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Abstract

We establish a tight characterization of the worst-case rates for the excess risk of agnostic
learning with sample compression schemes and for uniform convergence for agnostic sample
compression schemes. In particular, we find that the optimal rates of convergence for size-

k sample compression schemes are of the form
√

k log(n/k)
n , which contrasts with agnostic

learning with classes of VC dimension k, where the optimal rates are of the form
√

k
n .
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1. Introduction

Compression-based arguments provide some of the simplest and tightest generalization
bounds in the literature. These are known as Occam learning in the most general set-
ting (Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989), and the special case of sample
compression (Littlestone and Warmuth, 1986; Devroye, Györfi, and Lugosi, 1996; Graepel,
Herbrich, and Shawe-Taylor, 2005; Floyd and Warmuth, 1995) has been receiving a fair
amount of recent attention (Moran and Yehudayoff, 2016; David, Moran, and Yehudayoff,
2016; Zhivotovskiy, 2017; Hanneke, Kontorovich, and Sadigurschi, 2018).

As the present paper deals with lower bounds, we stress up-front that these are statisti-
cal lower bounds (rather than, say, computational (Gottlieb, Kontorovich, and Nisnevitch,
2014) or communication-based (Kane, Livni, Moran, and Yehudayoff, 2017)). In the real-
izable case, Littlestone and Warmuth (1986); Floyd and Warmuth (1995) showed that a
k-compression scheme on a sample of size n ≥ ek achieves an expected generalization error
bound of order

k log(n/k)

n
. (1)

As the compression size k is a rough analogue of the VC-dimension, and the factor log(n/k) is
known to be removable from the analogous realizable-case generalization bound for classes
of VC dimension k (Haussler, Littlestone, and Warmuth, 1994; Hanneke, 2016), one is
immediately led to inquire into the necessity of the log(n/k) factor in the bound for sample
compression schemes. If it were found not to be necessary, it would immediately imply
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improved generalization guarantees for many learning algorithms. Floyd and Warmuth
(1995) take up this question in a brief but insightful remark, where they establish that the
log(n/k) factor in (1) is actually tight, in that there exist compression schemes for which
an Ω((k/n) log(n/k)) lower bound also holds.

Turning to the agnostic case, the corresponding compression result from Graepel, Her-
brich, and Shawe-Taylor (2005) implies an upper bound on the expected excess general-
ization error of a certain k-compression scheme on a sample of size n ≥ ek by a bound of
order √

k log(n/k)

n
. (2)

Here again, by the analogy to bounds based on the VC dimension, we are led to wonder
whether the factor log(n/k) is necessary, since it is known to be removable in the analogous
excess risk guarantees for agnostic learning with classes of VC dimension k (Anthony and
Bartlett, 1999, Theorem 4.10). Though it is a simpler matter to give an Ω(

√
k/n) lower

bound, it proves significantly more challenging to determine whether the factor of log(n/k)
is required for this general bound. Again, since the above compression-based generalization
bound is a widely-used technique for establishing generalization guarantees for certain types
of learning algorithms, if one could show that the factor log(n/k) is superfluous, it would
immediately have a wide range of substantial implications by improving the known gener-
alization guarantees for many learning algorithms in the literature. However, as our main
result in this work (Section 2), we prove that this log(n/k) factor in (2) generally cannot
be removed. Specifically, we argue that, for a certain family of reconstruction functions,
regardless of the choice of compression function, a lower bound of the form (2) holds.

We stress that this fact is not at all obvious from the necessity arguments offered by
Floyd and Warmuth (1995) for the realizable case. The argument used there is essentially a
reduction to the known fact that, in the realizable case with certain classes of VC dimension
k, there are empirical risk minimization (ERM) learning rules whose expected error rate
can be as high as Ω((k/n) log(n/k)). They establish their lower bound for realizable-case
compression schemes of size k by arguing that, in a certain scenario of this type, there is
a compression scheme that emulates one of these high-error ERM learners. In contrast,
in the case of agnostic learning, it is known that all ERM learners guarantee expected
excess error O(

√
k/n) (Anthony and Bartlett, 1999, Theorem 4.10). Thus, the approach of

Floyd and Warmuth (1995) will not suffice for establishing a lower bound proportional to√
(k/n) log(n/k) for agnostic learning with compression schemes. Indeed, the construction

we arrive at in our proof below is necessarily significantly more-involved.
In addition to this result for the basic order-invariant compression schemes, we also prove

an analogous lower bound for order-dependent compression schemes (Section 3), where the
factor becomes log(n), which again is tight.

2. Order-Independent Compression Schemes

Let Z = X × Y, where X is any nonempty set and Y = {0, 1}, and suppose X is equipped
with a σ-algebra defining the measurable sets. An agnostic sample compression scheme
is specified by a size k ∈ N and a reconstruction function ρ, which maps any (multi)set
{z1, . . . , zk′} ⊆ Z with 0 ≤ k′ ≤ k to a measurable function h : X → Y. For any n ∈ N and
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any sequence z1, . . . , zn, define

Hk,ρ(z1, . . . , zn) = {ρ({zi1 , . . . , zik′}) : k′ ≤ k, 1 ≤ i1 < · · · < ik′ ≤ n}.

For any probability measure P on Z and any n ∈ N, let Z[n] = {(X1, Y1), . . . , (Xn, Yn)}
be independent P -distributed random variables, and for any classifier h : X → Y, define
R(h;P ) = P ({(x, y) : h(x) 6= y}) the error rate of h, and R̂(h;Z[n]) = 1

n

∑n
i=1 I[h(Xi) 6= Yi]

the empirical error rate of h.
Now there are essentially two types of results for agnostic compression schemes in the

literature: namely, uniform convergence rates and agnostic learning excess risk guarantees.
We begin with the first of these. For any fixed agnostic sample compression scheme (k, ρ),
denote

Euc(n, k, ρ, P ) = E sup
h∈Hk,ρ(Z[n])

|R̂(h;Z[n])−R(h;P )|.

Then, for any n, k ∈ N, define

Euc(n, k) = sup
P,ρ
Euc(n, k, ρ, P ),

where P ranges over all probability measures on Z, and ρ ranges over all reconstruction
functions (for the given size k). For results on uniform convergence for agnostic compression
schemes, this is the object of primary interest to this work.

It is known (essentially from the arguments of Graepel, Herbrich, and Shawe-Taylor
(2005, Theorem 2)) that for any n, k ∈ N with n ≥ ek,

Euc(n, k) .

√
k log(n/k)

n
.

This upper bound is similar in form to the original bound of Vapnik and Chervonenkis
(1971) for uniform convergence rates for VC classes of VC dimension k. However, that

bound was later refined1 to the form
√

k
n , removing the factor log(n/k). It is therefore

natural to wonder whether this same refinement might be achieved by size-k agnostic sample
compression schemes. To our knowledge, this question has not previously been addressed
in the literature.

The other type of results of interest for agnostic compression schemes are agnostic
learning excess risk guarantees. Specifically, a compression function κ is a mapping from
any sequence z1, . . . , zn in Z to an unordered sub(multi)set2 S ⊆ {z1, . . . , zn} of size at
most k. Then, denoting ĥn = ρ(κ(Z[n])), define

Eag(n, k, ρ, κ, P ) = E

[
R(ĥn;P )− min

h∈Hk,ρ(Z[n])
R(h;P )

]
1. A detailed account of the intermediate steps leading to this seminal result is presented in Anthony

and Bartlett (1999); significant milestones include Pollard (1982); Koltchinskii (1981); Talagrand (1994);
Haussler (1995).

2. An element in S may repeat up to as many times as it occurs in the sequence z1, . . . , zn, so that S effec-
tively corresponds to picking a set of up to k distinct indices in {1, . . . , n} to include the corresponding
zi points.
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and then define
Eag(n, k) = sup

ρ
inf
κ

sup
P
Eag(n, k, ρ, κ, P ),

where again P ranges over all probability measures on Z and ρ ranges over all reconstruction
functions (for the given size k), and where κ ranges over all compression functions (for the
given size k).

By a standard argument, if we specify κ so as to always minimize the empirical error rate
R̂(ρ(κ(Z[n]))), then the excess error rate can be bounded by twice the uniform convergence
bound, which immediately implies

Eag(n, k) ≤ 2Euc(n, k). (3)

An immediate implication from above is then that any n, k with n ≥ ek has

Eag(n, k) .

√
k log(n/k)

n
.

Here again, this bound is of the same form originally proven by Vapnik and Chervonenkis
(1971) for empirical risk minimization in classes of VC dimension k, which was later refined
to a sharp bound of order

√
k/n (Anthony and Bartlett, 1999, Theorem 4.10). As such, it

is again natural to ask whether the log(n/k) factor in the above bound for agnostic sample
compression can be reduced to a constant, or is in fact necessary. Our main contribution
in this work is a construction showing that this log factor is indeed necessary, as stated in
the following results. In all of the results below, c represents a numerical constant, whose
value must be set sufficiently large (as discussed in the proofs) for the results to hold.

Theorem 1 For any n, k ∈ N with |X | ≥ n ≥ ck,

Eag(n, k) &

√
k log(n/k)

n
.

By the relation (3) discussed above, between uniform convergence and agnostic learn-
ing by empirical risk minimization over Hk,ρ(Z[n]), this also has the following immediate
implication.

Theorem 2 For any n, k ∈ N with |X | ≥ n ≥ ck,

Euc(n, k) &

√
k log(n/k)

n
.

Together with the known upper bounds mentioned above, this provides a tight charac-
terization of the worst-case rate of uniform convergence for agnostic sample compression
schemes.

Corollary 3 For any n, k ∈ N with |X | ≥ n ≥ ck,

Eag(n, k) �
√
k log(n/k)

n

and

Euc(n, k) �
√
k log(n/k)

n
.
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We now present the proof of Theorem 1.
Proof [Proof of Theorem 1] Fix any n, k ∈ N with |X | ≥ n ≥ ck for a sufficiently large
numerical constant c ≥ 4 (discussed below), denote m = 2blog2(n/k)c, and let x0, . . . , xkm−1
denote any km distinct elements of X . For simplicity, suppose m/ log2(m) ∈ N (the ar-
gument easily extends to the general case by introducing floor functions, with only the
numerical constants changing in the final result). The essential strategy behind our con-
struction is to create an embedded instance of a construction for proving the lower bound
for agnostic learning in VC classes, where here the VC dimension of the embedded scenario
will be k log2(m). The construction of this embedded scenario is our starting point. From
there we also need to argue that there is a function contained in Hk,ρ(Z[n]) with risk not too
much larger than the best classifier in the embedded VC class, which allows us to extend
the lower bound argument for the embedded VC class to compression schemes. For any
0 ≤ i ≤ m− 1, let bj(i) denote the (j + 1)th bit of i in the binary representation of i: that

is, i =
∑log2(m)−1

j=0 bj(i)2
j , with b0(i), . . . , blog2(m)−1(i) ∈ {0, 1}.

We construct the reconstruction function based on k “blocks”, each with m/ log2(m)
“sub-blocks”. Specifically, for each t ∈ {1, . . . , k}, define a block Bt = {(t−1)m, . . . , tm−1},
and for each s ∈ {1, . . . ,m/ log2(m)}, define a sub-block

Bts = {(t− 1)m+ (s− 1) log2(m), . . . , (t− 1)m+ s log2(m)− 1}.

Then for any i ∈ Bt and t ∈ {1, . . . , k}, define ht,i : X → Y as any function satisfying the
property that, for j = (t− 1)m+ (s− 1) log2(m) + r ∈ Bts (for any s ∈ {1, . . . ,m/ log2(m)}
and r ∈ {0, . . . , log2(m)− 1}),

ht,i(xj) = br(i− (t− 1)m).

Thus, the subsequence of xj points corresponding to the indices j within each sub-block Bts
have ht,i(xj) values corresponding to the bits of the integer i − (t − 1)m, and this repeats
identically for every sub-block Bts in the block Bt.

Now we construct a reconstruction function ρ that outputs functions which correspond
to some such ht,i function within each block Bt, but potentially using a different bit pattern
i − (t − 1)m for each t. Formally, for any i1, . . . , ik ∈ N ∪ {0} with it ∈ Bt (for each
t ∈ {1, . . . , k}), and any y1, . . . , yk ∈ Y, define ρ({(xi1 , y1), . . . , (xik , yk)}) = h̃i1,...,ik , where
h̃i1,...,ik : X → Y is any function satisfying the property that each t ∈ {1, . . . , k} and j ∈ {(t−
1)m, . . . , tm−1} has h̃i1,...,ik(xj) = ht,it(xj): that is, the points xit in the compression set are
interpreted by the compression scheme as encoding the desired label sequence for sub-blocks
Bts in the bits of it − (t− 1)m. For our purposes, h̃i1,...,ik(x) may be defined arbitrarily for
x ∈ X \ {x0, . . . , xkm−1}. Note that ρ({(xi1 , y1), . . . , (xik , yk)}) is invariant to the y1, . . . , yk
values, so for brevity we will drop the yi arguments and simply write ρ({xi1 , . . . , xik}) (this
is often referred to as an unlabeled compression scheme in the literature). For completeness,
ρ(S) should also be defined for sets S ⊆ X of size at most k that do not have exactly one
element xi with i ∈ Bt for every t; for our purposes, let us suppose that in these cases, for
every t with S ∩ {xi : i ∈ Bt} 6= ∅, let it = min{i ∈ Bt : xi ∈ S}, and for every t with
S ∩ {xi : i ∈ Bt} = ∅, let it = (t − 1)m; then define ρ(S) = h̃i1,...,ik . In this way, ρ(S) is
defined for all S ⊆ X with |S| ≤ k.

Now define a family of distributions P (σ), σ = {σt,r}, with σt,r ∈ {−1, 1} for t ∈
{1, . . . , k} and r ∈ {0, . . . , log2(m) − 1}, as follows. Every P (σ) has marginal PX on X
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uniform on x0, . . . , xkm−1, and for each j = (t − 1)m + (s − 1) log2(m) + r ∈ Bts (for
t ∈ {1, . . . , k}, s ∈ {1, . . . ,m/ log2(m)}, and r ∈ {0, . . . , log2(m)− 1}) set P (σ)(Y = 1|X =
xj) = 1

2 + ε
2σt,r, where

ε =

√
k log2(m)

n
.

Now let us suppose σ is chosen randomly, with σt,r independent Uniform({−1, 1}). Then
(since max ≥ average) note that choosing P = P (σ) now results in

Eag(n, k) ≥ E
[
inf
κ
Eag(n, k, ρ, κ, P (σ))

]
,

so that it suffices to study the expectation on the right hand side.
As mentioned, the purpose of this construction is to create an embedded instance of a

scenario that witnesses the lower bound for agnostic learning in VC classes, where the VC
dimension of the embedded scenario here is k log2(m). Specifically, in our construction, for
any t ∈ {1, . . . , k} and r ∈ {0, . . . , log2(m)− 1}, denoting by

Ct,r = {(t− 1)m+ (s− 1) log2(m) + r : s ∈ {1, . . . ,m/ log2(m)}},

the locations {xj : j ∈ Ct,r} together essentially represent a single location in the embedded
problem: that is, their ht,i(xj) values are bound together, as are their P (Y = 1|X = xj) val-
ues. However, this itself is not sufficient to supply a lower bound, since the constructed sce-
nario exists only in the complete space of possible reconstructionsH∗k,ρ = {ρ({xi1 , . . . , xik}) :
i1, . . . , ik ∈ {0, . . . , km − 1}}, and it is entirely possible that minh∈Hk,ρ(Z[n])R(h;P ) >

minh∈H∗k,ρ R(h;P ): that is, the smallest error rate achievable in Hk,ρ(Z[n]) can conceivably
be significantly larger than the smallest error rate achievable in the embedded VC class, so
that compression schemes in this scenario do not automatically inherit the lower bounds
for the constructed VC class. To account for this, we will study a decomposition of the
construction into k subproblems, corresponding to the k blocks Bt in the construction, and
we will argue that within these subproblems there remains in Hk,ρ(Z[n]) a function with
optimal predictions on most of the points, and then stitch these functions together to argue
that there do exist functions in Hk,ρ(Z[n]) having near-optimal error rates relative to the
best in H∗k,ρ.

Specifically, fix any t ∈ {1, . . . , k} and let P
(σ)
t denote the conditional distribution of

(X,Y ) ∼ P (σ) given σ and the event that X ∈ {xj : j ∈ Bt}. Also denote H∗t = {ht,i : i ∈
Bt}, i∗t = argmini∈Bt R(ht,i;P

(σ)
t ), h∗t = ht,i∗t , and

Ht(Z[n]) = {ht,i : i ∈ Bt, xi ∈ {x(t−1)m, X1, . . . , Xn}}.

These correspond to the classifications of block t realizable by classifiers inHk,ρ(Z[n]) (where
the addition of the x(t−1)m point to the data set is due to our specification of ρ(S) for sets
S that contain no elements xi with i ∈ Bt, so that classifying block t according to ht,(t−1)m

is always possible). It is also worth noting that i∗t satisfies br(i
∗
t − (t − 1)m) =

σt,r+1
2 for

each r ∈ {0, . . . , log2(m)− 1}, and that this implies h∗t is in fact a Bayes optimal predictor

under P
(σ)
t . There are now two components at this stage in the argument: first, that any
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compression function κ results in ĥ = ρ(κ(Z[n])) with E[R(ĥ;P
(σ)
t )−R(h∗t ;P

(σ)
t )] ≥ ε/(8e4),

and second, that E[minh∈Ht(Z[n])R(h;P
(σ)
t )−R(h∗t ;P

(σ)
t )] ≤ ε/(16e4).

For the first part, note that for any r ∈ {0, . . . , log2(m)− 1}, for any j ∈ Ct,r, h∗t (xj) =
σt,r+1

2 . Furthermore, for any compression function κ, note that any ĥ that ρ(κ(Z[n])) is

capable of producing has ĥ(xj) = ĥ(xj′) for every j, j′ ∈ Ct,r. In particular, if we let ît ∈ Bt
be the index with br (̂it − (t− 1)m) = ĥ(x(t−1)m+r) for every r ∈ {0, . . . , log2(m)− 1}, then

ĥ and ht,̂it agree on every element of {xj : j ∈ Bt}. This also implies

R(ĥ;P
(σ)
t )−R(h∗t ;P

(σ)
t ) = R(ht,̂it ;P

(σ)
t )−R(h∗t ;P

(σ)
t )

=
1

log2(m)

log2(m)−1∑
r=0

εI
[
br (̂it − (t− 1)m) 6= σt,r + 1

2

]
.

Therefore, denoting by nt,r = |{i ≤ n : Xi ∈ {xj : j ∈ Ct,r}}|, we have

E[R(ĥ;P
(σ)
t )−R(h∗t ;P

(σ)
t )] =

ε

log2(m)

log2(m)−1∑
r=0

E

[
P

(
br (̂it − (t− 1)m) 6= σt,r + 1

2

∣∣∣∣nt,r)] .
For any given r ∈ {0, . . . , log2(m) − 1}, enumerate the nt,r random variables (Xi, Yi) with
Xi ∈ {xj : j ∈ Ct,r} as (Xi(r,1), Yi(r,1)), . . . , (Xi(r,nt,r), Yi(r,nt,r)), and note that given nt,r, the
values (Yi(r,1), . . . , Yi(r,nt,r)) are a sufficient statistic for σt,r (see Definition 2.4 of Schervish,
1995), and therefore (see Theorem 3.18 of Schervish, 1995) there exists a (randomized)
decision rule f̂t,r(Yi(r,1), . . . , Yi(r,nt,r)) depending only on these variables and independent
random bits such that

P

(
br (̂it − (t− 1)m) 6= σt,r + 1

2

∣∣∣∣nt,r) = P

(
f̂t,r(Yi(r,1), . . . , Yi(r,nt,r)) 6=

σt,r + 1

2

∣∣∣∣nt,r) .
Furthermore, by Lemma 5.1 of Anthony and Bartlett (1999)3, we have

P

(
f̂t,r(Yi(r,1), . . . , Yi(r,nt,r)) 6=

σt,r + 1

2

∣∣∣∣nt,r) >
1

8e
exp
{
−(8/3)nt,rε

2
}
.

Altogether, and combined with Jensen’s inequality, we have that

E[R(ĥ;P
(σ)
t )−R(h∗t ;P

(σ)
t )]

≥ ε

8e log2(m)

log2(m)−1∑
r=0

E
[
exp
{
−(8/3)nt,rε

2
}]
≥ ε

8e log2(m)

log2(m)−1∑
r=0

exp
{
−(8/3)E[nt,r]ε

2
}

=
ε

8e log2(m)

log2(m)−1∑
r=0

exp

{
−(8/3)

n

k log2(m)
ε2
}
≥ ε

8e log2(m)

log2(m)−1∑
r=0

e−(8/3) ≥ ε

8e4
.

3. The lower bound in (Anthony and Bartlett, 1999, Lemma 5.1) relied on Slud’s lemma; the analysis has
since been tightened to yield asymptotically optimal lower bounds (Kontorovich and Pinelis, 2016).
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Now for the second part, for any x ∈ {xi : i ∈ {0, . . . , km−1}}, denote by I(x) the index i
such that x = xi. Since i∗t satisfies br(i

∗
t−(t−1)m) =

σt,r+1
2 for each r ∈ {0, . . . , log2(m)−1},

we have that, for any i ∈ Bt,

R(ht,i;P
(σ)
t )−R(h∗t ;P

(σ)
t ) =

ε

log2(m)

log2(m)−1∑
j=0

I[bj(i− (t− 1)m) 6= bj(i
∗
t − (t− 1)m)],

which also means that an i for which ht,i has minimal R(ht,i;P
(σ)
t ) among all ht,i′ ∈ Ht(Z[n])

can equivalently be defined as an i with minimal
∑log2(m)−1

j=0 I[bj(i− (t−1)m) 6= bj(i
∗
t − (t−

1)m)] among all i′ ∈ Bt ∩ {I(X1), . . . , I(Xn), (t− 1)m}. For any i ∈ Bt, denote

∆t(i) =

log2(m)−1∑
j=0

I[bj(i− (t− 1)m) 6= bj(i
∗
t − (t− 1)m)].

Thus, it suffices to establish the stated upper bound for the quantity

ε

log2(m)
E

[
min

i∈Bt∩{I(X1),...,I(Xn),(t−1)m}
∆t(i)

]
.

Now consider a random variable X ∼ PX(·|{xi : i ∈ Bt): that is, X has distribution the

same as the marginal of P
(σ)
t on X . Then note that the conditional distribution of ∆t(I(X))

given σ is Binomial(log2(m), 12). Let q = 16e4, and suppose the numerical constant c is
sufficiently large so that q ≤ (1/2) log2(m). Then we have

P

(
∆t(I(X)) ≤ 1

2q
log2(m)

∣∣∣∣σ) =

b(1/2q) log2(m)c∑
`=0

(
log2(m)

`

)
1

m

≥ 1

m

(
log2(m)

b(1/2q) log2(m)c

)b(1/2q) log2(m)c
≥ 1

m
(2q)(1/2q) log2(m)−1 = (2q)−1m(1/2q) log2(2q)−1.

Thus, by independence of the samples X1, . . . , Xn, denoting nt = |{i ≤ n : Xi ∈ {xj : j ∈
Bt}}|, we have

P

(
min

i∈Bt∩{I(X1),...,I(Xn),(t−1)m}
∆t(i) >

1

2q
log2(m)

∣∣∣∣σ, nt)
≤ P

(
∀i ∈ Bt ∩ {I(X1), . . . , I(Xn)},∆t(i) >

1

2q
log2(m)

∣∣∣∣σ, nt)
= P

(
∆t(I(X)) >

1

2q
log2(m)

∣∣∣∣σ)nt
≤
(

1− (2q)−1m(1/2q) log2(2q)−1
)nt
≤ exp

{
−(2q)−1m(1/2q) log2(2q)−1nt

}
.

Altogether, by the law of total expectation, and using the fact that R(h;P
(σ)
t ) ≤ 1, we have

established that

E

[
min

h∈Ht(Z[n])
R(h;P

(σ)
t )−R(h∗t ;P

(σ)
t )

]
≤ ε

2q
+ E

[
exp
{
−(2q)−1m(1/2q) log2(2q)−1nt

}]
.

8



Lower Bound for Agnostic Sample Compression

Since nt is a Binomial(n, 1/k) random variable, a Chernoff bound implies that the proba-
bility nt < (1/2)n/k is at most e−(n/k)/8. Therefore,

E
[
exp
{
−(2q)−1m(1/2q) log2(2q)−1nt

}]
≤ exp

{
−(2q)−1m(1/2q) log2(2q)−1(n/k)/2

}
+ e−(n/k)/8.

The right hand side shrinks strictly faster than the above specification of ε as a function
of n/k, and therefore, for a sufficiently large choice of the numerical constant c, the right
hand side above is smaller than ε

32e4
. Therefore, we conclude that

E

[
min

h∈Ht(Z[n])
R(h;P

(σ)
t )−R(h∗t ;P

(σ)
t )

]
≤ ε

16e4
,

as claimed.
Together, these two components imply that

E

[
R(ĥ;P

(σ)
t )− min

h∈Ht(Z[n])
R(h;P

(σ)
t )

]

= E
[
R(ĥ;P

(σ)
t )−R(h∗t ;P

(σ)
t )

]
−E

[
min

h∈Ht(Z[n])
R(h;P

(σ)
t )−R(h∗t ;P

(σ)
t )

]
≥ ε

16e4
.

Finally, it is time to combine these results for the individual Bt blocks into a global

statement about P (σ). In particular, note that any h has R(h;P (σ)) = 1
k

∑k
t=1R(h;P

(σ)
t ).

Also note that any h that ρ is capable of producing from arguments that are subsets of
{X1, . . . , Xn} can be represented as h = h̃i1,...,ik for some i1, . . . , ik where every t ∈ {1, . . . , k}
has it ∈ Bt and xit ∈ {X1, . . . , Xn, x(t−1)m} (where the addition of the x(t−1)m covers the
case that the set does not include any xi with i ∈ Bt, as we defined that case above).
Furthermore, every function h̃i1,...,ik with it values satisfying these conditions can be realized
by ρ using an argument S that is a subset of {X1, . . . , Xn} of size at most k: namely, the
set {xit : t ∈ {1, . . . , k}, it 6= (t− 1)m} ⊆ {X1, . . . , Xn}. Therefore,

min
h∈Hk,ρ(Z[n])

R(h;P (σ)) = min
(i1,...,ik)∈B1×···×Bk:

{xi1 ,...,xik}⊆{X1,...,Xn}∪{x(t−1)m:t≤k}

R(h̃i1,...,ik ;P (σ))

= min
(i1,...,ik)∈B1×···×Bk:

{xi1 ,...,xik}⊆{X1,...,Xn}∪{x(t−1)m:t≤k}

1

k

k∑
t=1

R(ht,it ;P
(σ)
t )

=
1

k

k∑
t=1

min
it∈Bt:

xit∈{X1,...,Xn,x(t−1)m}

R(ht,it ;P
(σ)
t ) =

1

k

k∑
t=1

min
h∈Ht(Z[n])

R(h;P
(σ)
t ).

Thus, for any compression function κ, denoting ĥ = ρ(κ(Z[n])),

E

[
R(ĥ;P (σ))− min

h∈Hk,ρ(Z[n])
R(h;P (σ))

]

≥ 1

k

k∑
t=1

E

[
R(ĥ;P

(σ)
t )− min

h∈Ht(Z[n])
R(h;P

(σ)
t )

]
≥ 1

16e4
ε &

√
k log(n/k)

n
.

9



Lower Bound for Agnostic Sample Compression

3. Order-Dependent Compression Schemes

The above construction shows that the well-known

√
k log(n/k)

n upper bound for agnostic
compression schemes is sometimes tight. Note that, in the definition of agnostic compression
schemes, we required that the reconstruction function ρ take as input a (multi)set. This
type of compression scheme is often referred to as being permutation invariant, since the
compression set argument is unordered (or equivalently ρ does not depend on the order of
elements in its argument).

We can also show a related result for the case of order-dependent compression schemes.
An order-dependent agnostic sample compression scheme is specified by a size k ∈ N and an
order-dependent reconstruction function ρ, which maps any ordered sequence (z1, . . . , zk′) ∈
Zk′ with 0 ≤ k′ ≤ k to a measurable function h : X → Y. For any n ∈ N and any sequence
z1, . . . , zn, define

Hk,ρ(z1, . . . , zn) = {ρ((zi1 , . . . , zik′ )) : k′ ≤ k, i1, . . . , ik′ ∈ {1, . . . , n}}.

Now for any probability measure P on Z and any n ∈ N, continuing the notation from
above, for any fixed order-dependent agnostic sample compression scheme (k, ρ), as above
denote

Eouc(n, k, ρ, P ) = E sup
h∈Hk,ρ(Z1,...,Zn)

|R̂(h;Z[n])−R(h;P )|,

and for any n, k ∈ N, define

Eouc(n, k) = sup
P,ρ
Eouc(n, k, ρ, P ),

where P ranges over all probability measures on Z, and ρ ranges over all order-dependent
reconstruction functions (for the given size k).

It is known (Graepel, Herbrich, and Shawe-Taylor, 2005) that for any n, k ∈ N,

Eouc(n, k) .

√
k log(n)

n
.

In comparison with the above upper bound for permutation-invariant compression schemes,
this bound has a factor log(n) in place of log(n/k).

Similarly, we can also define analogous quantities for agnostic learning excess risk guar-
antees. Specifically, in this context, an ordered compression function κ is a mapping from
any sequence z1, . . . , zn in Z to an ordered sequence S = (zi1 , . . . , zik′ ) for some k′ ≤ k and

i1, . . . , ik′ ∈ {1, . . . , n}. Then, denoting ĥn = ρ(κ(Z[n])), define

Eoag(n, k, ρ, κ, P ) = E

[
R(ĥn;P )− min

h∈Hk,ρ(Z[n])
R(h;P )

]
and then define

Eoag(n, k) = sup
ρ

inf
κ

sup
P
Eag(n, k, ρ, κ, P ),

where again P ranges over all probability measures on Z and ρ ranges over all order-
dependent reconstruction functions (for the given size k), and where κ ranges over all
ordered compression functions (for the given size k).

10



Lower Bound for Agnostic Sample Compression

By the same standard argument involving empirical risk minimization, it remains true
in this context that

Eoag(n, k) ≤ 2Eouc(n, k) (4)

and an immediate implication is then that any n, k has

Eoag(n, k) .

√
k log(n)

n
.

As above, it is interesting to ask whether the log(n) factor is required is necessary. Anal-
ogously to the order-invariant compression schemes above, we find that it is indeed neces-
sary, as stated in the following theorem. Note that this lower bound for order-dependent
compression schemes is slightly larger than that established above for order-independent
compression schemes.

Theorem 4 For any n, k ∈ N with |X | ≥ n ≥ ck log(n),

Eoag(n, k) &

√
k log(n)

n
.

Together with (4), this has the following immediate implication.

Theorem 5 For any n, k ∈ N with |X | ≥ n ≥ ck log(n),

Eouc(n, k) &

√
k log(n)

n
.

As above, combining this with the known upper bound, this provides a tight character-
ization of the worst-case rate of uniform convergence for order-dependent agnostic sample
compression schemes.

Corollary 6 For any n, k ∈ N with |X | ≥ n ≥ ck log(n),

Eoag(n, k) �
√
k log(n)

n

and

Eouc(n, k) �
√
k log(n)

n
.

We now present the proof of Theorem 4.
Proof [Proof of Theorem 4] The construction used in this proof is analogous to that from
the proof of Theorem 1, and in fact is slightly simpler. Fix any n, k ∈ N with |X | ≥ n ≥
ck log2(n) for a sufficiently large numerical constant c ≥ 4 (discussed below). The essential
strategy here is the same as in the permutation-invariant compression schemes, in that we
are constructing an embedded agnostic learning problem for a constructed VC class, but
in this case the VC dimension will be larger: k log2(m), with m ≈ n. Specifically, let m =
2blog2(n)c, and let x0, . . . , xm−1 denote any m distinct elements of X . For simplicity, suppose

11
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m
k log2(m) ∈ N (as before, the argument easily extends to the general case by introducing floor

functions, and only the numerical constants change).
We break the space up into blocks as before, but now for each t ∈ {1, . . . , k} we let

Bt =
{

(t− 1)mk , . . . , t
m
k − 1

}
, and for each s ∈ {1, . . . ,m/(k log2(m))} we define a sub-

block
Bts =

{
(t− 1)

m

k
+ (s− 1) log2(m), . . . , (t− 1)

m

k
+ s log2(m)− 1

}
.

Thus, as before, a sub-block consists of log2(m) indices, but now a block only contains m/k
indices, and hence m

k log2(m) sub-blocks. Now for t ∈ {1, . . . , k} and i ∈ {0, . . . ,m − 1},
define a classifier ht,i : X → Y with the property that, ∀s ∈ {1, . . . ,m/(k log2(m))}, ∀r ∈
{0, . . . , log2(m)− 1}, for j = (t− 1)mk + (s− 1) log2(m) + r,

ht,i(xj) = br(i),

where as above, br(i) is the (r + 1)th bit in the binary representation of i: i.e., i =∑log2(m)−1
`=0 b`(i)2

`, with b0(i), . . . , blog2(m)−1(i) ∈ {0, 1}. Thus, the index i encodes the
prediction values for the points {x` : ` ∈ Bts} as the bits of i; this is slightly different from
the ht,i functions we defined above, since i is already in {0, . . . ,m− 1} here, so there is no
need to subtract anything from it.

Now we construct a reconstruction function ρ that outputs functions which again cor-
respond to some such ht,i function within each block Bt, and which potentially uses a
different bit pattern i for each t. Formally, for any i1, . . . , ik ∈ {0, . . . ,m − 1} and any
y1, . . . , yk ∈ Y, define ρ(((xi1 , y1), . . . , (xik , yk))) = h̃i1,...,ik , where here h̃i1,...,ik : X → Y is
any function satisfying the property that each t ∈ {1, . . . , k} and j ∈ {(t−1)m, . . . , tm−1}
has h̃i1,...,ik(xj) = ht,it(xj): that is, the points xit in the compression set are interpreted
by the compression scheme as encoding the desired label sequence for sub-blocks Bts in
the bits of it. Note that unlike the order-independent compression scheme construction,
we do not require it to be in block Bt. Instead, we are able to distinguish which it
to use to specify the ht,it sub-predictor for block Bt simply using the order of the se-
quence ((xi1 , y1), . . . , (xik , yk)). For our purposes, h̃i1,...,ik(x) may be defined arbitrarily for
x ∈ X \{x0, . . . , xm−1}. Again, since ρ(((xi1 , y1), . . . , (xik , yk))) is invariant to the y1, . . . , yk
values, for brevity we will drop the yi arguments and simply write ρ((xi1 , . . . , xik)). For
completeness, ρ(S) should also be defined for sequences S of length strictly less than k, or
sequences containing elements not in {x0, . . . , xm−1}; for our purposes, in these cases, if k′

of the elements in S are contained in {x0, . . . , xm−1}, then enumerate them as xi′1 , . . . , xi′k′
;

then if k′ < k, let i′k′+1 = · · · = i′k = 0, and finally define the output of ρ(S) as h̃i′1,...,i′k : that
is, it interprets the sub-sequence of points in S contained in {x0, . . . , xm−1} as the initial
indices it, and fills in the rest of the indices up to ik using 0’s.

Now define a family of distributions P (σ), σ = {σt,r}, with σt,r ∈ {−1, 1} for t ∈
{1, . . . , k} and r ∈ {0, . . . , log2(m) − 1}, as follows. Every P (σ) has marginal PX on X
uniform on x0, . . . , xm−1, and for each j = (t − 1)mk + (s − 1) log2(m) + r ∈ Bts (for

t ∈ {1, . . . , k}, s ∈ {1, . . . ,m/(k log2(m))}, and r ∈ {0, . . . , log2(m) − 1}) set P (σ)(Y =
1|X = xj) = 1

2 + ε
2σt,r, where

ε =

√
k log2(m)

n
.

12
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Now let us suppose σ is chosen randomly, with σt,r independent Uniform({−1, 1}). Then

Eoag(n, k) ≥ E
[
inf
κ
Eoag(n, k, ρ, κ, P (σ))

]
,

so that it suffices to lower-bound the expression on the right hand side.
For any t ∈ {1, . . . , k} and r ∈ {0, . . . , log2(m)− 1}, denote

Ct,r = {(t− 1)
m

k
+ (s− 1) log2(m) + r : s ∈ {1, . . . ,m/(k log2(m))}}.

Also define H∗k,ρ = {ρ((xi1 , . . . , xik)) : i1, . . . , ik ∈ {0, . . . ,m − 1}}, the space of all possi-
ble classifiers ρ can produce. As before, we are concerned both with constructing a lower
bound on the excess risk of ĥ = ρ(κ(Z[n])) relative to minh∈H∗k,ρ R(h;P (σ)) via a tradi-

tional VC lower bound argument, and also with upper-bounding minh∈Hk,ρ(Z[n])R(h;P (σ))−
minh∈H∗k,ρ R(h;P (σ)), so that the lower bound remains nearly valid for the excess risk of ĥ
relative to classifiers ρ can actually produce given sequences within this data set Z[n].

Fix any t ∈ {1, . . . , k} and let P
(σ)
t denote the conditional distribution of (X,Y ) ∼ P (σ)

given σ and the event that X ∈ {xj : j ∈ Bt}. Also denote H∗t = {ht,i : i ∈ {0, . . . ,m− 1}},
i∗t = argmini∈{0,...,m−1}R(ht,i;P

(σ)
t ) h∗t = ht,i∗t , and

Ht(Z[n]) = {ht,i : i ∈ {0, . . . ,m− 1}, xi ∈ {X1, . . . , Xn}}.

As before, we are now interested in proving that any compression function κ results in ĥ =

ρ(κ(Z[n])) with E[R(ĥ;P
(σ)
t )−R(h∗t ;P

(σ)
t )] ≥ ε/(8e4), and also E[minh∈Ht(Z[n])R(h;P

(σ)
t )−

R(h∗t ;P
(σ)
t )] ≤ ε/(16e4).

The first part proceeds nearly identically to the corresponding part in the proof of Theo-
rem 1, with a few changes needed to convert to this scenario. For any r ∈ {0, . . . , log2(m)−
1}, for any j ∈ Ct,r, note that h∗t (xj) =

σt,r+1
2 . Also, for any compression function κ,

any ĥ that ρ(κ(Z[n])) is capable of producing has ĥ(xj) = ĥ(xj′) for every j, j′ ∈ Ct,r. In

particular, if we let ît ∈ {0, . . . ,m− 1} be the index with br (̂it) = ĥ(x(t−1)(m/2)+r) for every

r ∈ {0, . . . , log2(m)− 1}, then ĥ and ht,̂it agree on every element of {xj : j ∈ Bt}. This also
implies

R(ĥ;P
(σ)
t )−R(h∗t ;P

(σ)
t ) = R(ht,̂it ;P

(σ)
t )−R(h∗t ;P

(σ)
t )

=
1

log2(m)

log2(m)−1∑
r=0

εI
[
br (̂it) 6=

σt,r + 1

2

]
.

Therefore, denoting by nt,r = |{i ≤ n : Xi ∈ {xj : j ∈ Ct,r}}|, we have

E[R(ĥ;P
(σ)
t )−R(h∗t ;P

(σ)
t )] =

ε

log2(m)

log2(m)−1∑
r=0

E

[
P

(
br (̂it) 6=

σt,r + 1

2

∣∣∣∣nt,r)] .
For any r ∈ {0, . . . , log2(m) − 1}, enumerate the nt,r random variables (Xi, Yi) with Xi ∈
{xj : j ∈ Ct,r} as (Xi(r,1), Yi(r,1)), . . . , (Xi(r,nt,r), Yi(r,nt,r)), and note that given nt,r, the

13
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values (Yi(r,1), . . . , Yi(r,nt,r)) are a sufficient statistic for σt,r (see Definition 2.4 of Schervish,
1995), and therefore (see Theorem 3.18 of Schervish, 1995) there exists a (randomized)
decision rule f̂t,r(Yi(r,1), . . . , Yi(r,nt,r)) depending only on these variables and independent
random bits such that

P

(
br (̂it) 6=

σt,r + 1

2

∣∣∣∣nt,r) = P

(
f̂t,r(Yi(r,1), . . . , Yi(r,nt,r)) 6=

σt,r + 1

2

∣∣∣∣nt,r) .
Furthermore, since Yi(r,1), . . . , Yi(r,nt,r) are conditionally iid Bernoulli(12 + ε

2σt,r) given nt,r
and σt,r, Lemma 5.1 of Anthony and Bartlett (1999) implies

P

(
f̂t,r(Yi(r,1), . . . , Yi(r,nt,r)) 6=

σt,r + 1

2

∣∣∣∣nt,r) >
1

8e
exp
{
−(8/3)nt,rε

2
}
.

Altogether, and combined with Jensen’s inequality, we have that

E[R(ĥ;P
(σ)
t )−R(h∗t ;P

(σ)
t )]

≥ ε

8e log2(m)

log2(m)−1∑
r=0

E
[
exp
{
−(8/3)nt,rε

2
}]
≥ ε

8e log2(m)

log2(m)−1∑
r=0

exp
{
−(8/3)E[nt,r]ε

2
}

=
ε

8e log2(m)

log2(m)−1∑
r=0

exp

{
−(8/3)

n

k log2(m)
ε2
}
≥ ε

8e log2(m)

log2(m)−1∑
r=0

e−(8/3) ≥ ε

8e4
.

Next, continuing on to the second part, for any x ∈ {xi : i ∈ {0, . . . ,m− 1}}, denote by
I(x) the index i such that x = xi. Similarly to before, any i ∈ {0, . . . ,m− 1} has

R(ht,i;P
(σ)
t )−R(h∗t ;P

(σ)
t ) =

ε

log2(m)

log2(m)−1∑
j=0

I[bj(i) 6= bj(i
∗
t )],

and this further means that an i for which ht,i has minimal R(ht,i;P
(σ)
t ) among all ht,i′ ∈

Ht(Z[n]) can equivalently be defined as an i with minimal
∑log2(m)−1

j=0 I[bj(i) 6= bj(i
∗
t )] among

all i′ ∈ {I(X1), . . . , I(Xn)}. For any i ∈ {0, . . . ,m−1}, denote ∆t(i) =
∑log2(m)−1

j=0 I[bj(i) 6=
bj(i

∗
t )]. It therefore suffices to prove an upper bound for the quantity

ε

log2(m)
E

[
min

i∈{I(X1),...,I(Xn)}
∆t(i)

]
.

Define a random variableX with distribution PX (recalling this is uniform on {x0, ..., xm−1}).
Then the conditional distribution of ∆t(I(X)) given σ is Binomial(log2(m), 12). Letting
q = 16e4, and supposing c is sufficiently large so that q ≤ (1/2) log2(m), following the
argument from the analogous step in the proof of Theorem 1 (where an analysis is given
that would apply to any Binomial(log2(m), 12) random variable) we have

P

(
∆t(I(X)) ≤ 1

2q
log2(m)

∣∣∣∣σ) ≥ (2q)−1m(1/2q) log2(2q)−1,

14
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which implies (still following similar derivations as in the proof of Theorem 1, except with
nt replaced by n)

P

(
min

i∈{I(X1),...,I(Xn)}
∆t(i) >

1

2q
log2(m)

∣∣∣∣σ) ≤ exp
{
−(2q)−1m(1/2q) log2(2q)−1n

}
.

By the law of total expectation and the fact that R(h;P
(σ)
t ) ≤ 1, we have

E

[
min

h∈Ht(Z[n])
R(h;P

(σ)
t )−R(h∗t ;P

(σ)
t )

]
≤ ε

2q
+ exp

{
−(2q)−1m(1/2q) log2(2q)−1n

}
.

Then note that exp
{
−(2q)−1m(1/2q) log2(2q)−1n

}
shrinks strictly faster than the above spec-

ification of ε as a function of n/(k log(n)), and hence we may conclude that for a sufficiently
large choice of the numerical constant c, this expression is smaller than ε

32e4
. Therefore, we

conclude that

E

[
min

h∈Ht(Z[n])
R(h;P

(σ)
t )−R(h∗t ;P

(σ)
t )

]
≤ ε

16e4
.

These two parts combine to imply that

E

[
R(ĥ;P

(σ)
t )− min

h∈Ht(Z[n])
R(h;P

(σ)
t )

]

= E
[
R(ĥ;P

(σ)
t )−R(h∗t ;P

(σ)
t )

]
−E

[
min

h∈Ht(Z[n])
R(h;P

(σ)
t )−R(h∗t ;P

(σ)
t )

]
≥ ε

16e4
.

As a final step, we stitch together these lower bounds for the blocks to create a lower
bound under the full distribution P (σ). Toward this end, note that any h has R(h;P (σ)) =
1
k

∑k
t=1R(h;P

(σ)
t ). Also note that, for this reconstruction function ρ, every h̃i1,...,ik function

with i1, . . . , ik ∈ {I(X1), . . . , I(Xn)} can be produced by ρ using an argument sequence
S of at most k elements of {X1, . . . , Xn}: namely, S = (xi1 , . . . , xik), since each of these

xit are in {X1, . . . , Xn} due to it ∈ {I(X1), . . . , I(Xn)}. Also note that R(h̃i1,...,ik ;P
(σ)
t ) =

R(ht,it ;P
(σ)
t ). Therefore,

min
h∈Hk,ρ(Z[n])

R(h;P (σ)) ≤ min
i1,...,ik∈{I(X1),...,I(Xn)}

R(h̃i1,...,ik ;P (σ))

= min
i1,...,ik∈{I(X1),...,I(Xn)}

1

k

k∑
t=1

R(ht,it ;P
(σ)
t )

=
1

k

k∑
t=1

min
it∈{I(X1),...,I(Xn)}

R(ht,it ;P
(σ)
t ) =

1

k

k∑
t=1

min
h∈Ht(Z[n])

R(h;P
(σ)
t ).

Thus, for any compression function κ, denoting ĥ = ρ(κ(Z[n])),

E

[
R(ĥ;P (σ))− min

h∈Hk,ρ(Z[n])
R(h;P (σ))

]

≥ 1

k

k∑
t=1

E

[
R(ĥ;P

(σ)
t )− min

h∈Ht(Z[n])
R(h;P

(σ)
t )

]
≥ 1

16e4
ε &

√
k log(n)

n
.
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