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Abstract

We give an algorithmically efficient version of the learner-to-compression scheme conver-
sion in Moran and Yehudayoff (2016). We further extend this technique to real-valued
hypotheses, to obtain a bounded-size sample compression scheme via an efficient reduc-
tion to a certain generic real-valued learning strategy. To our knowledge, this is the first
general compressed regression result (regardless of efficiency or boundedness) guarantee-
ing uniform approximate reconstruction. Along the way, we develop a generic procedure
for constructing weak real-valued learners out of abstract regressors; this result is also of
independent interest. In particular, this result sheds new light on an open question of H.
Simon (1997). We show applications to two regression problems: learning Lipschitz and
bounded-variation functions.
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1. Introduction

Sample compression is a natural learning strategy, whereby the learner seeks to retain a
small subset of the training examples, which (if successful) may then be decoded as a
hypothesis with low empirical error. Overfitting is controlled by the size of this learner-
selected “compression set”. Part of a more general Occam learning paradigm, such results
are commonly summarized by “compression implies learning”. A fundamental question,
posed by Littlestone and Warmuth (1986), concerns the reverse implication: Can every
learner be converted into a sample compression scheme? Or, in a more quantitative formu-
lation: Does every VC class admit a constant-size sample compression scheme? A series of
partial results (Floyd, 1989; Helmbold et al., 1992; Floyd and Warmuth, 1995; Ben-David
and Litman, 1998; Kuzmin and Warmuth, 2007; Rubinstein et al., 2009; Rubinstein and
Rubinstein, 2012; Chernikov and Simon, 2013; Livni and Simon, 2013; Moran et al., 2017)
culminated in Moran and Yehudayoff (2016) which resolved the latter question1.

1. The refined conjecture of Littlestone and Warmuth (1986), that any concept class with VC-dimension
d admits a compression scheme of size O(d), remains open.
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Moran and Yehudayoff’s solution involved a clever use of von Neumann’s minimax theo-
rem, which allows one to make the leap from the existence of a weak learner uniformly over
all distributions on examples to the existence of a distribution on weak hypotheses under
which they achieve a certain performance simultaneously over all of the examples. Although
their paper can be understood without any knowledge of boosting, Moran and Yehudayoff
note the well-known connection between boosting and compression. Indeed, boosting may
be used to obtain a constructive proof of the minimax theorem (Freund and Schapire, 1996,
1999) — and this connection was what motivated us to seek an efficient algorithm imple-
menting Moran and Yehudayoff’s existence proof. Having obtained an efficient conversion
procedure from consistent PAC learners to bounded-size sample compression schemes, we
turned our attention to the case of real-valued hypotheses, seeking to apply this same ap-
proach. In this case, it turned out that getting this approach to yield bounded compression
schemes required significant innovation in the technical details of the proof. In particular,
for the boosting approach, there are several different notions of “weak learner” that could
be considered. It turns out one such definition is appropriate for the purpose of compres-
sion, while the others are not. This then leads to additional questions, as unlike the binary
case, there was not already in the literature an understanding of the sample complexity of
this notion of weak learning, which is an important part of the analysis of the size of the
compression scheme. We therefore needed to supply such an analysis. Finally, a critical
component in the compression approach for classification is a sparsification step, which is
the main innovation that enabled Moran and Yehudayoff to remove the dependence on the
data set size from the size of the compression set. This step also required a significantly
different technique in the proof to arrive at such a sparse subset in the case of real-valued
functions. Nevertheless, with all of these components established, we were indeed able to
construct a bounded-size compression scheme for classes of real-valued functions, following
the same high-level strategy from the binary-valued case.

Our contribution. More formally, in the classification setting, our technique combines
the innovations of Moran and Yehudayoff (2016), with the simple but powerful observation
(Schapire and Freund, 2012) that many boosting algorithms (e.g., AdaBoost, α-Boost) are
capable of outputting a family of O(log(m)/γ2) hypotheses such that not only does their
(weighted) majority vote yield a sample-consistent classifier, but in fact a ≈ (12 + γ) super-
majority does as well. This fact implies that after boosting, we can sub-sample a constant
(i.e., independent of sample size m) number of classifiers and thereby efficiently recover the
sample compression bounds of Moran and Yehudayoff (2016).

But our chief technical contribution is in the real-valued case. As we discuss below, ex-
tending the boosting framework from classification to regression presents a host of technical
challenges. One of our insights is to impose distinct error metrics on the weak and strong
learners: a “stronger” one on the latter and a “weaker” one on the former. This allows us
to achieve two goals simultaneously:

(a) We give apparently the first generic analysis of the sample complexity of weak (and
strong) learning (in the sense defined below) for real-valued functions, via simple
sample-consistent learning rules. This is in contrast with many previous proposed
weak regressors, whose stringent or exotic definitions made them unwieldy to construct
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or verify as such, and most of which are not compatible with generic weak-to-strong
boosting strategies. This result is novel and is also of independent interest.

(b) We show that the output of a certain real-valued boosting algorithm may be sparsified
so as to yield a constant size sample compression scheme: a real-valued analogue of the
Moran and Yehudayoff result for classification. This gives the first general constant-
size sample compression scheme having uniform approximation guarantees on the
data.

2. Definitions and notation

We will write [k] := {1, . . . , k}. An instance space is an abstract set X . For a concept class
C ⊂ {0, 1}X , if say that C shatters a set {x1, . . . , xk} ⊂ X if

C(S) = {(f(x1), f(x2), . . . , f(xk)) : f ∈ C} = {0, 1}k .

The VC-dimension d = dC of C is the size of the largest shattered set (or ∞ if C shatters
sets of arbitrary size) (Vapnik and Červonenkis, 1971). When the roles of X and C are
exchanged — that is, an x ∈ X acts on f ∈ C via x(f) = f(x), — we refer to X = C∗ as
the dual class of C. Its VC-dimension is then d∗ = d∗C := dC∗ , and referred to as the dual
VC dimension. Assouad (1983) showed that d∗ ≤ 2d+1.

For F ⊂ RX and t > 0, we say that F t-shatters a set {x1, . . . , xk} ⊂ X if there is an
r ∈ Rm such that for all y ∈ {−1, 1}m there is an f ∈ F such that mini∈[k] yi(f(xi)−ri) ≥ t.
The t-fat-shattering dimension d(t) = dF (t) is the size of the largest t-shattered set (possibly
∞) (Alon et al., 1997). Again, the roles of X and F may be switched, in which case X = F∗
becomes the dual class of F . Its t-fat-shattering dimension is then d∗(t), and Assouad’s
argument shows that d∗(t) ≤ 2d(t)+1.

A sample compression scheme (κ, ρ) for a hypothesis class F ⊂ YX is defined as follows.
A k-compression function κ maps sequences ((x1, y1), . . . , (xm, ym)) ∈

⋃
`≥1(X × Y)` to

elements in K =
⋃
`≤k′(X × Y)` ×

⋃
`≤k′′ {0, 1}

`, where k′ + k′′ ≤ k. A reconstruction is a

function ρ : K → YX . We say that (κ, ρ) is a k-size sample compression scheme for F if κ
is a k-compression and for all h∗ ∈ F and all S = ((x1, h

∗(x1)), . . . , (xm, h
∗(ym))), we have

ĥ := ρ(κ(S)) satisfies ĥ(xi) = h∗(xi) for all i ∈ [m].
For real-valued functions, we say it is a uniformly ε-approximate compression scheme if

max
1≤i≤m

|ĥ(xi)− h∗(xi)| ≤ ε.

3. Main results

Throughout the paper, we implicitly assume that all hypothesis classes are admissible in
the sense of satisfying mild measure-theoretic conditions, such as those specified in Dudley
(1984, Section 10.3.1) or Pollard (1984, Appendix C). This section states our main results.
The remainder of the paper is dedicated to presenting their proofs. We begin with an
algorithmically efficient version of the learner-to-compression scheme conversion in Moran
and Yehudayoff (2016):
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Theorem 1 (Efficient compression for classification) Let C be a concept class over
some instance space X with VC-dimension d, dual VC-dimension d∗, and suppose that A
is a (proper, consistent) PAC-learner for C: For all 0 < ε, δ < 1/2, all f∗ ∈ C, and all
distributions D over X , if A receives m ≥ mC(ε, δ) points S = {xi} drawn iid from D and
labeled with yi = f∗(xi), then A outputs an f̂ ∈ C such that

PS∼Dm

(
PX∼D

(
f̂(X) 6= f∗(X) |S

)
> ε
)
< δ.

For every such A, there is a randomized sample compression scheme for C of size O(k log k),
where k = O(dd∗). Furthermore, on a sample of any size m, the compression set may be
computed in expected time

O ((m+ TA(cd)) logm+mTE(cd)(d∗ + logm)) ,

where TA(`) is the runtime of A to compute f̂ on a sample of size `, TE(`) is the runtime
required to evaluate f̂ on a single x ∈ X , and c is a universal constant.

Although for our purposes the existence of a distribution-free sample complexity mC is more
important than its concrete form, we may take mC(ε, δ) = O(dε log 1

ε + 1
ε log 1

δ ) (Vapnik and
Chervonenkis, 1974; Blumer et al., 1989), known to bound the sample complexity of em-
pirical risk minimization; indeed, this loses no generality, as there is a well-known efficient
reduction from empirical risk minimization to any proper learner having a polynomial sam-
ple complexity (Pitt and Valiant, 1988; Haussler et al., 1991). We allow the evaluation time
of f̂ to depend on the size of the training sample in order to account for non-parametric
learners, such as nearest-neighbor classifiers. A naive implementation of the Moran and
Yehudayoff (2016) existence proof yields a runtime of order mcdTA(c′d) + mcd∗ (for some
universal constants c, c′), which can be doubly exponential when d∗ = 2d; this is without
taking into account the cost of computing the minimax distribution on the mcd ×m game
matrix.

Next, we extend the result in Theorem 1 from classification to regression:

Theorem 2 (Efficient compression for regression) Let F ⊂ [0, 1]X be a function
class with t-fat-shattering dimension d(t), dual t-fat-shattering dimension d∗(t), and sup-
pose that A is an ERM (i.e., proper, consistent) learner for F : For all f∗ ∈ C, and all
distributions D over X , if A receives m points S = {xi} drawn iid from D and labeled with
yi = f∗(xi), then A outputs an f̂ ∈ F such that

∑
i∈[m]|f̂(xi) − f∗(xi)| = 0. For every

such A, there is a randomized uniformly ε-approximate sample compression scheme for F
of size O(km̃ log(km̃)), where m̃ = O(d(cε) log(1/ε)) and k = O(d∗(cε) log(d∗(cε)/ε)). Fur-
thermore, on a sample of any size m, the compression set may be computed in expected
time

O(mTE(m̃)(k + logm) + TA(m̃) log(m)),

where TA(`) is the runtime of A to compute f̂ on a sample of size `, TE(`) is the runtime
required to evaluate f̂ on a single x ∈ X , and c is a universal constant.

A key component in the above result is our construction of a generic (η, γ)-weak learner.
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Definition 3 For η ∈ [0, 1] and γ ∈ [0, 1/2], we say that f : X → R is an an (η, γ)-weak
hypothesis (with respect to distribution D and target f∗ ∈ F) if

PX∼D(|f(X)− f∗(X)| > η) ≤ 1

2
− γ.

Theorem 4 (Generic weak learner) Let F ⊂ [0, 1]X be a function class with t-fat-
shattering dimension d(t). For some universal numerical constants c1, c2, c3 ∈ (0,∞), for
any η, δ ∈ (0, 1) and γ ∈ (0, 1/4], any f∗ ∈ F , and any distribution D, letting X1, . . . , Xm

be drawn iid from D, where

m =

⌈
c1

(
d(c2η) ln

(
c3
η

)
+ ln

(
1

δ

))⌉
,

with probability at least 1−δ, every f ∈ F with
∑

i∈[m] |f(Xi)−f∗(Xi)| = 0 is an (η, γ)-weak
hypothesis with respect to D and f∗.

Remark: In fact, our results would also allow us to use any hypothesis f ∈ F with
maxi∈[m] |f(Xi)−f∗(Xi)| merely smaller than η by a constant factor: for instance, bounded
by η/2. This can then also be plugged into the construction of the compression scheme and
this criterion can be used in place of consistency in Theorem 2. This also enables our
compression scheme to be applied in settings that are not strictly realizable, but rather
have achievable `∞ loss at most η/c for some c > 1.

In Sections B and A we give applications to sample compression for nearest-neighbor
and bounded-variation regression.

4. Related work

It appears that generalization bounds based on sample compression were independently
discovered by Littlestone and Warmuth (1986) and Devroye et al. (1996) and further elab-
orated upon by Graepel et al. (2005); see Floyd and Warmuth (1995) for background and
discussion. A more general kind of Occam learning was discussed in Blumer et al. (1989).
Computational lower bounds on sample compression were obtained in Gottlieb et al. (2014),
and some communication-based lower bounds were given in Kane et al. (2017).

Beginning with Freund and Schapire (1997)’s AdaBoost.R algorithm, there have been nu-
merous attempts to extend AdaBoost to the real-valued case (Bertoni et al., 1997; Drucker,
1997; Avnimelech and Intrator, 1999; Karakoulas and Shawe-Taylor, 2000; Duffy and Helm-
bold, 2002; Kégl, 2003; Nock and Nielsen, 2007) along with various theoretical and heuristic
constructions of particular weak regressors (Mason et al., 1999; Friedman, 2001; Mannor
and Meir, 2002); see also the survey Mendes-Moreira et al. (2012).

Duffy and Helmbold (2002, Remark 2.1) spell out a central technical challenge: no
boosting algorithm can “always force the base regressor to output a useful function by simply
modifying the distribution over the sample”. This is because unlike a binary classifier, which
localizes errors on specific examples, a real-valued hypothesis can spread its error evenly over
the entire sample, and it will not be affected by reweighting. The (η, γ)-weak learner, which
has appeared, among other works, in Anthony et al. (1996); Simon (1997); Avnimelech and
Intrator (1999); Kégl (2003), gets around this difficulty — but provable general constructions
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of such learners have been lacking. Likewise, the heart of our sample compression engine,
MedBoost, has been widely in use since Freund and Schapire (1997) in various guises. Our
Theorem 4 supplies the remaining piece of the puzzle: any sample-consistent regressor
applied to some random sample of bounded size yields an (η, γ)-weak hypothesis. The
closest analogue we were able to find was Anthony et al. (1996, Theorem 3), which is non-
trivial only for function classes with finite pseudo-dimension, and is inapplicable, e.g., to
classes of 1-Lipschitz or bounded variation functions.

The literature on general sample compression schemes for real-valued functions is quite
sparse. There are well-known narrowly tailored results on specifying functions or approx-
imate versions of functions using a finite number of points, such as the classical fact that
a polynomial of degree p can be perfectly recovered from p + 1 points. To our knowledge,
the only general results on sample compression for real-valued functions (applicable to all
learnable function classes) is Theorem 4.3 of David, Moran, and Yehudayoff (2016). They
propose a general technique to convert any learning algorithm achieving an arbitrary sample
complexity M(ε, δ) into a compression scheme of size O(M(ε, δ) log(M(ε, δ))), where δ may
approach 1. However, their notion of compression scheme is significantly weaker than ours:
namely, they allow ĥ = ρ(κ(S)) to satisfy merely 1

m

∑m
i=1 |ĥ(xi)− h∗(xi)| ≤ ε, rather than

our uniform ε-approximation requirement max1≤i≤m |ĥ(xi) − h∗(xi)| ≤ ε. In particular,
in the special case of F a family of binary-valued functions, their notion of sample com-
pression does not recover the usual notion of sample compression schemes for classification,
whereas our uniform ε-approximate compression notion does recover it as a special case. We
therefore consider our notion to be a more fitting generalization of the definition of sample
compression to the real-valued realizable (or nearly-realizable) case. On the other hand, in
a sibling paper to the present work, we explore the subject of agnostic-case sample com-
pression schemes for real-valued functions (Hanneke, Kontorovich, and Sadigurschi, 2018).
In that work, we find that the definition of compression scheme studied by David, Moran,
and Yehudayoff (2016) is most appropriate for the agnostic case, due to a strong connection
to the generalization ability of the corresponding learning algorithm. Under that definition,
that work constructs bounded-size sample compression schemes for agnostic learning of lin-
ear functions under `1 and `∞ losses, and further argues that these are the only `p losses
for which such bounded-size compression schemes exist. It also poses a general question
about the existence of bounded-size agnostic compression schemes for arbitrary classes of
finite pseudo-dimension under `1 loss.

5. Boosting Real-Valued Functions

As mentioned above, the notion of a weak learner for learning real-valued functions must be
formulated carefully. The näıve thought that we could take any learner guaranteeing, say,
absolute loss at most 1

2 − γ is known to not be strong enough to enable boosting to ε loss.
However, if we make the requirement too strong, such as in Freund and Schapire (1997) for
AdaBoost.R, then the sample complexity of weak learning will be so high that weak learners
cannot be expected to exist for large classes of functions. However, our Definition 3, which
has been proposed independently by Simon (1997) and Kégl (2003), appears to yield the
appropriate notion of weak learner for boosting real-valued functions.
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In the context of boosting for real-valued functions, the notion of an (η, γ)-weak hy-
pothesis plays a role analogous to the usual notion of a weak hypothesis in boosting for
classification. Specifically, the following boosting algorithm was proposed by Kégl (2003).
As it will be convenient for our later results, we express its output as a sequence of functions
and weights; the boosting guarantee from Kégl (2003) applies to the weighted quantiles (and
in particular, the weighted median) of these function values.

Algorithm 1: MedBoost({(xi, yi)}i∈[m],T ,γ,η)

1: Define P0 as the uniform distribution over {1, . . . ,m}
2: for t = 0, . . . , T do
3: Call weak learner to get ht and (η/2, γ)-weak hypothesis wrt (xi, yi) : i∼Pt

(repeat until it succeeds)
4: for i = 1, . . . ,m do

5: θ
(t)
i ← 1− 2I[|ht(xi)− yi| > η/2]

6: end for

7: αt ← 1
2 ln

(
(1−γ)

∑m
i=1 Pt(i)I[θ(t)i =1]

(1+γ)
∑m

i=1 Pt(i)I[θ(t)i =−1]

)
8: if αt =∞ then
9: Return T copies of ht, and (1, . . . , 1)

10: end if
11: for i = 1, . . . ,m do

12: Pt+1(i)← Pt(i)
exp{−αtθ

(t)
i }∑m

j=1 Pt(j) exp{−αtθ
(t)
j }

13: end for
14: end for
15: Return (h1, . . . , hT ) and (α1, . . . , αT )

Here we define the weighted median as

Median(y1, . . . , yT ;α1, . . . , αT ) = min

{
yj :

∑T
t=1 αtI[yj < yt]∑T

t=1 αt
<

1

2

}
.

Also define the weighted quantiles, for γ ∈ [0, 1/2], as

Q+
γ (y1, . . . , yT ;α1, . . . , αT ) = min

{
yj :

∑T
t=1 αtI[yj < yt]∑T

t=1 αt
<

1

2
− γ

}

Q−γ (y1, . . . , yT ;α1, . . . , αT ) = max

{
yj :

∑T
t=1 αtI[yj > yt]∑T

t=1 αt
<

1

2
− γ

}
,

and abbreviate Q+
γ (x) = Q+

γ (h1(x), . . . , hT (x);α1, . . . , αT ) and Q−γ (x) =
Q−γ (h1(x), . . . , hT (x);α1, . . . , αT ) for h1, . . . , hT and α1, . . . , αT the values returned
by MedBoost.

Then Kégl (2003) proves the following result.
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Lemma 5 (Kégl (2003)) For a training set Z = {(x1, y1), . . . , (xm, ym)} of size m, the
return values of MedBoost satisfy

1

m

m∑
i=1

I
[
max

{∣∣∣Q+
γ/2(xi)− yi

∣∣∣ , ∣∣∣Q−γ/2(xi)− yi∣∣∣} > η/2
]
≤

T∏
t=1

eγαt

m∑
i=1

Pt(i)e
−αtθ

(t)
i .

We note that, in the special case of binary classification, MedBoost is closely related
to the well-known AdaBoost algorithm (Freund and Schapire, 1997), and the above results
correspond to a standard margin-based analysis of Schapire et al. (1998). For our purposes,
we will need the following immediate corollary of this, which follows from plugging in the

values of αt and using the weak learning assumption, which implies
∑m

i=1 Pt(i)I[θ
(t)
i = 1] ≥

1
2 + γ for all t.

Corollary 6 For T = Θ
(

1
γ2

ln(m)
)

, every i ∈ {1, . . . ,m} has

max
{∣∣∣Q+

γ/2(xi)− yi
∣∣∣ , ∣∣∣Q−γ/2(xi)− yi∣∣∣} ≤ η/2.

6. The Sample Complexity of Learning Real-Valued Functions

This section reveals our intention in choosing this notion of weak hypothesis, rather than
using, say, an ε-good strong learner under absolute loss. In addition to being a strong
enough notion for boosting to work, we show here that it is also a weak enough notion for
the sample complexity of weak learning to be of reasonable size: namely, a size quantified
by the fat-shattering dimension. This result is also relevant to an open question posed by
Simon (1997), who proved a lower bound for the sample complexity of finding an (η, γ)-
weak hypothesis, expressed in terms of a related complexity measure, and asked whether a
related upper bound might also hold. We establish a general upper bound here, witnessing
the same dependence on the parameters η and γ as observed in Simon’s lower bound (up to
a log factor) aside from a difference in the key complexity measure appearing in the bounds.

Define ρη(f, g) = P2m(x : |f(x)−g(x)| > η), where P2m is the empirical measure induced
by X1, . . . , X2m iid P -distributed random variables (the m data points and m ghost points).
Define Nη(β) as the β-covering numbers of F under the ρη pseudo-metric.

Theorem 7 Fix any η, β ∈ (0, 1), α ∈ [0, 1), m ∈ N and a target function f∗. For
X1, . . . , Xm iid P -distributed, with probability at least 1−E

[
Nη(1−α)/2(β/8)

]
2e−mβ/96, every

f ∈ F with max1≤i≤m |f(Xi)− f∗(Xi)| ≤ αη satisfies P (x : |f(x)− f∗(x)| > η) ≤ β.

Proof This proof roughly follows the usual symmetrization argument for uniform conver-
gence Vapnik and Červonenkis (1971); Haussler (1992), with a few important modifications
to account for this (η, β)-based criterion. If E

[
Nη(1−α)/2(β/8)

]
is infinite, then the result is

trivial, so let us suppose it is finite for the remainder of the proof. Similarly, if m < 8/β,
then 2e−mβ/96 > 1 and hence the claim trivially holds, so let us suppose m ≥ 8/β for
the remainder of the proof. Without loss of generality, suppose f∗(x) = 0 everywhere and
every f ∈ F is non-negative (otherwise subtract f∗ from every f ∈ F and redefine F as
the absolute values of the differences; note that this transformation does not increase the
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value of Nη(1−α)/2(β/8) since applying this transformation to the original Nη(1−α)/2(β/8)
functions remains a cover).

Let X1, . . . , X2m be iid P -distributed. Denote by Pm the empirical measure induced by
X1, . . . , Xm, and by P ′m the empirical measure induced by Xm+1, . . . , X2m. We have

P
(
∃f ∈ F : P ′m(x : f(x) > η) > β/2 and Pm(x : f(x) ≤ αη) = 1

)
≥ P

(
∃f ∈F : P (x :f(x) > η) > β and Pm(x :f(x) ≤ αη) = 1 and P ′m(x :f(x) > η) > β/2

)
.

Denote by Am the event that there exists f ∈ F satisfying P (x : f(x) > η) > β and
Pm(x : f(x) ≤ αη) = 1, and on this event let f̃ denote such an f ∈ F (chosen solely based
on X1, . . . , Xm); when Am fails to hold, take f̃ to be some arbitrary fixed element of F .
Then the expression on the right hand side above is at least as large as

P
(
Am and P ′m(x : f̃(x) > η) > β/2

)
,

and noting that the event Am is independent of Xm+1, . . . , X2m, this equals

E
[
IAm · P

(
P ′m(x : f̃(x) > η) > β/2

∣∣∣X1, . . . , Xm

)]
. (1)

Then note that for any f ∈ F with P (x : f(x) > η) > β, a Chernoff bound implies

P
(
P ′m(x : f(x) > η) > β/2

)
= 1− P

(
P ′m(x : f(x) > η) ≤ β/2

)
≥ 1− exp{−mβ/8} ≥ 1

2
,

where we have used the assumption that m ≥ 8
β here. In particular, this implies that the

expression in (1) is no smaller than 1
2P(Am). Altogether, we have established that

P(∃f ∈ F : P (x : f(x) > η) > β and Pm(x : f(x) ≤ αη) = 1)

≤ 2P
(
∃f ∈ F : P ′m(x : f(x) > η) > β/2 and Pm(x : f(x) ≤ αη) = 1

)
. (2)

Now let σ(1), . . . , σ(m) be independent random variables (also independent of the data),
with σ(i) ∼ Uniform({i,m+i}), and denote σ(m+i) as the sole element of {i,m+i}\{σ(i)}
for each i ≤ m. Also denote by Pm,σ the empirical measure induced by Xσ(1), . . . , Xσ(m),
and by P ′m,σ the empirical measure induced by Xσ(m+1), . . . , Xσ(2m). By exchangeability of
(X1, . . . , X2m), the probability on the right hand side of (2) is equal to

P
(
∃f ∈ F : P ′m,σ(x : f(x) > η) > β/2 and Pm,σ(x : f(x) ≤ αη) = 1

)
.

Now let F̂ ⊆ F be a minimal subset of F such that max
f∈F

min
f̂∈F̂

ρη(1−α)/2(f̂ , f) ≤ β/8. The

size of F̂ is at most Nη(1−α)/2(β/8), which is finite almost surely (since we have assumed
above that its expectation is finite). Then note that (denoting by X[2m] = (X1, . . . , X2m))
the above expression is at most

P
(
∃f ∈ F̂ : P ′m,σ(x : f(x) > η(1 + α)/2) > (3/8)β and Pm,σ(x : f(x) > η(1 + α)/2) ≤ β/8

)
≤ E

[
Nη(1−α)/2(β/8) max

f∈F̂
P
(
P ′m,σ(x :f(x)>η(1 + α)/2) > (3/8)β

and Pm,σ(x :f(x)>η(1 + α)/2) ≤ β/8
∣∣X[2m]

)]
. (3)
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Then note that for any f ∈ F , we have almost surely

P
(
P ′m,σ(x : f(x) > η(1 + α)/2) > (3/8)β and Pm,σ(x : f(x) > η(1 + α)/2) ≤ β/8

∣∣X[2m]

)
≤ P

(
P2m(x : f(x) > η(1 + α)/2) > (3/16)β and Pm,σ(x : f(x) > η(1 + α)/2) ≤ β/8

∣∣X[2m]

)
≤ exp{−mβ/96} ,

where the last inequality is by a Chernoff bound, which (as noted by Hoeffding (1963))
remains valid even when sampling without replacement. Together with (2) and (3), we
have that

P(∃f ∈ F : P (x : f(x) > η) > β and Pm(x : f(x) ≤ αη) = 1)

≤ 2E
[
Nη(1−α)/2(β/8)

]
e−mβ/96.

The following lemma is also new. Together with Theorem 7, it enables us to express the
sample complexity as a simple function of the fat-shattering dimension.

Lemma 8 There exist universal numerical constants c, c′ ∈ (0,∞) such that ∀η, β ∈ (0, 1),

Nη(β) ≤
(

2

ηβ

)cd(c′ηβ)
,

where d(·) is the fat-shattering dimension.

Proof Mendelson and Vershynin (2003, Theorem 1) establishes that the ηβ-covering num-
ber of F under the L2(P2m) pseudo-metric is at most(

2

ηβ

)cd(c′ηβ)
(4)

for some universal numerical constants c, c′ ∈ (0,∞). Then note that for any f, g ∈ F ,
Markov’s and Jensen’s inequalities imply ρη(f, g) ≤ 1

η‖f − g‖L1(P2m) ≤ 1
η‖f − g‖L2(P2m).

Thus, any ηβ-cover of F under L2(P2m) is also a β-cover of F under ρη, and therefore (4)
is also a bound on Nη(β).

Combining the above two results yields the following theorem.

Theorem 9 For some universal numerical constants c1, c2, c3 ∈ (0,∞), for any η, δ, β ∈
(0, 1) and α ∈ [0, 1), letting X1, . . . , Xm be iid P -distributed, where

m =

⌈
c1
β

(
d(c2ηβ(1− α)) ln

(
c3

ηβ(1− α)

)
+ ln

(
1

δ

))⌉
,

with probability at least 1 − δ, every f ∈ F with maxi∈[m] |f(Xi) − f∗(Xi)| ≤ αη satisfies
P (x : |f(x)− f∗(x)| > η) ≤ β.

10
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Proof The result follows immediately from combining Theorem 7 and Lemma 8.

In particular, Theorem 4 follows immediately from this result by taking β = 1/2 − γ
and α = γ/2.

To discuss tightness of Theorem 9, we note that Simon (1997) proved a sample com-
plexity lower bound for the same criterion of

Ω

(
d′(cη)

β
+

1

β
log

1

δ

)
,

where d′(·) is a quantity somewhat smaller than the fat-shattering dimension, essentially
representing a fat Natarajan dimension. Thus, aside from the differences in the complexity
measure (and a logarithmic factor), we establish an upper bound of a similar form to Simon’s
lower bound.

7. From Boosting to Compression

Generally, our strategy for converting the boosting algorithm MedBoost into a sample com-
pression scheme of smaller size follows a strategy of Moran and Yehudayoff for binary clas-
sification, based on arguing that because the ensemble makes its predictions with a margin
(corresponding to the results on quantiles in Corollary 6), it is possible to recover the same
proximity guarantees for the predictions while using only a smaller subset of the functions
from the original ensemble. Specifically, we use the following general sparsification strategy.

For α1, . . . , αT ∈ [0, 1] with
∑T

t=1 αt = 1, denote by Cat(α1, . . . , αT ) the categorical
distribution: i.e., the discrete probability distribution on {1, . . . , T} with probability mass
αt on t.

Algorithm 2: Sparsify({(xi, yi)}i∈[m], γ, η, T, n)

1: Run MedBoost({(xi, yi)}i∈[m], T, γ, η)
2: Let h1, . . . , hT and α1, . . . , αT be its return values
3: Denote α′t = αt/

∑T
t′=1 αt′ for each t ∈ [T ]

4: repeat
5: Sample (J1, . . . , Jn) ∼ Cat(α′1, . . . , α

′
T )n

6: Let F = {hJ1 , . . . , hJn}
7: until max1≤i≤m |{f ∈ F : |f(xi)− yi| > η}| < n/2
8: Return F

For any values a1, . . . , an, denote the (unweighted) median

Med(a1, . . . , an) = Median(a1, . . . , an; 1, . . . , 1).

Our intention in dicussing the above algorithm is to argue that, for a sufficiently large choice
of n, the above procedure returns a set {f1, . . . , fn} such that

∀i ∈ [m], |Med(f1(xi), . . . , fn(xi))− yi| ≤ η.

We analyze this strategy separately for binary classification and real-valued functions,
since the argument in the binary case is much simpler (and demonstrates more directly the
connection to the original argument of Moran and Yehudayoff), and also because we arrive
at a tighter result for binary functions than for real-valued functions.

11
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7.1. Binary Classification

We begin with the simple observation about binary classification (i.e., where the functions
in F all map into {0, 1}). The technique here is quite simple, and follows a similar line of
reasoning to the original argument of Moran and Yehudayoff. The argument for real-valued
functions below will diverge from this argument in important ways, requiring several non-
trivial new techniques in the proof, though the high-level outline of the argument remains
the same.

The compression function is essentially the one introduced by Moran and Yehudayoff,
except applied to the classifiers produced by the above Sparsify procedure, rather than
a set of functions selected by a minimax distribution over all classifiers produced by O(d)
samples each. The weak hypotheses in MedBoost for binary classification can be obtained
using samples of size O(d). Thus, if the Sparsify procedure is successful in finding n such
classifiers whose median predictions are within η of the target yi values for all i, then we
may encode these n classifiers as a compression set, consisting of the set of k = O(nd)
samples used to train these classifiers, together with k log k extra bits to encode the order
of the samples.2 To obtain Theorem 1, it then suffices to argue that n = Θ(d∗) is a sufficient
value. The proof follows.
Proof [Proof of Theorem 1] Recall that d∗ bounds the VC dimension of the class of sets
{{ht : t ≤ T, ht(xi) = 1} : 1 ≤ i ≤ m}. Thus for the iid samples hJ1 , . . . , hJn obtained

in Sparsify, for n = 64(2309 + 16d∗) > 2304+16d∗+log(2)
(1/8)2

, by the VC uniform convergence

inequality of Vapnik and Červonenkis (1971), with probability at least 1/2 we get that

max
1≤i≤m

∣∣∣∣∣∣
 1

n

n∑
j=1

hJj (xi)

−( T∑
t=1

α′tht(xi)

)∣∣∣∣∣∣ < 1/8.

In particular, if we choose η = 1/2, γ = 1/4, and T = Θ(log(m)) appropriately, then Corol-
lary 6 implies that every Q+

γ/2(xi) and Q−γ/2(xi) must both be equal yi (using the fact that

if two binary-valued quantities have distance strictly less than 1 then they must be equal).

This implies every yi = I
[∑T

t=1 α
′
tht(xi) ≥ 1/2

]
and

∣∣∣12 −∑T
t=1 α

′
tht(xi)

∣∣∣ ≥ 1/8 so that the

above event would imply every yi = I
[
1
n

∑n
j=1 hJj (xi)≥1/2

]
= Med(hJ1(xi), . . . , hJn(xi)).

Note that the Sparsify algorithm need only try this sampling log2(1/δ) times to find such
a set of n functions. Combined with the description above (from Moran and Yehudayoff,
2016) of how to encode this collection of hJi functions as a sample compression set plus side
information, this completes the construction of the sample compression scheme.

7.2. Real-Valued Functions

Next we turn to the general case of real-valued functions (where the functions in F may
generally map into [0, 1]). We have the following result, which says that the Sparsify

procedure can reduce the ensemble of functions from one with T = O(log(m)/γ2) functions
in it, down to one with a number of functions independent of m.

2. In fact, k logn bits would suffice if the weak learner is permutation-invariant in its data set.
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Theorem 10 Choosing

n = Θ

(
1

γ2
d∗(cη) log2(d∗(cη)/η)

)
suffices for the Sparsify procedure to return {f1, . . . , fn} with

max
1≤i≤m

|Med(f1(xi), . . . , fn(xi))− yi| ≤ η.

Proof Recall from Corollary 6 that MedBoost returns functions h1, . . . , hT ∈ F and
α1, . . . , αT ≥ 0 such that ∀i ∈ {1, . . . ,m},

max
{∣∣∣Q+

γ/2(xi)− yi
∣∣∣ , ∣∣∣Q−γ/2(xi)− yi∣∣∣} ≤ η/2, (5)

where {(xi, yi)}mi=1 is the training data set.
We use this property to sparsify {h1, . . . , hT } from T = O(log(m)/γ2) down to k ele-

ments, where k will depend on η, γ, and the dual fat-shattering dimension of F (actually,
just of H = {h1, . . . , hT } ⊆ F) — but not sample size m.

First, we define the offset class H̄ = H−f∗ = {~t = ht − f∗ : t ∈ [T ]}. By appropriately
choosing the offset r ∈ Rm, we see that H̄ has the same fat-shattering dimension at all scales
as H.

Letting α′j = αj/
∑T

t=1 αt for each j ≤ T , we will sample k hypotheses
{
h̃1, . . . , h̃k

}
=:

H̃ ⊆ H with each h̃i = hJi , where (J1, . . . , Jk) ∼ Cat(α′1, . . . , α
′
T )k as in Sparsify. Each h̃i

will have a corresponding ~i = h̃i − f∗. Define the functions ĥ(x) = Med(h̃1(x), . . . , h̃k(x))
and ~̂(x) = Med(~1(x), . . . , ~k(x)). We claim that for any fixed i ∈ [m], with high proba-
bility

|ĥ(xi)− f∗(xi)| = |~(xi)| ≤ η/2. (6)

Indeed, since for all ξ ∈ Rm and a ∈ R, we have Med(ξ) + a = Med(ξ + a), it follows
that (5) may be rewritten as

max
{∣∣Q+

γ (~1(x), . . . , ~T (x);α1, . . . , αT )
∣∣ , ∣∣Q−γ (~1(x), . . . , ~T (x);α1, . . . , αT )

∣∣} ≤ η/2. (7)

Partition the indices [T ] into the disjoint sets

L(x) =
{
j ∈ [T ] : ~j(x) < Q−γ (~1(x), . . . , ~T (x);α1, . . . , αT )

}
,

M(x) =
{
j∈ [T ] :Q−γ (~1(x), ..., ~T (x);α1, ..., αT ) ≤~j(x)≤ Q+

γ (~1(x), ..., ~T (x);α1, ..., αT )
}
,

R(x) =
{
j ∈ [T ] : ~j(x) > Q+

γ (~1(x), . . . , ~T (x);α1, . . . , αT )
}
.

Then the only way (6) can fail is if half or more indices J1, . . . , Jk sampled fall into R(xi)
— or if half or more fall into L(xi). Since the sampling distribution puts mass less than
1/2−γ on each of R(xi) and L(xi), Chernoff’s bound puts an upper estimate of exp(−2kγ2)
on either event. Hence,

P
(
|ĥ(xi)− f∗(xi)| > η/2

)
= P

(
|~̂(xi)| > η/2

)
≤ 2 exp(−2kγ2). (8)
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Next, our goal is to ensure that with high probability, (6) holds simultaneously for all
i ∈ [m]. Define the map ξ : [m] → Rk by ξ(i) = (~1(xi), . . . , ~k(xi)). Let G ⊆ [m] be a
minimal subset of [m] such that

max
i∈[m]

min
j∈G
‖ξ(i)− ξ(j)‖∞ ≤ η/2.

This is just a minimal `∞ covering of [m]. Then

P (∃i ∈ [m] : |Med(ξ(i))| > η) ≤∑
j∈G

P (∃i : |Med(ξ(i))| > η, ‖ξ(i)− ξ(j)‖∞ ≤ η/2) ≤

∑
j∈G

P (|Med(ξ(j))| > η/2) ≤ 2N∞([m], η/2) exp(−2kγ2),

where N∞([m], η/2) is the η/2-covering number (under `∞) of [m], and we used the fact
that

|Med(ξ(i))−Med(ξ(j))| ≤ ‖ξ(i)− ξ(j)‖∞ .

Finally, to bound N∞([m], η/2), note that ξ embeds [m] into the dual class F∗. Thus, we
may apply the bound in (Rudelson and Vershynin, 2006, Display (1.4)):

logN∞([m], η/2) ≤ Cd∗(cη) log2(k/η),

where C, c are universal constants and d∗(·) is the dual fat-shattering dimension of F . It
now only remains to choose a k that makes exp

(
Cd∗(cη) log2(k/η)− 2kγ2

)
as small as

desired.

To establish Theorem 2, we use the weak learner from above, with the booster MedBoost
from Kégl, and then apply the Sparsify procedure. Combining the corresponding theorems,
together with the same technique for converting to a compression scheme discussed above
for classification (i.e., encoding the functions with the set of training examples they were
obtained from, plus extra bits to record the order and which examples which weak hypothesis
was obtained by training on), this immediately yields the result claimed in Theorem 2, which
represents our main new result for sample compression of general families of real-valued
functions.
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Appendix A. Sample compression for BV functions

The function class BV(v) consists of all f : [0, 1]→ R for which

V (f) := sup
n∈N

sup
0=x0<x1<...<xn=1

n−1∑
i=1

|f(xi+1)− f(xi)| ≤ v.

It is known (Anthony and Bartlett, 1999, Theorem 11.12) that dBV(v)(t) = 1 + bv/(2t)c.
In Theorem 12 below, we show that the dual class has d∗BV(v)(t) = Θ (log(v/t)). Long

(2004) presented an efficient, proper, consistent learner for the class F = BV(1) with
range restricted to [0, 1], with sample complexity mF (ε, δ) = O(1ε log 1

δ ). Combined with
Theorem 2, this yields

Corollary 11 Let F = BV(1)∩ [0, 1][0,1] be the class f : [0, 1]→ [0, 1] with V (f) ≤ 1. Then
the proper, consistent learner L of Long (2004), with target generalization error ε, admits
a sample compression scheme of size O(k log k), where

k = O

(
1

ε
log2

1

ε
· log

(
1

ε
log

1

ε

))
.

The compression set is computable in expected runtime

O

(
n

1

ε3.38
log3.38

1

ε

(
log n+ log

1

ε
log

(
1

ε
log

1

ε

)))
.

The remainder of this section is devoted to proving

Theorem 12 For F = BV(v) and t < v, we have d∗F (t) = Θ (log(v/t)).

First, we define some preliminary notions:

Definition 13 For a binary m× n matrix M , define

V (M, i) :=

m∑
j=1

I[Mj,i 6= Mj+1,i],

G(M) :=

n∑
i=1

V (M, i),

V (M) := max
i∈[n]

V (M, i).
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Lemma 14 Let M be a binary 2n × n matrix. If for each b ∈ {0, 1}n there is a row j in
M equal to b, then

V (M) ≥ 2n

n
.

In particular, for at least one row i, we have V (M, i) ≥ 2n/n.

Proof Let M be a 2n×n binary such that for each b ∈ {0, 1}n there is a row j in M equal
to b. Given M ’s dimensions, every b ∈ {0, 1}n appears exactly in one row of M , and hence
the minimal Hamming distance between two rows is 1. Summing over the 2n − 1 adjacent
row pairs, we have

G(M) =

n∑
i=1

V (M, i) =

n∑
i=1

m∑
j=1

I[Mj,i 6= Mj+1,i] ≥ 2n − 1,

which averages to

1

n

n∑
i=1

V (M, i) =
G(M)

n
≥ 2n − 1

n
.

By the pigeon-hole principle, there must be a row j ∈ [n] for which V (M, i) ≥ 2n−1
n , which

implies V (M) ≥ 2n−1
n .

We split the proof of Theorem 12 into two estimates:

Lemma 15 For F = BV(v) and t < v, d∗F (t) ≤ 2 log2(v/t).

Lemma 16 For F = BV(v) and 4t < v, d∗F (t) ≥ blog2(v/t)c.

Proof [Proof of Lemma 15] Let {f1, . . . , fn} ⊂ F be a set of functions that are t-shattered
by F∗. In other words, there is an r ∈ Rn such that for each b ∈ {0, 1}n there is an xb ∈ F∗
such that

∀i ∈ [n], xb(fi)

{
≥ ri + t, bi = 1

≤ ri − t, bi = 0
.

Let us order the xbs by magnitude x1 < x2 < . . . < x2n , denoting this sequence by
(xi)

2n
i=1. Let M ∈ {0, 1}2n×n be a matrix whose ith row is bj , the latter ordered arbitrarily.
By Lemma 14, there is i ∈ [n] s.t.

2n∑
j=1

I[M(j, i) 6= M(j + 1, i)] ≥ 2n

n
.

Note that if M(j, i) 6= M(j + 1, i) shattering implies that

xj(fi) ≥ ri + t and xj+1(fi) ≤ ri − t

or
xj(fi) ≤ ri − t and xj+1(fi) ≥ ri + t;
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either way,
|fi(xj)− fi(xj+1)| = |xj(fi)− xj+1(fi)| ≥ 2t.

So for the function fi, we have

2n∑
j=1

|fi(xj)− fi(xj+1)| =
2n∑
j=1

|xj(fi)− xj+1(fi)| ≥
2n∑
j=1

I[bji 6= bj+1i · 2t ≥
2n

n
· 2t.

As {xj}2
n

j=1 is a partition of [0, 1] we get

v ≥
2n∑
j=1

|fi(xj)− fi(xj+1)| ≥
t2n+1

n
≥ t2n/2

and hence
v/t ≥ 2n/2

⇒ 2 log2(v/t) ≥ n.

Proof [Proof of Lemma 16] We construct a set of n = blog2(v/t)c functions that are t-
shattered by F∗. First, we build a balanced Gray code (Flahive and Bose, 2007) with n
bits, which we arrange into the rows of M . Divide the unit interval into 2n segments and
define, for each j ∈ [2n],

xj :=
j

2n
.

Define the functions f1, . . . , , fblog2(v/t)c as follows:

fi(xj) =

{
t, M(j, i) = 1

−t, M(j, i) = 0
.

We claim that each fi ∈ F . Since M is balanced Gray code,

V (M) =
2n

n
≤ v

t log2(v/t)
≤ v

2t
.

Hence, for each fi, we have

V (fi) ≤ 2tV (M, i) ≤ 2t
v

2t
= .v

Next, we show that this set is shattered by F∗. Fix the trivial offest r1 = ... = rn = 0 For
every b ∈ {0, 1}n there is a j ∈ [2n] s.t. b = bi. By construction, for every i ∈ [n], we have

xj(fi) = fi(xj) =

{
t ≥ ri + t, M(j, i) = 1

−t ≤ ri − t, M(j, i) = 0
.
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Appendix B. Sample compression for nearest-neighbor regression

Let (X , ρ) be a metric space and define, for L ≥ 0, the collection FL of all f : X → [0, 1]
satisfying

|f(x)− f(x′)| ≤ Lρ(x, x′);

these are the L-Lipschitz functions. Gottlieb et al. (2017b) showed that

dFL
(t) = O

(
dLdiam(X)/teddim(X )

)
,

where diam(X ) is the diameter and ddim is the doubling dimension, defined therein. The
proof is achieved via a packing argument, which also shows that the estimate is tight.
Below we show that d∗FL

(t) = Θ(log (M(X , 2t/L))), where M(X , ·) is the packing number

of (X , ρ). Applying this to the efficient nearest-neighbor regressor3 of Gottlieb et al. (2017a),
we obtain

Corollary 17 Let (X , ρ) be a metric space with hypothesis class FL, and let L be a consis-
tent, proper learner for FL with target generalization error ε. Then L admits a compression
scheme of size O(k log k), where

k = O

(
D(ε) log

1

ε
· logD(ε) log

(
1

ε
logD(ε)

))
and

D(ε) =

⌈
Ldiam(X )

ε

⌉ddim(X )

.

We now prove our estimate on the dual fat-shattering dimension of F :

Lemma 18 For F = FL, d∗F (t) ≤ log2 (M(X , 2t/L)).

Proof Let {f1, . . . , fn} ⊂ FL a set that is t-shattered by F∗L. For b 6= b′ ∈ {0, 1}n, let i
be the first index for which bi 6= b′i, say, bi = 1 6= 0 = b′. By shattering, there are points
xb, xb′ ∈ F∗L such that xb(fi) ≥ ri + t and xb′(fi) ≤ ri − t, whence

fi(xb)− fi(xb′) ≥ 2t

and
Lρ(xb, xb′) ≥ fi(xb)− fi(xb′) ≥ 2t.

It follows that for b 6= b′ ∈ {0, 1}n, we have ρ(xb, xb′) ≥ 2t/L. Denoting by M(X , ε) the
ε-packing number of X , we get

2n = |{xb | b ∈ {0, 1}n}| ≤ M(X , 2t/L).

3. In fact, the technical machinery in Gottlieb et al. (2017a) was aimed at achieving approximate Lipschitz-
extension, so as to gain a considerable runtime speedup. An exact Lipschitz extension is much simpler
to achieve. It is more computationally costly but still polynomial-time in sample size.
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Lemma 19 For F = FL and t < L, d∗F (t) ≥ log2 (M(X , 2t/L)).

Proof Let S = {x1, ..., xm} ⊆ X be a maximal 2t/L-packing of X . Suppose that c : S →
{0, 1}blog2mc is one-to-one. Define the set of function F = {f1, . . . , fblog2(m)c} ⊆ FL by

fi(xj) =

{
t, c(xj)i = 1

−t, c(xj)i = 0
.

For every f ∈ F and every two points x, x′ ∈ S it holds that

|f(x)− f(x′)| ≤ 2t = L · 2t/L ≤ Lρ(x, x′).

This set of functions is t-shattered by S and is of size blog2mc = blog2 (M(X , 2t/L))c.
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