optimization and Agarwal et al.
(2018)’s for fair classification (the latter reference uses the terminology “best response”):

Definition 4 A ρ-approximate Bayesian optimization oracle is a function Oρ : (Θ→ R)→ Θ for
which:

f (Oρ (f)) ≤ inf
θ∗∈Θ

f (θ∗) + ρ

for any f : Θ → R that can be written as a nonnegative linear combination of the objective and
constraint functions g0, g1, . . . , gm.

The θ-player uses this oracle, and the λ-player uses projected gradient ascent. Notice that, unlike the
oracle of Chen et al. (2017), which provides a multiplicative approximation, Oρ provides an additive
approximation. Algorithm 1’s convergence rate is:

Lemma 5 Suppose that Λ and R are as in Theorem 3, and define the upper bound
B∆ ≥ maxt∈[T ]

∥∥∥∆
(t)
λ

∥∥∥
2
.

If we run Algorithm 1 with the step size ηλ := R/B∆

√
2T , then the result satisfies the conditions of

Theorem 3 for:

ε = ρ+RB∆

√
2

T

1. In Appendix A, this is generalized to p-norms.
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where ρ is the error associated with the oracle Oρ.

Proof In Appendix C.3.

Combined with Theorem 3, we therefore have that if R is sufficiently large, then Algorithm 1 will
converge to a distribution over Θ that is, in expectation, O(ρ)-far from being optimal and feasible at
a O(1/

√
T ) rate, where ρ is as in Definition 4.

3.1. Shrinking

Aside from the unrealistic oracle assumption (which will be partially addressed in Section 4), the
main disadvantage of Algorithm 1 is that it results in a mixture of T models, which presumably
would be far too many to use in practice. However, a classical result (e.g. Bohnenblust et al., 1950;
Parthasarathy and Raghavan, 1975) gives that much smaller Nash equilibria exist:

Lemma 6 If Θ is a compact Hausdorff space, Λ is compact, and the objective and constraint
functions g0, g1, . . . , gm are continuous, then the Lagrangian game (Definition 1) has a mixed Nash
equilibrium pair (θ, λ) where θ is a random variable supported on at most m+ 1 elements of Θ, and
λ is non-random.

Proof Follows from Theorem 15 in Appendix B.

Of course, the mere existence of such an equilibrium is insufficient—we need to be able to find it, and
Algorithm 1 manifestly does not. Thankfully, we can re-formulate the problem of finding the optimal
ε-feasible mixture of the θ(t)s as a linear program (LP) that can be solved to “shrink” the support set.
We must first evaluate the objective and constraint functions for every θ(t), yielding a T -dimensional
vector of objective function values, and m such vectors of constraint function evaluations, which are
then used to specify the LP:

Lemma 7 Let θ(1), θ(2), . . . , θ(T ) ∈ Θ be a sequence of T “candidate solutions” of Equation 1.
Define g0, gi ∈ RT such that (g0)t = g0

(
θ(t)
)

and (gi)t = gi
(
θ(t)
)

for i ∈ [m], and consider the
linear program:

min
p∈∆T

〈p, g0〉

s.t. ∀i ∈ [m] . 〈p, gi〉 ≤ ε

where ∆T is the T -dimensional simplex. Then every vertex p∗ of the feasible region—in particular
an optimal one—has at most m∗ + 1 ≤ m+ 1 nonzero elements, where m∗ is the number of active
〈p∗, gi〉 ≤ ε constraints.

Proof In Appendix B.

This result suggests a two-phase approach to optimization. In the first phase, we apply Algorithm 1,
yielding a sequence of iterates for which the uniform distribution over the θ(t)s is approximately
feasible and optimal. We then apply the procedure of Lemma 7 to find the best distribution over
these iterates, which in particular is guaranteed to be no worse than the uniform distribution, and is
supported on at most m+ 1 iterates. We’ll expand upon this further in Section 5.
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4. Proxy-Lagrangian Optimization

While the Lagrangian formulation can be used to solve constrained problems in the form of Equation 1,
Algorithm 1 isn’t actually implementable, due to its reliance on an oracle. If one wished to apply it
in practice, one would need to replace the oracle with something else, and for large-scale machine
learning problems, “something else” is overwhelmingly likely to be SGD (Robbins and Monro, 1951;
Zinkevich, 2003) or another first-order stochastic algorithm (e.g. AdaGrad (Duchi et al., 2011) or
ADAM (Kingma and Ba, 2014)).

This leads to the issue we raised in Section 1.2: for non-differentiable constraints like those in the
fairness example of Equation 2, we cannot compute gradients, and therefore cannot use a first-order
algorithm. “Fixing” this issue by replacing the constraints with differentiable surrogates introduces a
new difficulty: solutions to the resulting problem will satisfy the surrogate constraints, rather than
the actual constraints.

The proxy-Lagrangian formulation of Definition 2 sidesteps this issue by using a non-zero-sum
two-player game. The λ-player chooses how much the θ-player should penalize the (differentiable)
proxy constraints, but does so in such a way as to satisfy the original constraints. Unfortunately, since
the proxy-Lagrangian game is non-zero-sum, we cannot expect to find a Nash equilibrium, at least
not efficiently. However, the analogous result to Theorem 3 requires a weaker type of equilibrium: a
joint distribution over Θ and Λ w.r.t. which the θ-player can only make a negligible improvement
compared to the best constant strategy, and the λ-player compared to the best action-swapping
strategy (this is a particular type of Φ-correlated equilibrium (Rakhlin et al., 2011)):

Theorem 8 DefineM as the set of all left-stochastic (m+ 1)× (m+ 1) matrices, Λ := ∆m+1 as
the (m+ 1)-dimensional simplex, and assume that each g̃i upper bounds the corresponding gi. Let
θ(1), . . . , θ(T ) ∈ Θ and λ(1), . . . , λ(T ) ∈ Λ be sequences satisfying:

1

T

T∑
t=1

Lθ
(
θ(t), λ(t)

)
− inf
θ∗∈Θ

1

T

T∑
t=1

Lθ
(
θ∗, λ(t)

)
≤εθ

max
M∗∈M

1

T

T∑
t=1

Lλ
(
θ(t),M∗λ(t)

)
− 1

T

T∑
t=1

Lλ
(
θ(t), λ(t)

)
≤ελ

Define θ̄ as a random variable for which θ̄ = θ(t) with probability λ(t)
1 /

∑T
s=1 λ

(s)
1 , and let λ̄ :=(∑T

t=1 λ
(t)
)
/T . Then θ̄ is nearly-optimal in expectation:

Eθ̄
[
g0

(
θ̄
)]
≤ inf

θ∗∈Θ:∀i.g̃i(θ∗)≤0
g0 (θ∗) +

εθ + ελ
λ̄1

(5)

and nearly-feasible:
max
i∈[m]

Eθ̄
[
gi
(
θ̄
)]
≤ ελ
λ̄1

(6)

Additionally, if there exists a θ′ ∈ Θ that satisfies all of the proxy constraints with margin γ (i.e.
g̃i (θ′) ≤ −γ for all i ∈ [m]), then:

λ̄1 ≥
γ − εθ − ελ
γ +Bg0

where Bg0 ≥ supθ∈Θ g0 (θ)− infθ∈Θ g0 (θ) is a bound on the range of the objective function g0.
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Algorithm 2 Optimizes the proxy-Lagrangian formulation (Definition 2) in the convex setting,
with the θ-player minimizing external regret, and the λ-player minimizing swap regret. The fixM
operation on line 3 results in a stationary distribution of M (i.e. a λ ∈ Λ such that Mλ = λ, which
can be derived from the top eigenvector). The function ΠΘ projects its argument onto Θ w.r.t. the
Euclidean norm.

StochasticProxyLagrangian
(
Lθ,Lλ : Θ×∆m+1 → R, T ∈ N, ηθ, ηλ ∈ R+

)
:

1 Initialize θ(1) = 0, and M (1) ∈ R(m+1)×(m+1) with Mi,j = 1/ (m+ 1) // Assumes 0 ∈ Θ
2 For t ∈ [T ]:
3 Let λ(t) = fixM (t) // Stationary distribution of M (t)

4 Let ∆̌
(t)
θ be a stochastic subgradient of Lθ

(
θ(t), λ(t)

)
w.r.t. θ

5 Let ∆
(t)
λ be a stochastic gradient of Lλ

(
θ(t), λ(t)

)
w.r.t. λ

6 Update θ(t+1) = ΠΘ

(
θ(t) − ηθ∆̌

(t)
θ

)
// Projected SGD update

7 Update M̃ (t+1) = M (t) � . exp
(
ηλ∆

(t)
λ

(
λ(t)
)T)

// � and . exp are element-wise

8 Project M (t+1)
:,i = M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1

for i ∈ [m+ 1] // Column-wise projection

9 Return θ(1), . . . , θ(T ) and λ(1), . . . , λ(T )

Proof This is a special case of Theorem 13 and Lemma 14 in Appendix A.

Notice that while Equation 6 guarantees feasibility w.r.t. the original constraints, the comparator in
Equation 5 is feasible w.r.t. the proxy constraints. Hence, the overall guarantee is no better than what
we would achieve if we took gi := g̃i for all i ∈ [m], and optimized the Lagrangian as in Section 3.
However, as will be demonstrated experimentally in Section 6.2, because the feasible region w.r.t.
the original constraints is larger (perhaps significantly so) than that w.r.t. the proxy constraints, the
proxy-Lagrangian approach—which finds a solution that is feasible w.r.t. this larger region—has
more “room” to find a better solution in practice.

One key difference between this result and Theorem 3 is that the R parameter is absent. Instead, its
role, and that of

∥∥λ̄∥∥
1
, is played by the first coordinate of λ̄. Inspection of Definition 2 reveals that,

if one or more of the constraints are violated, then the λ-player would prefer λ1 to be zero, whereas
if they are satisfied (with some margin), then it would prefer λ1 to be one. In other words, the first
coordinate of λ(t) encodes the λ-player’s belief about the feasibility of θ(t), for which reason θ(t) is
weighted by λ(t)

1 in the density defining θ̄.

Algorithm 2 is motivated by the observation that, while Theorem 8 only requires that the θ(t) sequence
suffer low external regret w.r.t. Lθ

(
·, λ(t)

)
, the condition on the λ(t) sequence is stronger, requiring

it to suffer low swap regret (Blum and Mansour, 2007). Hence, the θ-player uses SGD to minimize
external regret, while the λ-player uses a swap-regret minimization algorithm of the type proposed
by Gordon et al. (2008), yielding the convergence guarantee:

Lemma 9 Suppose that Θ is a compact convex set,M and Λ are as in Theorem 8, and that the
objective and proxy constraint functions g0, g̃1, . . . , g̃m are convex (but not g1, . . . , gm). Define the
three upper bounds BΘ ≥ maxθ∈Θ ‖θ‖2, B∆̌ ≥ maxt∈[T ]

∥∥∥∆̌
(t)
θ

∥∥∥
2
, and B∆ ≥ maxt∈[T ]

∥∥∥∆
(t)
λ

∥∥∥
∞

.

10
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If we run Algorithm 2 with the step sizes ηθ := BΘ/B∆̌

√
2T and ηλ :=

√
(m+ 1) ln (m+ 1) /TB2

∆,
then the result satisfies the conditions of Theorem 8 for:

εθ =2BΘB∆̌

√
1 + 16 ln 2

δ

T

ελ =2B∆

√
2 (m+ 1) ln (m+ 1)

(
1 + 16 ln 2

δ

)
T

with probability 1− δ over the draws of the stochastic (sub)gradients.

Proof In Appendix C.3.

Algorithm 2 is designed for the convex setting (except for the gis), for which reason it uses SGD for
the θ-updates. However, this convexity requirement is not innate to our approach: it’s straightforward
to design an oracle-based algorithm that, like Algorithm 1, doesn’t require convexity2. Our reason
for presenting the SGD-based algorithm, instead of the oracle-based one, is that the purpose of proxy
constraints is to substitute optimizable constraints for unoptimizable ones, and there is no need to do
so if you have an oracle.

4.1. Shrinking

It turns out that the same existence result that we provided for the Lagrangian game (Lemma 6)—of
a Nash equilibrium—holds for the proxy-Lagrangian:

Lemma 10 If Θ is a compact Hausdorff space and the objective, constraint and proxy constraint
functions g0, g1, . . . , gm, g̃1, . . . , g̃m are continuous, then the proxy-Lagrangian game (Definition 2)
has a mixed Nash equilibrium pair (θ, λ) where θ is a random variable supported on at most m+ 1
elements of Θ, and λ is non-random.

Proof In Appendix B.

Furthermore, the exact same linear programming procedure of Lemma 7 can be applied (with the
gis being defined in terms of the original—not proxy—constraints) to yield a solution with support
size m + 1, and works equally well. This is easy to verify: since θ̄, as defined in Theorem 8, is a
distribution over the θ(t)s, and is therefore feasible for the LP, the best distribution over the iterates
will be at least as good.

5. Overall Procedure

The pieces are now in place to propose a complete two-phase optimization procedure, for both
convex and non-convex problems, with or without proxy constraints. In the first phase, we apply
the appropriate algorithm to yield a distribution over the T “candidates” θ(1), . . . , θ(T ) that is
approximately feasible and optimal, according to either Theorems 3 or 8. Then, in the second phase,
we construct g0, g1, . . . , gm ∈ RT by evaluating the objective and constraint functions for each θ(t),

2. This is Algorithm 4, with Lemma 25 being its convergence guarantee, both in Appendix C.3.
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Testing Training
Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4

Baseline (θ̄) 2.58 2.66 2.01 2.52 1.06 1.45 0.43 1.10
Baseline (θ(T )) 1.77 1.92 1.77 1.75 0.04 0.40 0.01 0.08
Lagrangian (θ̄) 2.04 2.15 1.96 2.04 0.42 0.70 0.30 0.49

Lagrangian (LP) 1.66 1.67 1.63 1.62 0.00 0.01 0.00 0.00

Table 1: Error rates on the experiments of Section 6.1. The columns correspond to the four corrupted
datasets of Chen et al. (2017).

and then optimize the LP of Lemma 7 to find the best distribution over θ(1), . . . , θ(T ) (which will
have support size ≤ m+ 1). If we take the ε parameter to this LP to be either the RHS of Equation 4
in Theorem 3 (for the Lagrangian case), or of Equation 6 in Theorem 8 (for the proxy-Lagrangian
case), then the resulting size-(m+ 1) distribution will have the same guarantees as the original.

Practical Procedure: The approach outlined above provably works, but is still somewhat idealized.
In practice, we’ll dispense with the oracle Oρ—even on non-convex problems—in favor of the
“typical” approach: pretending that the problem is convex, and using SGD (or another cheap stochastic
algorithm) for the θ-updates3. On a non-convex problem, this has no guarantees, but one would still
hope that it would result in a “candidate set” of θ(t)s that contains enough good solutions to pass on
to the LP of Lemma 7. If necessary, this candidate set can first be subsampled to make it a reasonable
size. To choose the ε parameter of the LP, one can use a bisection search to find the smallest ε ≥ 0
for which there exists a feasible solution.

Evaluation: The ultimate result of either of these procedures is a distribution over at most m+ 1
distinct θs. If the underlying problem is one of classification, with f (·; θ) being the scoring function,
then this distribution defines a stochastic classifier: at evaluation time, upon receiving an example x,
we would sample θ, and then return f (x; θ). If a stochastic classifier is not acceptable (as is often
the case in real-world applications), then one could heuristically convert it into a deterministic one,
e.g. by weighted averaging or voting, which is made significantly easier by its small size.

6. Experiments

We present two experiments: the first, on the robust MNIST problem of Chen et al. (2017), tests
the performance of the “practical procedure” of Section 5 using the Lagrangian formulation (with
the norms of the Lagrange multipliers being unbounded, i.e. R =∞), while the second, a fairness
problem on the UCI Adult dataset (Dheeru and Karra Taniskidou, 2017), uses the proxy-Lagrangian
formulation. Both were implemented in TensorFlow4.

In both cases, the θ and λ-updates both used AdaGrad with the same initial learning rates. In the
proxy-Lagrangian case, however, the λ-update (line 7 of Algorithm 2) was performed in the log
domain so that it would be multiplicative. To choose the initial AdaGrad learning rate, we performed

3. In the Lagrangian case, this is Algorithm 3, with Lemma 24 being its convergence guarantee in the convex setting,
both in Appendix C.3. In the proxy-Lagrangian case, this is Algorithm 2.

4. https://github.com/google-research/tensorflow_constrained_optimization.
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Algorithm Support Dataset Error Female Male Black White

Baseline (θ(T )) 1
Train 88.9% 102% 82.8% 101%
Test 14.2% 89.5% 102% 81.6% 101%

Lagrangian (θ̄) 100
Train 113% 97.8% 121% 99.7%
Test 16.3% 114% 97.5% 126% 99.8%

Lagrangian (LP) 3
Train 104% 99.4% 105% 101%
Test 15.5% 106% 99.0% 111% 101%

Proxy (θ̄) 100
Train 94.7% 101% 94.5% 100%
Test 14.4% 94.1% 101% 94.9% 100%

Proxy (LP) 3
Train 95.0% 101% 95.0% 100%
Test 14.2% 94.4% 101% 94.9% 100%

Table 2: Support sizes, test error rates, and “equal opportunity” values for the experiments of
Section 6.2. For the constraints, each reported number is the ratio of the positive prediction
rate on positively-labeled members of the protected class, to the positive prediction rate on
the set of all positively-labeled data. The constraints attempt to force this ratio to be at least
95%—quantities lower than this threshold violate the constraint, and are marked in bold.

a grid search over powers-of-two, and chose the best model on a validation set. In all experiments,
the optimum was in the interior of the grid.

Our constrained optimization algorithms result in stochastic classifiers, and we report results for
both the θ̄ of Theorems 3 or 8 (in the Lagrangian or proxy-Lagrangian cases, respectively), and the
optimal distribution found by the LP of Lemma 7, optimized on the training dataset.

6.1. Robust Optimization

In robust optimization, there are multiple objective functions g1, ..., gm : Θ→ R, and the goal is to
find a θ ∈ Θ minimizing maxi∈[m] gi (θ). As was discussed in Section 2, this can be re-written as a
constrained problem by introducing a slack variable, as in Equation 3.

The task is the modified MNIST problem created by Chen et al. (2017), which is based on four
datasets, each of which is a version of MNIST that has been corrupted in different ways. One would
therefore hope that choosing gi to be an empirical loss on the ith such dataset, and optimizing the
corresponding robust problem, will result in a classifier that is “robust” to all four types of corruption.

We used a neural network with one 1024-neuron hidden layer, and ReLu activations. The four
objective functions were the cross-entropy losses on the corrupted datasets. All models were trained
for 50 000 iterations using a minibatch size of 100, and a θ(t) was extracted every 500 iterations,
yielding a sequence of length T = 100.

Baselines: For our baselines, we trained the neural network over the union of the four datasets. We
report two variants: (i) the “Uniform Distribution Baseline” of Chen et al. (2017) is a stochastic
classifier, uniformly sampled over the θ(t)s (like our θ̄ classifier), and (ii) a non-stochastic classifier
taking its parameters from the last iterate θ(T ).

13
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Results: Table 6 lists, for each of the corrupted datasets, the error rates of the compared models on
both the training and testing datasets. Interestingly, although our proposed shrinking procedure is
only guaranteed to give a distribution over m+ 1 solutions, in these experiments it chose only one.
Hence, the “Lagrangian (LP)” model of Table 6 is, like “Baseline (θ(T ))”, non-stochastic.

While we did not quite match the raw performance reported by Chen et al. (2017)’s algorithm,
our results, and theirs, tell similar stories. In particular, we can see that both of our algorithms
outperformed their natural baseline equivalents. In particular, the use of shrinking not only greatly
simplified the model, but also significantly improved performance.

6.2. Equal Opportunity

These experiments were performed on the UCI Adult dataset, which consists of census data including
14 features such as age, gender, race, occupation, and education. The goal was to predict whether
income exceeds 50k/year. The dataset contains 32 561 training examples, from which we split off
20% to form a validation set, and 16 281 testing examples.

We dropped the “fnlwgt” weighting feature, and processed the remaining features as in Platt (1998),
yielding 120 binary features, on which we trained linear models. The objective was to minimize the
average hinge loss, subject to one 95% equal opportunity (Hardt et al., 2016) constraint in the style
of Goh et al. (2016) for each “protected class”: gi was defined such that gi (θ) ≤ 0 iff the positive
prediction rate on the set of positively-labeled examples for the associated class was at least 95% of
the positive prediction rate on the set of all positively-labeled examples.

When using proxy constraints, g̃i was taken to be a version of gi with the indicator functions defining
the positive prediction rates replaced with hinge upper bounds. When not using proxy constraints, the
indicator-based constraints were dropped entirely, with these upper bounds being used throughout.

All models were trained for 5 000 iterations with a minibatch size of 100, with a θ(t) being extracted
every 50 iterations, yielding a sequence of length T = 100.

Baseline: The baseline classifier was optimized to simply minimize training hinge loss. Since this
problem is unconstrained, we took the last iterate θ(T ).

“Best-model” Heuristic: For hyperparameter tuning using a grid search, we needed to choose the
“best” model on the validation set. Due to the presence of constraints, however, the “best” model
was not necessarily that with the lowest validation error. Instead, we used the following heuristic:
the models were each ranked in terms of their objective function value, as well as the magnitude of
the ith constraint violation (i.e. max {0, gi (θ)}). The “score” of each model was then taken to be
the maximal such rank, and the model with the lowest score was chosen, with the objective function
serving as a tiebreaker.

Results: Table 2 lists the test error rates, (indicator-based) constraint function values on both
the training and testing datasets, and support sizes of the stochastic classifiers, for each of the
compared algorithms. The “LP” versions of our models, which were found using the shrinking
procedure of Lemma 7, uniformly outperformed their θ̄-analogues. We can see, however, that the
generalization issue discussed in Section 2.1 caused the proxy-Lagrangian LP model to slightly
violate the constraints on the testing dataset, despite satisfying them on the training dataset. The
non-proxy algorithms satisfied all constraints, on both the training and testing datasets, because

14
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there was sufficient “room” between the hinge upper bound that they actually constrained, and the
true constraint, to absorb the generalization error. Inspection of the error rates, however, reveals
that the relaxed constraints were so overly-conservative that satisfying them significantly damaged
classification performance. In contrast, our proxy-Lagrangian approach matched the classification
performance of the unconstrained baseline.
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Appendix A. Proofs of Sub{optimality,feasibility} Guarantees

Theorem 11 (Lagrangian Sub{optimality,feasibility}) Define Λ =
{
λ ∈ Rm+ : ‖λ‖p ≤ R

}
, and

consider the Lagrangian of Equation 1 (Definition 1). Suppose that θ ∈ Θ and λ ∈ Λ are random
variables such that:

max
λ∗∈Λ

Eθ [L (θ, λ∗)]− inf
θ∗∈Θ

Eλ [L (θ∗, λ)] ≤ ε (7)

i.e. θ, λ is an ε-approximate Nash equilibrium. Then θ is ε-suboptimal:

Eθ [g0 (θ)] ≤ inf
θ∗∈Θ:∀i∈[m].gi(θ∗)≤0

g0 (θ∗) + ε

Furthermore, if λ is in the interior of Λ, in the sense that
∥∥λ̄∥∥

p
< R where λ̄ := Eλ [λ], then θ is

ε/
(
R−

∥∥λ̄∥∥
p

)
-feasible: ∥∥(Eθ [g: (θ)])+

∥∥
q
≤ ε

R−
∥∥λ̄∥∥

p

where g: (θ) is the m-dimensional vector of constraint evaluations, and (·)+ takes the positive part of
its argument, so that

∥∥(Eθ [g: (θ)])+

∥∥
q

is the q-norm of the vector of expected constraint violations.

Proof First notice that L is linear in λ, so:

max
λ∗∈Λ

Eθ [L (θ, λ∗)]− inf
θ∗∈Θ

L
(
θ∗, λ̄

)
≤ ε (8)

Optimality: Choose θ∗ to be the optimal feasible solution in Equation 8, so that gi (θ∗) ≤ 0 for all
i ∈ [m], and also choose λ∗ = 0, which combined with the definition of L (Definition 1) gives that:

Eθ [g0 (θ)]− g0 (θ∗) ≤ ε

which is the optimality claim.

Feasibility: Choose θ∗ = θ in Equation 8. By the definition of L (Definition 1):

max
λ∗∈Λ

m∑
i=1

λ∗iEθ [gi (θ)]−
m∑
i=1

λ̄iEθ [gi (θ)] ≤ ε

Then by the definition of a dual norm, Hölder’s inequality, and the assumption that
∥∥λ̄∥∥

p
< R:

R
∥∥(Eθ [g: (θ)])+

∥∥
q
−
∥∥λ̄∥∥

p

∥∥(Eθ [g: (θ)])+

∥∥
q
≤ ε

Rearranging terms gives the feasibility claim.

Lemma 12 In the context of Theorem 11, suppose that there exists a θ′ ∈ Θ that satisfies all of the
constraints, and does so with q-norm margin γ, i.e. gi (θ′) ≤ 0 for all i ∈ [m] and ‖g: (θ′)‖q ≥ γ.
Then: ∥∥λ̄∥∥

p
≤ ε+Bg0

γ

where Bg0 ≥ supθ∈Θ g0 (θ)− infθ∈Θ g0 (θ) is a bound on the range of the objective function g0.
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Proof Starting from Equation 7 (in Theorem 11), and choosing θ∗ = θ′ and λ∗ = 0:

ε ≥Eθ [g0 (θ)]− Eλ

[
g0

(
θ′
)

+
m∑
i=1

λigi
(
θ′
)]

ε ≥Eθ

[
g0 (θ)− inf

θ′∈Θ
g0

(
θ′
)]
−
(
g0

(
θ′
)
− inf
θ′∈Θ

g0

(
θ′
))

+ γ
∥∥λ̄∥∥

p

ε ≥−Bg0 + γ
∥∥λ̄∥∥

p

Solving for
∥∥λ̄∥∥

p
yields the claim.

Theorem 13 (Proxy-Lagrangian Sub{optimality,feasibility}) LetM be the set of all left-stochastic
(m+ 1)×(m+ 1) matrices (i.e.M :=

{
M ∈ R(m+1)×(m+1) : ∀i ∈ [m+ 1] .M:,i ∈ ∆m+1

}
), and

consider the “proxy-Lagrangians” of Equation 1 (Definition 2). Suppose that θ ∈ Θ and λ ∈ Λ are
jointly distributed random variables such that:

Eθ,λ [Lθ (θ, λ)]− inf
θ∗∈Θ

Eλ [Lθ (θ∗, λ)] ≤εθ (9)

max
M∗∈M

Eθ,λ [Lλ (θ,M∗λ)]− Eθ,λ [Lλ (θ, λ)] ≤ελ

Define λ̄ := Eλ [λ], let (Ω,F , P ) be the probability space, and define a random variable θ̄ such that:

Pr
{
θ̄ ∈ S

}
=

∫
θ−1(S) λ1 (x) dP (x)∫

Ω λ1 (x) dP (x)

In words, θ̄ is a version of θ that has been resampled with λ1 being treated as an importance weight.
In particular Eθ̄

[
f
(
θ̄
)]

= Eθ,λ [λ1f (θ)] /λ̄1 for any f : Θ→ R. Then θ̄ is nearly-optimal:

Eθ̄
[
g0

(
θ̄
)]
≤ inf

θ∗∈Θ:∀i∈[m].g̃i(θ∗)≤0
g0 (θ∗) +

εθ + ελ
λ̄1

and nearly-feasible: ∥∥∥(Eθ̄ [g:

(
θ̄
)])

+

∥∥∥
∞
≤ ελ
λ̄1

Notice the optimality inequality is weaker than it may appear, since the comparator in this equation
is not the optimal solution w.r.t. the constraints gi, but rather w.r.t. the proxy constraints g̃i.

Proof Optimality: If we choose M∗ to be the matrix with its first row being all-one, and all other
rows being all-zero, then Lλ (θ,M∗λ) = 0, which shows that the first term in the LHS of the
second line of Equation 9 is nonnegative. Hence, −Eθ,λ [Lλ (θ, λ)] ≤ ελ, so by the definition of Lλ
(Definition 2), and the fact that g̃i ≥ gi:

Eθ,λ

[
m∑
i=1

λi+1g̃i (θ)

]
≥ −ελ

Notice that Lθ is linear in λ, so the first line of Equation 9, combined with the above result and the
definition of Lθ (Definition 2) becomes:

Eθ,λ [λ1g0 (θ)]− inf
θ∗∈Θ

(
λ̄1g0 (θ∗) +

m∑
i=1

λ̄i+1g̃i (θ∗)

)
≤ εθ + ελ (10)
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Choose θ∗ to be the optimal solution that satisfies the proxy constraints g̃, so that g̃i (θ∗) ≤ 0 for all
i ∈ [m]. Then:

Eθ,λ [λ1g0 (θ)]− λ̄1g0 (θ∗) ≤ εθ + ελ

which is the optimality claim.

Feasibility: We’ll simplify our notation by defining `1 (θ) := 0 and `i+1 (θ) := gi (θ) for i ∈ [m],
so that Lλ (θ, λ) = 〈λ, `: (θ)〉. Consider the first term in the LHS of the second line of Equation 9:

max
M∗∈M

Eθ,λ [Lλ (θ,M∗λ)] = max
M∗∈M

Eθ,λ [〈M∗λ, `: (θ)〉]

= max
M∗∈M

Eθ,λ

m+1∑
i=1

m+1∑
j=1

M∗j,iλi`j (θ)


=
m+1∑
i=1

max
M∗:,i∈∆m+1

m+1∑
j=1

Eθ,λ
[
M∗j,iλi`j (θ)

]
=

m+1∑
i=1

max
j∈[m+1]

Eθ,λ [λi`j (θ)]

where we used the fact that, sinceM∗ is left-stochastic, each of its columns is a (m+ 1)-dimensional
multinoulli distribution. For the second term in the LHS of the second line of Equation 9, we can use
the fact that `1 (θ) = 0:

Eθ,λ

[
m+1∑
i=2

λi`i (θ)

]
≤

m+1∑
i=2

max
j∈[m+1]

Eθ,λ [λi`j (θ)]

Plugging these two results into the second line of Equation 9, the two sums collapse, leaving:

max
i∈[m+1]

Eθ,λ [λ1`i (θ)] ≤ ελ

The definition of `i then yields the feasibility claim.

Lemma 14 In the context of Theorem 13, suppose that there exists a θ′ ∈ Θ that satisfies all of the
proxy constraints with margin γ, i.e. g̃i (θ′) ≤ −γ for all i ∈ [m]. Then:

λ̄1 ≥
γ − εθ − ελ
γ +Bg0

where Bg0 ≥ supθ∈Θ g0 (θ)− infθ∈Θ g0 (θ) is a bound on the range of the objective function g0.

Proof Starting from Equation 10 (in the proof of Theorem 13), and choosing θ∗ = θ′:

Eθ,λ [λ1g0 (θ)]−

(
λ̄1g0

(
θ′
)

+
m∑
i=1

λ̄i+1g̃i
(
θ′
))
≤ εθ + ελ
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Since g̃i (θ′) ≤ −γ for all i ∈ [m]:

εθ + ελ ≥Eθ,λ [λ1g0 (θ)]− λ̄1g0

(
θ′
)

+
(
1− λ̄1

)
γ

≥Eθ,λ

[
λ1

(
g0 (θ)− inf

θ′∈Θ
g0

(
θ′
))]
− λ̄1

(
g0

(
θ′
)
− inf
θ′∈Θ

g0

(
θ′
))

+
(
1− λ̄1

)
γ

≥− λ̄1Bg0 +
(
1− λ̄1

)
γ

Solving for λ̄1 yields the claim.

Appendix B. Proofs of Existence of Sparse Equilibria

Theorem 15 Consider a two player game, played on the compact Hausdorff spaces Θ and Λ ⊆ Rm.
Imagine that the θ-player wishes to minimize Lθ : Θ× Λ→ R, and the λ-player wishes to maximize
Lλ : Θ × Λ → R, with both of these functions being continuous in θ and linear in λ. Then there
exists a Nash equilibrium θ, λ:

Eθ [Lθ (θ, λ)] = min
θ∗∈Θ

Lθ (θ∗, λ)

Eθ [Lλ (θ, λ)] = max
λ∗∈Λ

Eθ [Lλ (θ, λ∗)]

where θ is a random variable placing nonzero probability mass on at most m+ 1 elements of Θ, and
λ ∈ Λ is non-random.

Proof There are some extremely similar (and in some ways more general) results than this in the
game theory literature (e.g. Bohnenblust et al., 1950; Parthasarathy and Raghavan, 1975), but for our
particular (Lagrangian and proxy-Lagrangian) setting it’s possible to provide a fairly straightforward
proof.

To begin with, Glicksberg (1952) gives that there exists a mixed strategy in the form of two random
variables θ̃ and λ̃:

Eθ̃,λ̃

[
Lθ
(
θ̃, λ̃
)]

= min
θ∗∈Θ

Eλ̃

[
Lθ
(
θ∗, λ̃

)]
Eθ̃,λ̃

[
Lλ
(
θ̃, λ̃
)]

= max
λ∗∈Λ

Eθ̃

[
Lλ
(
θ̃, λ∗

)]
Since both functions are linear in λ̃, we can define λ := Eλ̃

[
λ̃
]
, and these conditions become:

Eθ̃

[
Lθ
(
θ̃, λ
)]

= min
θ∗∈Θ

Lθ (θ∗, λ) := `min

Eθ̃

[
Lλ
(
θ̃, λ
)]

= max
λ∗∈Λ

Eθ̃

[
Lλ
(
θ̃, λ∗

)]
Let’s focus on the first condition. Let pε := Pr

{
Lθ
(
θ̃, λ
)
≥ `min + ε

}
, and notice that p1/n must

equal zero for any n ∈ {1, 2, . . . } (otherwise we would contradict the above), implying by the
countable additivity of measures that Pr

{
Lθ
(
θ̃, λ
)

= `min

}
= 1. We therefore assume henceforth,
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without loss of generality, that the support of θ̃ consists entirely of minimizers of Lθ (·, λ). Let
S ⊆ Θ be this support set.

Define G :=
{
∇λ̃Lλ (θ′, λ) : θ′ ∈ S

}
, and take Ḡ to be the closure of the convex hull of G. Since

Eθ̃

[
∇λ̃Lλ

(
θ̃, λ
)]
∈ Ḡ ⊆ Rm, we can write it as a convex combination of at most m+ 1 extreme

points of Ḡ, or equivalently of m+ 1 elements of G. Hence, we can take θ to be a discrete random
variable that places nonzero mass on at most m+ 1 elements of S, and:

Eθ
[
∇λ̃Lλ (θ, λ)

]
= Eθ̃

[
∇λ̃Lλ

(
θ̃, λ
)]

Linearity in λ then implies that Eθ [Lλ (θ, ·)] and Eθ̃

[
Lλ
(
θ̃, ·
)]

are the same function (up to a
constant), and therefore have the same maximizer(s). Correspondingly, θ is supported on S, which
contains only minimizers of Lθ (·, λ) by construction.

Lemma 10 If Θ is a compact Hausdorff space and the objective, constraint and proxy constraint
functions g0, g1, . . . , gm, g̃1, . . . , g̃m are continuous, then the proxy-Lagrangian game (Definition 2)
has a mixed Nash equilibrium pair (θ, λ) where θ is a random variable supported on at most m+ 1
elements of Θ, and λ is non-random.

Proof Applying Theorem 15 directly would result in a support size of m+ 2, rather than the desired
m + 1, since Λ is (m+ 1)-dimensional. Instead, we define Λ̃ =

{
λ̃ ∈ Rm+ :

∥∥∥λ̃∥∥∥
1
≤ 1
}

as the
space containing the last m coordinates of Λ. Then we can rewrite the proxy-Lagrangian functions
L̃θ, L̃λ : Θ× Λ̃→ R as:

L̃θ
(
θ, λ̃
)

=
(

1−
∥∥∥λ̃∥∥∥

1

)
g0 (θ) +

m∑
i=1

λ̃ig̃i (θ)

L̃λ
(
θ, λ̃
)

=
m∑
i=1

λ̃igi (θ)

These functions are linear in λ̃, which is a m-dimensional space, so the conditions of Theorem 15
apply, yielding the claimed result.

Lemma 7 Let θ(1), θ(2), . . . , θ(T ) ∈ Θ be a sequence of T “candidate solutions” of Equation 1.
Define g0, gi ∈ RT such that (g0)t = g0

(
θ(t)
)

and (gi)t = gi
(
θ(t)
)

for i ∈ [m], and consider the
linear program:

min
p∈∆T

〈p, g0〉

s.t. ∀i ∈ [m] . 〈p, gi〉 ≤ ε

where ∆T is the T -dimensional simplex. Then every vertex p∗ of the feasible region—in particular
an optimal one—has at most m∗ + 1 ≤ m+ 1 nonzero elements, where m∗ is the number of active
〈p∗, gi〉 ≤ ε constraints.

23



TWO-PLAYER GAMES FOR EFFICIENT NON-CONVEX CONSTRAINED OPTIMIZATION

Proof The linear program contains not only the m explicit linearized functional constraints, but also,
since p ∈ ∆T , the T nonnegativity constraints pt ≥ 0, and the sum-to-one constraint

∑T
t=1 pt = 1.

Since p is T -dimensional, every vertex p∗ of the feasible region must include T active constraints.
Letting m∗ ≤ m be the number of active linearized functional constraints, and accounting for
the sum-to-one constraint, it follows that at least T −m∗ − 1 nonnegativity constraints are active,
implying that p∗ contains at most m∗ + 1 nonzero elements.

Appendix C. Proofs of Convergence Rates

C.1. Non-Stochastic One-Player Convergence Rates

Theorem 16 (Mirror Descent) Let f1, f2, . . . : Θ → R be a sequence of convex functions that
we wish to minimize on a compact convex set Θ. Suppose that the “distance generating function”
Ψ : Θ→ R+ is nonnegative and 1-strongly convex w.r.t. a norm ‖·‖ with dual norm ‖·‖∗.

Define the step size η =
√
BΨ/TB2

∇̌, where BΨ ≥ maxθ∈Θ Ψ (θ) is a uniform upper bound on Ψ,

and B∇̌ ≥
∥∥∇̌ft (θ(t)

)∥∥
∗ is a uniform upper bound on the norms of the subgradients. Suppose that

we perform T iterations of the following update, starting from θ(1) = argminθ∈Θ Ψ (θ):

θ̃(t+1) =∇Ψ∗
(
∇Ψ

(
θ(t)
)
− η∇̌ft

(
θ(t)
))

θ(t+1) = argmin
θ∈Θ

DΨ

(
θ | θ̃(t+1)

)
where ∇̌ft (θ) ∈ ∂ft(θ

(t)) is a subgradient of ft at θ, and DΨ (θ | θ′) := Ψ (θ) − Ψ (θ′) −
〈∇Ψ (θ′), θ − θ′〉 is the Bregman divergence associated with Ψ. Then:

1

T

T∑
t=1

ft

(
θ(t)
)
− 1

T

T∑
t=1

ft (θ∗) ≤ 2B∇̌

√
BΨ

T

where θ∗ ∈ Θ is an arbitrary reference vector.

Proof Mirror descent (Nemirovski and Yudin, 1983; Beck and Teboulle, 2003) dates back to 1983,
but this particular statement is taken from Lemma 2 of Srebro et al. (2011).

Corollary 17 (Gradient Descent) Let f1, f2, . . . : Θ → R be a sequence of convex functions that
we wish to minimize on a compact convex set Θ.

Define the step size η = BΘ/B∇̌
√

2T , where BΘ ≥ maxθ∈Θ ‖θ‖2, and B∇̌ ≥
∥∥∇̌ft (θ(t)

)∥∥
2

is a
uniform upper bound on the norms of the subgradients. Suppose that we perform T iterations of the
following update, starting from θ(1) = argminθ∈Θ ‖θ‖2:

θ(t+1) = ΠΘ

(
θ(t) − η∇̌ft

(
θ(t)
))
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where ∇̌ft (θ) ∈ ∂ft(θ(t)) is a subgradient of ft at θ, and ΠΘ projects its argument onto Θ w.r.t. the
Euclidean norm. Then:

1

T

T∑
t=1

ft

(
θ(t)
)
− 1

T

T∑
t=1

ft (θ∗) ≤ BΘB∇̌

√
2

T

where θ∗ ∈ Θ is an arbitrary reference vector.

Proof Follows from taking Ψ (θ) = ‖θ‖22 /2 in Theorem 16.

Corollary 18 Let M :=
{
M ∈ Rm̃×m̃ : ∀i ∈ [m̃] .M:,i ∈ ∆m̃

}
be the set of all left-stochastic

m̃× m̃ matrices, and let f1, f2, . . . :M→ R be a sequence of concave functions that we wish to
maximize.

Define the step size η =
√
m̃ ln m̃/TB2

∇̂
, where B∇̂ ≥

∥∥∥∇̂ft (M (t)
)∥∥∥
∞,2

is a uniform upper bound

on the norms of the supergradients, and ‖·‖∞,2 :=
√∑m̃

i=1 ‖M:,i‖2∞ is the L∞,2 matrix norm.

Suppose that we perform T iterations of the following update starting from the matrix M (1) with all
elements equal to 1/m̃:

M̃ (t+1) =M (t) � . exp
(
η∇̂ft

(
M (t)

))
M

(t+1)
:,i =M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1

where −∇̂ft
(
M (t)

)
∈ ∂

(
−ft(M (t))

)
, i.e. ∇̂ft

(
M (t)

)
is a supergradient of ft at M (t), and the

multiplication and exponentiation in the first step are performed element-wise. Then:

1

T

T∑
t=1

ft (M∗)− 1

T

T∑
t=1

ft

(
M (t)

)
≤ 2B∇̂

√
m̃ ln m̃

T

where M∗ ∈M is an arbitrary reference matrix.

Proof Define Ψ :M→ R := m̃ ln m̃+
∑

i,j∈[m̃]Mi,j lnMi,j as m̃ ln m̃ plus the negative Shannon
entropy, applied to its (matrix) argument element-wise (m̃ ln m̃ is added to make Ψ nonnegative on
M). As in the vector setting, the resulting mirror descent update will be (element-wise) multiplicative.

The Bregman divergence satisfies:

DΨ

(
M |M ′

)
=Ψ (M)−Ψ

(
M ′
)
−
〈
∇Ψ

(
M ′
)
,M −M ′

〉
=
∥∥M ′∥∥

1,1
− ‖M‖1,1 +

m̃∑
i=1

DKL

(
M:,i‖M ′:,i

)
(11)

where ‖M‖1,1 =
∑m̃

i=1 ‖M:,i‖1 is the L1,1 matrix norm. This incidentally shows that one projects
onto M w.r.t. DΨ by projecting each column w.r.t. the KL divergence, i.e. by normalizing the
columns.
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By Pinsker’s inequality (applied to each column of an M ∈M):

∥∥M −M ′∥∥2

1,2
≤ 2

m̃∑
i=1

DKL

(
M:,i‖M ′:,i

)
where ‖M‖1,2 =

√∑m̃
i=1 ‖M:,i‖21 is the L1,2 matrix norm. Substituting this into Equation 11, and

using the fact that ‖M‖1,1 = m̃ for all M ∈M, we have that for all M,M ′ ∈M:

DΨ

(
M |M ′

)
≥ 1

2

∥∥M −M ′∥∥2

1,2

which shows that Ψ is 1-strongly convex w.r.t. the L1,2 matrix norm. The dual norm of the L1,2

matrix norm is the L∞,2 norm, which is the last piece needed to apply Theorem 16, yielding the
claimed result.

Lemma 19 Let Λ := ∆m̃ be the m̃-dimensional simplex, defineM as the set of all left-stochastic
m̃× m̃ matrices (i.e. M :=

{
M ∈ Rm̃×m̃ : ∀i ∈ [m̃] .M:,i ∈ ∆m̃

}
), and take f1, f2, . . . : Λ → R

to be a sequence of concave functions that we wish to maximize.

Define the step size η =
√
m̃ ln m̃/TB2

∇̂
, where B∇̂ ≥

∥∥∥∇̂ft (λ(t)
)∥∥∥
∞

is a uniform upper bound
on the∞-norms of the supergradients. Suppose that we perform T iterations of the following update,
starting from the matrix M (1) with all elements equal to 1/m̃:

λ(t) = fixM (t)

A(t) =
(
∇̂ft

(
λ(t)
))(

λ(t)
)T

M̃ (t+1) =M (t) � . exp
(
ηA(t)

)
M

(t+1)
:,i =M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1

where fixM is a stationary distribution of M (i.e. a λ ∈ Λ such that Mλ = λ—such always exists,
since M is left-stochastic), −∇̂ft

(
λ(t)
)
∈ ∂

(
−ft(λ(t))

)
, i.e. ∇̂ft

(
λ(t)
)

is a supergradient of ft at
λ(t), and the multiplication and exponentiation of the third step are performed element-wise. Then:

1

T

T∑
t=1

ft

(
M∗λ(t)

)
− 1

T

T∑
t=1

ft

(
λ(t)
)
≤ 2B∇̂

√
m̃ ln m̃

T

where M∗ ∈M is an arbitrary left-stochastic reference matrix.

Proof This algorithm is an instance of that contained in Figure 1 of Gordon et al. (2008).

Define f̃t (M) := ft
(
M (t)λ(t)

)
. Observe that since ∇̂ft

(
λ(t)
)

is a supergradient of ft at λ(t), and
M (t)λ(t) = λ(t):

ft

(
M̃λ(t)

)
≤ft

(
M (t)λ(t)

)
+
〈
∇̂ft

(
λ(t)
)
, M̃λ(t) −M (t)λ(t)

〉
≤ft

(
M (t)λ(t)

)
+A(t) ·

(
M̃ −M (t)

)
26



TWO-PLAYER GAMES FOR EFFICIENT NON-CONVEX CONSTRAINED OPTIMIZATION

where the matrix product on the last line is performed element-wise. This shows that A(t) is a
supergradient of f̃t at M (t), from which we conclude that the final two steps of the update are
performing the algorithm of Corollary 18, so:

1

T

T∑
t=1

f̃t (M∗)− 1

T

T∑
t=1

f̃t

(
M (t)

)
≤ 2B∇̂

√
m̃ ln m̃

T

where the B∇̂ of Corollary 18 is a uniform upper bound on the L∞,2 matrix norms of the A(t)s.
However, by the definition of A(t) and the fact that λ(t) ∈ ∆m̃, we can instead take B∇̂ to be a

uniform upper bound on
∥∥∥∇̂(t)

∥∥∥
∞

. Substituting the definition of f̃t and again using the fact that

M (t)λ(t) = λ(t) then yields the claimed result.

C.2. Stochastic One-Player Convergence Rates

Theorem 20 (Stochastic Mirror Descent) Let Ψ, ‖·‖, DΨ and BΨ be as in Theorem 16, and let
f1, f2, . . . : Θ→ R be a sequence of convex functions that we wish to minimize on a compact convex
set Θ.

Define the step size η =
√
BΨ/TB2

∆̌
, where B∆̌ ≥

∥∥∆̌(t)
∥∥
∗ is a uniform upper bound on the norms

of the stochastic subgradients. Suppose that we perform T iterations of the following stochastic
update, starting from θ(1) = argminθ∈Θ Ψ (θ):

θ̃(t+1) = ∇Ψ∗
(
∇Ψ

(
θ(t)
)
− η∆̌(t)

)
θ(t+1) = argmin

θ∈Θ
DΨ

(
θ|θ̃(t+1)

)
where E

[
∆̌(t) | θ(t)

]
∈ ∂ft(θ

(t)), i.e. ∆̌(t) is a stochastic subgradient of ft at θ(t). Then, with
probability 1− δ over the draws of the stochastic subgradients:

1

T

T∑
t=1

ft

(
θ(t)
)
− 1

T

T∑
t=1

ft (θ∗) ≤ 2B∇̌

√
2BΨ

(
1 + 16 ln 1

δ

)
T

where θ∗ ∈ Θ is an arbitrary reference vector.

Proof This is nothing more than the usual transformation of a uniform regret guarantee into a
stochastic one via the Hoeffding-Azuma inequality—we include a proof for completeness.

Define the sequence:
f̃t (θ) = ft

(
θ(t)
)

+
〈

∆̌(t), θ − θ(t)
〉

Then applying non-stochastic mirror descent to the sequence f̃t will result in exactly the same
sequence of iterates θ(t) as applying stochastic mirror descent (above) to ft. Hence, by Theorem 16
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and the definition of f̃t (notice that we can take B∇̌ = B∆̌):

1

T

T∑
t=1

f̃t

(
θ(t)
)
− 1

T

T∑
t=1

f̃t (θ∗) ≤2B∇̌

√
BΨ

T

1

T

T∑
t=1

ft

(
θ(t)
)
− 1

T

T∑
t=1

ft (θ∗) ≤2B∇̌

√
BΨ

T
+

1

T

T∑
t=1

(
f̃t (θ∗)− ft (θ∗)

)
≤2B∇̌

√
BΨ

T
+

1

T

T∑
t=1

〈
∆̌(t) − ∇̌ft

(
θ(t)
)
, θ∗ − θ(t)

〉
(12)

where the last step follows from the convexity of the fts. Consider the second term on the RHS.
Observe that, since the ∆̌(t)s are stochastic subgradients, each of the terms in the sum is zero in
expectation (conditioned on the past), and the partial sums therefore form a martingale. Furthermore,
by Hölder’s inequality:〈

∆̌(t) − ∇̌ft
(
θ(t)
)
, θ∗ − θ(t)

〉
≤
∥∥∥∆̌(t) − ∇̌ft

(
θ(t)
)∥∥∥
∗

∥∥∥θ∗ − θ(t)
∥∥∥ ≤ 4B∆̌

√
2BΨ

the last step because
∥∥θ∗ − θ(t)

∥∥ ≤ ∥∥θ∗ − θ(1)
∥∥ +

∥∥θ(t) − θ(1)
∥∥ ≤ 2 supθ∈Θ

√
2DΨ

(
θ | θ(1)

)
≤

2
√

2BΨ, using the fact that DΨ is 1-strongly convex w.r.t. ‖·‖, and the definition of θ(1). Hence, by
the Hoeffding-Azuma inequality:

Pr

{
1

T

T∑
t=1

〈
∆̌(t) − ∇̌ft

(
θ(t)
)
, θ∗ − θ(t)

〉
≥ ε

}
≤ exp

(
− Tε2

64BΨB2
∆̌

)

equivalently:

Pr

 1

T

T∑
t=1

〈
∆̌(t) − ∇̌ft

(
θ(t)
)
, θ∗ − θ(t)

〉
≥ 8B∆̌

√
BΨ ln 1

δ

T

 ≤ δ
substituting this into Equation 12, and applying the inequality

√
a +
√
b ≤
√

2a+ 2b, yields the
claimed result.

Corollary 21 (Stochastic Gradient Descent) Let f1, f2, . . . : Θ → R be a sequence of convex
functions that we wish to minimize on a compact convex set Θ.

Define the step size η = BΘ/B∆̌

√
2T , where BΘ ≥ maxθ∈Θ ‖θ‖2, and B∆̌ ≥

∥∥∆̌(t)
∥∥

2
is a uniform

upper bound on the norms of the stochastic subgradients. Suppose that we perform T iterations of
the following stochastic update, starting from θ(1) = argminθ∈Θ ‖θ‖2:

θ(t+1) = ΠΘ

(
θ(t) − η∆̌(t)

)
where E

[
∆̌(t) | θ(t)

]
∈ ∂ft(θ(t)), i.e. ∆̌(t) is a stochastic subgradient of ft at θ(t), and ΠΘ projects

its argument onto Θ w.r.t. the Euclidean norm. Then, with probability 1− δ over the draws of the
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stochastic subgradients:

1

T

T∑
t=1

ft

(
θ(t)
)
− 1

T

T∑
t=1

ft (θ∗) ≤ 2BΘB∇̌

√
1 + 16 ln 1

δ

T

where θ∗ ∈ Θ is an arbitrary reference vector.

Proof Follows from taking Ψ (θ) = ‖θ‖22 /2 in Theorem 20.

Corollary 22 Let M :=
{
M ∈ Rm̃×m̃ : ∀i ∈ [m̃] .M:,i ∈ ∆m̃

}
be the set of all left-stochastic

m̃× m̃ matrices, and let f1, f2, . . . :M→ R be a sequence of concave functions that we wish to
maximize.

Define the step size η =
√
m̃ ln m̃/TB2

∆̂
, where B∆̂ ≥

∥∥∥∆̂(t)
∥∥∥
∞,2

is a uniform upper bound on the

norms of the stochastic supergradients, and ‖·‖∞,2 :=
√∑m̃

i=1 ‖M:,i‖2∞ is the L∞,2 matrix norm.
Suppose that we perform T iterations of the following stochastic update starting from the matrix
M (1) with all elements equal to 1/m̃:

M̃ (t+1) =M (t) � . exp
(
η∆̂(t)

)
M

(t+1)
:,i =M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1

where E
[
−∆̂(t) |M (t)

]
∈ ∂

(
−ft(M (t))

)
, i.e. ∆̂(t) is a stochastic supergradient of ft at M (t),

and the multiplication and exponentiation in the first step are performed element-wise. Then with
probability 1− δ over the draws of the stochastic supergradients:

1

T

T∑
t=1

ft (M∗)− 1

T

T∑
t=1

ft

(
M (t)

)
≤ 2B∆̂

√
2 (m̃ ln m̃)

(
1 + 16 ln 1

δ

)
T

where M∗ ∈M is an arbitrary reference matrix.

Proof The same reasoning as was used to prove Corollary 18 from Theorem 16 applies here (but
starting from Theorem 20).

Lemma 23 Let Λ := ∆m̃ be the m̃-dimensional simplex, defineM as the set of all left-stochastic
m̃× m̃ matrices (i.e. M :=

{
M ∈ Rm̃×m̃ : ∀i ∈ [m̃] .M:,i ∈ ∆m̃

}
), and take f1, f2, . . . : Λ → R

to be a sequence of concave functions that we wish to maximize.

Define the step size η =
√
m̃ ln m̃/TB2

∆̂
, where B∆̂ ≥

∥∥∥∆̂(t)
∥∥∥
∞

is a uniform upper bound on the
∞-norms of the stochastic supergradients. Suppose that we perform T iterations of the following
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update, starting from the matrix M (1) with all elements equal to 1/m̃:

λ(t) = fixM (t)

A(t) =∆̂(t)
(
λ(t)
)T

M̃ (t+1) =M (t) � . exp
(
ηA(t)

)
M

(t+1)
:,i =M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1

where fixM is a stationary distribution of M (i.e. a λ ∈ Λ such that Mλ = λ—such always exists,
since M is left-stochastic), E

[
−∆̂(t) | λ(t)

]
∈ ∂

(
−ft(λ(t))

)
, i.e. ∆̂(t) is a stochastic supergradient

of ft at λ(t), and the multiplication and exponentiation of the third step are performed element-wise.
Then with probability 1− δ over the draws of the stochastic supergradients:

1

T

T∑
t=1

ft

(
M∗λ(t)

)
− 1

T

T∑
t=1

ft

(
λ(t)
)
≤ 2B∆̂

√
2 (m̃ ln m̃)

(
1 + 16 ln 1

δ

)
T

where M∗ ∈M is an arbitrary left-stochastic reference matrix.

Proof The same reasoning as was used to prove Lemma 19 from Corollary 18 applies here (but
starting from Corollary 22).

C.3. Two-Player Convergence Rates

Lemma 5 (Algorithm 1) Suppose that Λ and R are as in Theorem 3, and define the upper bound
B∆ ≥ maxt∈[T ]

∥∥∥∆
(t)
λ

∥∥∥
2
.

If we run Algorithm 1 with the step size ηλ := R/B∆

√
2T , then the result satisfies the conditions of

Theorem 3 for:

ε = ρ+RB∆

√
2

T

where ρ is the error associated with the oracle Oρ.

Proof Applying Corollary 17 to the optimization over λ gives:

1

T

T∑
t=1

L
(
θ(t), λ∗

)
− 1

T

T∑
t=1

L
(
θ(t), λ(t)

)
≤ BΛB∆

√
2

T

By the definition of Oρ (Definition 4):

1

T

T∑
t=1

L
(
θ(t), λ∗

)
− inf
θ∗∈Θ

1

T

T∑
t=1

L
(
θ∗, λ(t)

)
≤ ρ+BΛB∆

√
2

T

Using the linearity of L in λ, the fact that BΛ = R, and the definitions of θ̄ and λ̄, yields the claimed
result.
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Algorithm 3 Optimizes the Lagrangian formulation (Definition 1) in the convex setting. The
parameter R is the radius of the Lagrange multiplier space Λ :=

{
λ ∈ Rm+ : ‖λ‖1 ≤ R

}
, and the

functions ΠΘ and ΠΛ project their arguments onto Θ and Λ (respectively) w.r.t. the Euclidean norm.
StochasticLagrangian (R ∈ R+,L : Θ× Λ→ R, T ∈ N, ηθ, ηλ ∈ R+):

1 Initialize θ(1) = 0, λ(1) = 0 // Assumes 0 ∈ Θ
2 For t ∈ [T ]:
3 Let ∆̌

(t)
θ be a stochastic subgradient of L

(
θ(t), λ(t)

)
w.r.t. θ

4 Let ∆
(t)
λ be a stochastic gradient of L

(
θ(t), λ(t)

)
w.r.t. λ

5 Update θ(t+1) = ΠΘ

(
θ(t) − ηθ∆̌

(t)
θ

)
// Projected SGD updates . . .

6 Update λ(t+1) = ΠΛ

(
λ(t) + ηλ∆

(t)
λ

)
// . . .

7 Return θ(1), . . . , θ(T ) and λ(1), . . . , λ(T )

Lemma 24 (Algorithm 3) Suppose that Θ is a compact convex set, Λ and R are as in Theorem 3,
and that the objective and constraint functions g0, g1, . . . , gm are convex. Define the three upper
bounds BΘ ≥ maxθ∈Θ ‖θ‖2, B∆̌ ≥ maxt∈[T ]

∥∥∥∆̌
(t)
θ

∥∥∥
2
, and B∆ ≥ maxt∈[T ]

∥∥∥∆
(t)
λ

∥∥∥
2
.

If we run Algorithm 3 with the step sizes ηθ := BΘ/B∆̌

√
2T and ηλ := R/B∆

√
2T , then the result

satisfies the conditions of Theorem 3 for:

ε = 2 (BΘB∆̌ +RB∆)

√
1 + 16 ln 2

δ

T

with probability 1− δ over the draws of the stochastic (sub)gradients.

Proof Applying Corollary 21 to the two optimizations (over θ and λ) gives that with probability
1− 2δ′ over the draws of the stochastic (sub)gradients:

1

T

T∑
t=1

L
(
θ(t), λ(t)

)
− 1

T

T∑
t=1

L
(
θ∗, λ(t)

)
≤2BΘB∆̌

√
1 + 16 ln 1

δ′

T

1

T

T∑
t=1

L
(
θ(t), λ∗

)
− 1

T

T∑
t=1

L
(
θ(t), λ(t)

)
≤2BΛB∆

√
1 + 16 ln 1

δ′

T

Adding these inequalities, taking δ = 2δ′, using the linearity of L in λ, the fact that BΛ = R, and
the definitions of θ̄ and λ̄, yields the claimed result.

Lemma 25 (Algorithm 4) Suppose thatM and Λ are as in Theorem 8, and define the upper bound
B∆ ≥ maxt∈[T ]

∥∥∥∆
(t)
λ

∥∥∥
∞

.
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Algorithm 4 Optimizes the proxy-Lagrangian formulation (Definition 2) in the non-convex setting
via the use of an approximate Bayesian optimization oracle Oρ (Definition 4, but with g̃is instead
of gis in the linear combination defining f ) for the θ-player, with the λ-player minimizing swap
regret. The fixM operation on line 3 results in a stationary distribution of M (i.e. a λ ∈ Λ such that
Mλ = λ, which can be derived from the top eigenvector).

OracleProxyLagrangian
(
Lθ,Lλ : Θ×∆m+1 → R,Oρ : (Θ→ R)→ Θ, T ∈ N, ηλ ∈ R+

)
:

1 Initialize M (1) ∈ R(m+1)×(m+1) with Mi,j = 1/ (m+ 1)
2 For t ∈ [T ]:
3 Let λ(t) = fixM (t) // Stationary distribution of M (t)

4 Let θ(t) = Oρ
(
Lθ
(
·, λ(t)

))
// Oracle optimization

5 Let ∆
(t)
λ be a gradient of Lλ

(
θ(t), λ(t)

)
w.r.t. λ

6 Update M̃ (t+1) = M (t) � . exp
(
ηλ∆

(t)
λ

(
λ(t)
)T)

// � and . exp are element-wise

7 Project M (t+1)
:,i = M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1

for i ∈ [m+ 1] // Column-wise projection

8 Return θ(1), . . . , θ(T ) and λ(1), . . . , λ(T )

If we run Algorithm 4 with the step size ηλ :=
√

(m+ 1) ln (m+ 1) /TB2
∆, then the result satisfies

satisfies the conditions of Theorem 8 for:

εθ =ρ

ελ =2B∆

√
(m+ 1) ln (m+ 1)

T

where ρ is the error associated with the oracle Oρ.

Proof Applying Lemma 19 to the optimization over λ (with m̃ := m+ 1) gives:

1

T

T∑
t=1

Lλ
(
θ(t),M∗λ(t)

)
− 1

T

T∑
t=1

Lλ
(
θ(t), λ(t)

)
≤ 2B∆

√
(m+ 1) ln (m+ 1)

T

By the definition of Oρ (Definition 4):

1

T

T∑
t=1

Lθ
(
θ(t), λ(t)

)
− inf
θ∗∈Θ

1

T

T∑
t=1

Lθ
(
θ∗, λ(t)

)
≤ ρ

Using the definitions of θ̄ and λ̄ yields the claimed result.

Lemma 9 (Algorithm 2) Suppose that Θ is a compact convex set, M and Λ are as in Theo-
rem 8, and that the objective and proxy constraint functions g0, g̃1, . . . , g̃m are convex (but not
g1, . . . , gm). Define the three upper bounds BΘ ≥ maxθ∈Θ ‖θ‖2, B∆̌ ≥ maxt∈[T ]

∥∥∥∆̌
(t)
θ

∥∥∥
2
, and

B∆ ≥ maxt∈[T ]

∥∥∥∆
(t)
λ

∥∥∥
∞

.
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If we run Algorithm 2 with the step sizes ηθ := BΘ/B∆̌

√
2T and ηλ :=

√
(m+ 1) ln (m+ 1) /TB2

∆,
then the result satisfies the conditions of Theorem 8 for:

εθ =2BΘB∆̌

√
1 + 16 ln 2

δ

T

ελ =2B∆

√
2 (m+ 1) ln (m+ 1)

(
1 + 16 ln 2

δ

)
T

with probability 1− δ over the draws of the stochastic (sub)gradients.

Proof Applying Corollary 21 to the optimization over θ, and Lemma 23 to that over λ (with
m̃ := m+ 1), gives that with probability 1− 2δ′ over the draws of the stochastic (sub)gradients:

1

T

T∑
t=1

Lθ
(
θ(t), λ(t)

)
− 1

T

T∑
t=1

Lθ
(
θ∗, λ(t)

)
≤2BΘB∆̌

√
1 + 16 ln 1

δ′

T

1

T

T∑
t=1

Lλ
(
θ(t),M∗λ(t)

)
− 1

T

T∑
t=1

Lλ
(
θ(t), λ(t)

)
≤2B∆

√
2 (m+ 1) ln (m+ 1)

(
1 + 16 ln 1

δ′

)
T

Taking δ = 2δ′, and using the definitions of θ̄ and λ̄, yields the claimed result.

33


	Introduction
	Dealing with non-Convexity
	Introducing Proxy Constraints
	Contributions

	Related Work
	Alternative Approaches

	Starting Point: Lagrangian Optimization
	Shrinking

	Proxy-Lagrangian Optimization
	Shrinking

	Overall Procedure
	Experiments
	Robust Optimization
	Equal Opportunity

	Proofs of Sub{optimality,feasibility} Guarantees
	Proofs of Existence of Sparse Equilibria
	Proofs of Convergence Rates
	Non-Stochastic One-Player Convergence Rates
	Stochastic One-Player Convergence Rates
	Two-Player Convergence Rates


