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1 Abstract
We consider the variant of the stochastic multi-armed bandit problem where the stochastic reward
distributions may change abruptly several times. In contrast to previous work, we are able to
achieve (nearly) optimal mini-max regret bounds without knowing the number of changes. For this
setting, we propose an algorithm called ADSWITCH and provide performance guarantees for the
regret evaluated against the optimal non-stationary policy. Our regret bound is the first optimal
bound for an algorithm that is not tuned with respect to the number of changes.
Keywords: multi-armed stochastic bandits, non-stationary rewards, switching bandits

1. Introduction

The classical multi-armed bandit (MAB) problem is the simplest setting that gives rise to the
exploration-exploitation dilemma inherent to all reinforcement learning problems (see Bubeck and
Cesa-Bianchi, 2012, for a survey). In this setup, a learner has access to a number of available ac-
tions, also called “arms” in reference to the arm of a slot machine or a one-armed bandit. The learner
has to repeatedly select one of these arms, which yields a reward generated from the unknown re-
ward process of the selected arm. The learner’s aim is to maximize the sum of the gathered rewards.
In the usual stochastic MAB problem, the reward process for an arm is assumed to be a distribu-
tion which remains stationary. In this article, though, we consider the stochastic MAB problem
with non-stationary reward distributions. Following Garivier and Moulines (2011), we call this the
switching bandits problem. As a motivation, consider the problem of real-time content optimization
of websites which aims to serve targeted and relevant content to individuals. In order to do so, the
website needs to learn which content (represented by an arm of the MAB) the users are most likely
to be interested in. The user interest in the content of a website (for example, news) is likely to vary
over time. For additional motivating examples and practical applications of this problem setting,
see Garivier and Moulines (2011), Hartland et al. (2006), Koulouriotis and Xanthopoulos (2008),
and the references therein.

1. Some preliminary results have been presented at EWRL 2018 (Auer et al., 2018).
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1.1. Related work

Non-stationary MAB problems where reward distributions vary over time have been previously
studied in the literature. Sometimes, there are additional assumptions on the process generating the
changes like in the general restless bandits setting (Ortner et al., 2014) or special cases as considered
by Slivkins and Upfal (2008). In some cases, the learner is allowed to collect additional side-
information (Yu and Mannor, 2009). For the setting we consider here, several approaches have been
proposed. These range from modifying algorithms for the standard stochastic MAB setting like
UCB (Kocsis and Szepesvári, 2006) to evolutionary algorithms (Koulouriotis and Xanthopoulos,
2008). The algorithm we introduce in this paper has more in common with (Hartland et al., 2006)
where a change point detection procedure is suggested.

We note that algorithms that work in the stochastic as well in the adversarial setting (Bubeck
and Slivkins, 2012; Seldin and Slivkins, 2014; Auer and Chiang, 2016) usually also need to detect
changes and are hence related. But the regret for these algorithms is still defined in respect to the
single best arm, while we are interested in the regret in respect to best arm in each time step.

Such regret bounds have already been achieved by Auer et al. (2002) for EXP3.S, a variant of
EXP3. If the number of changes L is known in advance, EXP3.S can be tuned to obtain a regret
bound of Õ

(√
KLT

)
after T steps, where K is the number of arms. This is mini-max optimal

in all parameters up to log T factors, which are hidden in the Õ-notation.2 It is worth mentioning
that EXP3.S works also in the more general adversarial setting, where rewards are not generated
by distributions but are set arbitrarily. The regret is then defined in respect to the best strategy in
hindsight that may change the selected arm only a fixed number of times.

More recently, Garivier and Moulines (2011) have shown regret bounds for the discounted-UCB
algorithm of (Kocsis and Szepesvári, 2006) as well as for a sliding window adaptation of UCB.
Regret bounds for an elimination algorithm with restarts that is similar to our approach have been
proven by Allesiardo et al. (2017). Algorithms that work even for stochastic contextual bandits
have been analyzed by Luo et al. (2018). As for EXP3.S, all these algorithms can be tuned to
obtain bounds optimal with respect to L and T , provided that the number of changes L is known in
advance.

We note that there are also regret bounds that do not depend on the number of changes but the
total variation of change V (Besbes et al., 2014; Luo et al., 2018). If V is known in advance, these
algorithms can be tuned to achieve Õ

(
(KV )1/3T 2/3

)
regret, which is optimal.

In this paper, we propose the algorithm ADSWITCH, which —unlike the mentioned
approaches— does not need to know the number of changes L in advance. Still, we can prove
an optimal regret bound Õ

(√
KLT

)
for ADSWITCH.

1.2. Outline

Section 2 gives the problem statement and our main result. The algorithm ADSWITCH is described
in Section 3, followed by Section 4, which gives part of the proof of the regret bound. The detailed
proofs can be found in the appendix.

2. The regret bound cannot be improved even if the gap between the mean reward of the best arm and the mean rewards
of the other arms is lower bounded by a constant, say 1/4.
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2. Problem statement and result

For notational convenience we assume that all rewards are bounded in [0, 1]. We denote a stochastic
bandit problem with changing reward distributions by the mean rewards µt(a) of the arms a =
1, . . . ,K at times t = 1, . . . , T . The mean rewards µt(a) are unknown to the algorithm. At each
time t, an algorithm selects some arm at and receives reward rt with mean E [rt] = µt(at). The
goal of the algorithm is to achieve low expected regret R against an omniscient policy that at each
time chooses the arm with maximal mean reward,

R =

T∑
t=1

max
a

µt(a)− E

[
T∑
t=1

µt(at)

]
.

We assume that the horizon T is known, an unknown horizon can be handled by the doubling trick
(Besson and Kaufmann, 2018).

For meaningful results the amount of change in the means µt(a) needs to be taken into account.
As such a measure of change we consider the total number of changes

L = #{1 ≤ t ≤ T |∃a : µt−1(a) 6= µt(a)}.

(For notational convenience we define µ0(a) = 0 for all arms a.)
As mentioned above, the best known regret bound in terms ofL is Õ

(√
KLT

)
(see for example

Auer et al., 2002), which matches the lower bound up to logarithmic factors. This bound was
previously achieved for known L. In this paper, we show that the same bound can be achieved
without knowing L, using an algorithm that adapts to the observed change.

Theorem 1 For a switching bandit problem with K arms, L changes, and horizon T , the expected
regret of ADSWITCH (introduced in Section 3 below) is upper bounded by

C
√
KLT log T

for a suitable constant C.

2.1. The difficulty of unknown L and how to deal with it

In this section, we give some intuition, why it is significantly harder to achieve optimal regret bounds
when the number of changes is unknown, and how our algorithm deals with this difficulty.

2.1.1. CALCULATING THE SAMPLING RATE FOR INFERIOR ARMS

Assume that an algorithm has found an inferior arm a that is ∆-worse than the best arm. Then the
algorithm has to safeguard against a change of arm a that would make it the best arm. When the
total number of changes L is known in advance, then this is easily done by sampling arm a with
probability p =

√
L/(KT )/∆. When a change is detected, then the algorithm restarts.

The total cost for this sampling is pT∆ =
√
LT/K when there is no change (since the algo-

rithm loses the amount of ∆ each time the inferior arm a is sampled). Summing over all inferior
arms, this contributes

√
KLT to the regret.

If arm a changes by amount ε > ∆, then (up to logarithmic factors) 1/ε2 samples from arm a
are sufficient to detect the change. Thus, because of the sampling rate p, the change is detected after
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1/(pε2) time steps, and the regret during these time steps is at most ε/(pε2) = ∆
√
KT/L/ε <√

KT/L. Summing over the changes gives again a contribution to the regret of
√
KLT .

The sampling rate p is chosen optimally to trade off the regret caused by sampling and the regret
until a change is detected, by solving pT∆K = L/(p∆) for p.

2.1.2. ADAPTING THE SAMPLING RATE IN RESPECT TO THE OBSERVED CHANGES

If the number of changes L is not known, the sampling rate p cannot be set so easily. A first attempt
is to count the number of changes so far, `, and set p` =

√
`/(KT )/∆ accordingly (initially ` = 1).

But this does not work, since in the beginning the sampling rate p1 =
√

1/(KT )/∆ is small and
quick changes will not be detected: Let µ = 1/2 be the mean reward of arm a so far and let ∆ = 1/8
(the mean reward of the best arm is 5/8). Now let the mean reward of arm a alternate everyW steps
between µ + ε and µ − ε for ε = 1/4. Since arm a is sampled only every 1/p1 ∼ T 1/2 steps, the
received rewards appear random with mean µ, when W ≤ T 1/4. Thus no change is detected and
linear regret in incurred.

Increasing the initial sampling rate p1 would allow to detect such changes, but it would also
increase the sampling cost in the case when there are few changes, such that the optimal regret
bound is not achieved.

The phenomenon of increased regret rates when the number of changes is under- or overesti-
mated can already been seen in the regret bounds for EXP3.S in (Auer et al., 2002) and its variant
SHIFTBAND (Auer, 2002, Theorem 2) with the regret bound

Õ
((√

L0 + L/
√
L0

)√
KT

)
,

where L0 is a tuning parameter, interpreted as an a priori estimate for the number of changes. If
indeed L = L0, then the bound becomes Õ

(√
KLT

)
and is optimal. For L0 = 1, the bound is

Õ
(
L
√
KT

)
and gives linear regret if L ≥

√
T . For L = 1, the bound gives Õ

(√
KL0T

)
and is

sub-optimal for large L0.

2.1.3. CONSECUTIVE SAMPLING

The failure to detect changes as described in the previous section is caused by changes between the
times a sample is drawn for the inferior arm. This can be avoided by drawing consecutive samples:
Let ` again be the number of changes observed so far. To check for a change of size ε > ∆, with
probability pε = ε

√
`/(KT ) the algorithm draws nε = Õ

(
1/ε2

)
consecutive samples. This is

sufficient to detect a change and the total cost without a change is pεTnε∆ = Õ
(

(∆/ε)
√
`T/K

)
.

When an exponential schedule for the size of the changes ε = ∆, 2∆, 4∆, . . . is used, summing
(∆/ε)

√
`T/K over the various ε and over the inferior arms gives a total regret contribution of

Õ
(√

K`T
)

.
The number of steps until a change of size ε is detected is roughly 1/pε such that the regret

contribution is ε/pε =
√
KT/`. Summing over all L changes gives a total contribution of

√
KLT .

While in the formal analysis several other cases need to be considered —for example there could
be a change even within a consecutive sample— the main idea of our algorithm is to use consecutive
sampling as described above, choosing the right probability pε to start a consecutive sample of the
right length nε.
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Algorithm 1 ADSWITCH

1: Input: Time horizon T .
2: Initialization `← 0, t← 0.
3: Start a new episode:
4: `← `+ 1.
5: Set start of the episode t` ← t+ 1.
6: GOODt+1 = {1, . . . ,K}, BADt+1 = {}.
7: Next time step:
8: t← t+ 1.
9: Add checks for bad arms:

10: For all a ∈ BADt, and all i ≥ 1 with 2−i ≥ ∆̃`(a)/16,
11: with probability 2−i

√
`/(KT log T ) add St(a)← St(a) ∪ (2−i, d22i+1 log T e, t).

12: Select an arm:
13: Select at = arg mina{τ : a 6∈ {aτ , . . . , at−1}, a ∈ GOODt ∨ St(a) 6= {}}.
14: Receive reward rt.
15: Check for changes of good arms:
16: If there is a ∈ GOODt and t` ≤ s1 ≤ s2 ≤ t and t` ≤ s ≤ t such that condition (3)
17: holds, then start a new episode.
18: Check for changes of bad arms:
19: If there is a ∈ BADt and t` ≤ s ≤ t such that condition (4) holds,
20: then start a new episode.
21: For a ∈ BADt, St+1(a)← {(ε, n, s) ∈ St(a) : n[s,t] < n}.
22: Evict arms from GOODt:
23: BADt+1 = BADt ∪ {a ∈ GOODt|∃s ≥ t` for which (1) holds}.
24: For evicted arms a ∈ BADt+1 \BADt, calculate µ̃`(a) and ∆̃`(a) according to (2), and

set St+1(a)← {}.
25: GOODt+1 = {1, . . . ,K} \ BADt+1.
26: Continue with the next time step.

Remark 2 Another approach for dealing with an unknown number of changes L is to run several
copies of a bandit algorithm (for example EXP3.S) with different tunings, using a master bandit
algorithm to manage these copies. While typically using a bandit algorithm on top of other bandit
algorithms is problematic, the approach of Cheung et al. (2019) can be used to achieve the regret
bound Õ

(√
KT max{L, T 1/2}

)
for unknown L even in the adversarial setting (Luo, 2019). This

regret bound is optimal for large L but sub-optimal for small L. It is an open problem if optimal
regret can be achieved in the adversarial setting without knowing L.

3. The adaptive switching algorithm ADSWITCH

In this section we describe our algorithm ADSWITCH (depicted as Algorithm 1) for an unknown
amount of changes. In order to achieve a regret bound that depends on the actual amount of change
in the mean rewards, the algorithm needs to be able to detect (most of) these changes. At the same
time, the algorithm cannot probe inferior arms too often without suffering large regret.
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Our algorithm is essentially an elimination algorithm with restarts and proceeds in episodes
` = 1, 2, . . .. A new episode starts when the algorithm detects a change in the mean rewards. In
each episode the arms are partitioned into GOOD and BAD arms. The good arms are those that are
(so far) statistically indistinguishable from the optimal arm, and the bad arms are those that appear
significantly worse than the optimal arm.

At the start of an episode all arms are good. An arm a is evicted from GOOD at time t, if there
is sufficient evidence for its suboptimality through the condition3

max
a′∈GOODt

µ̂[s,t](a
′)− µ̂[s,t](a) >

√
C1 log T

n[s,t](a)− 1
(1)

for some s in the current episode with n[s,t] ≥ 2. Here µ̂[s,t](a) denotes the observed mean reward
for arm a during the time interval [s, t], and n[s,t](a) is the number of times arm a has been selected
during this interval,

n[s,t](a) = #{s ≤ τ ≤ t : aτ = a}, µ̂[s,t](a) =
1

n[s,t](a)

∑
τ :s≤τ≤t,aτ=a

rt.

For a suitable constant C1, condition (1) is a standard confidence bound on the mean rewards.
When an arm a is evicted from the good arms in episode `, then its observed mean reward and

the gap to the arm a′ that caused the eviction, are recorded,

µ̃`(a)← µ̂[s,t](a), ∆̃`(a)← max
a′∈GOODt

µ̂[s,t](a
′)− µ̂[s,t](a). (2)

These quantities will be used to check for changes in the mean reward of the evicted arm.
To check at time t, if a good arm a has changed, we use a condition similar to (1),

∣∣µ̂[s1,s2](a)− µ̂[s,t](a)
∣∣ >√ 2 log T

n[s1,s2](a)
+

√
2 log T

n[s,t](a)
(3)

for some s1 ≤ s2 and s within the current episode.
To check for changes of bad arms is more complicated, since these arms can be selected only

rarely without causing large regret. These checks are done by a variant of consecutive sampling as
described in Section 2.1.3. We associate each bad arm a with a set St(a) of sampling obligations
(ε, n, s) as follows. Each St(a) ⊂ R × N × N is a set of triples (ε, n, s), where ε = 2−i, i ≥ 1, is
the magnitude of change the algorithm seeks to detect, n = d2(log T )/ε2e is the number of samples
needed for a statistically significant test, and s is the time when the collection of samples has started.
After having received n rewards from arm a, the sampling obligation is removed from St(a). These
sampling obligations cause the algorithm to select a bad arm that otherwise would not be selected.
The test for a change is similar to the check for the good arms: a new episode is started, if for some
s in the current episode,

∣∣µ̂[s,t](a)− µ̃`(a)
∣∣ > ∆̃`(a)/4 +

√
2 log T

n[s,t](a)
, (4)

3. The constant C1 in condition (1) needs to be sufficiently large. A suitable value can be derived from the regret
analysis.
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comparing the current mean reward with the mean reward when the arm was evicted from the set of
good arms.

To ensure the right amount of checking, at any time t and for any ε = 2−i ≥ ∆̃`(a)/16, the
sampling obligation (ε, n, t) is added to St(a) with probability ε

√
`/(KT log T ). The intuition

behind the choice of this probability is given in Section 2.1.3.
Finally, at time t the algorithm selects the arm at that has been selected least recently among the

good arms and those bad arms with non-empty sampling obligations St(a). This selects the good
arms in a round robin fashion and also ensures that almost consecutive samples are generated for
the bad arms that need to be checked.

Remark 3 This version of our algorithm is not optimized for runtime but for simpler arguments in
the regret analysis. The most expensive step is the check for changes of the good arms, condition (3),
with runtime O

(
Kt3

)
in time step t. This time complexity can be significantly reduced, if not

all intervals [s1, s2] and [s, t] are checked, but only intervals of certain lengths, say 2k log T for
k = 3, 4, . . . By storing for these lengths the maximal and minimal values of µ̂[s1,s2](a) so far,
the time complexity can be reduced to O

(
K(log T )2

)
per time step. The checks of conditions (1)

and (4) can be treated similarly.

4. Regret analysis

4.1. Preliminaries

Lemma 4 (Azuma-Hoeffding inequality) For a martingale difference sequenceX1, . . . , Xn with
support of size 1 for all Xi,

P

{∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ γn
}
≤ 2 exp{−2γ2n}.

We denote the number of changes in time interval [s, t] by

L[s, t] = #{s < τ ≤ t|∃a : µτ−1(a) 6= µτ (a)}.

Lemma 5 With probability 1− 2K/T 2, for all 1 ≤ s ≤ t ≤ T with L[s, t] = 0, and all arms a,

∣∣µ̂[s,t](a)− µs(a)
∣∣ <√ 2 log T

n[s,t](a)
.

Proof We fix time s and arm a. Let s ≤ τ1 < τ2 < · · · be the times when
arm a is selected, aτi = a. Then Xi = rτi − µτi(a) are martingale differences and
by Lemma 4 we get P

{
|
∑n

i=1Xi| ≥
√

2n log T
}
≤ 2T−4. By a union bound we get

P
{
∃n : n ≤ T : |

∑n
i=1Xi| ≥

√
2n log T

}
≤ 2T−3. Thus with probability 1 − 2T−3 we have

for all t,∣∣µ̂[s,t](a)− µs(a)
∣∣ =

∣∣∣∣∣ 1

n[s,t](a)

n[s,t]∑
i=1

[rτi − µs(a)]

∣∣∣∣∣ =

∣∣∣∣∣ 1

n[s,t](a)

n[s,t]∑
i=1

Xi

∣∣∣∣∣ <
√

2 log T

n[s,t](a)
.

A union bound over s and a completes the proof.

Since the error probability 2K/T 2 in Lemma 5 causes only diminishing regret, we assume in all the
following, that all inequalities of the lemma are satisfied.
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Assumption 6 For all 1 ≤ s ≤ t ≤ T with no change between s and t, and all arms a,

∣∣µ̂[s,t](a)− µs(a)
∣∣ <√ 2 log T

n[s,t](a)
.

4.2. Counting the number of episodes

The next lemma shows that the algorithm starts a new episode only if there is a change in the current
episode. We denote by L̃ the total number of episodes. The last episode ends at time T , and for
notational convenience we define the start time of the next episode by tL̃+1 = T + 1.

Lemma 7 If Assumption 6 holds, then for all episodes ` < L̃, L[t`, t`+1 − 1] > 0.

Proof The proof is by contradiction, assuming that episode ` is terminated at time t > t` but
L[t`, t] = 0. We first consider the start of a new episode when condition (3) is met. Then there is an
arm a and times t` ≤ s1 ≤ s2 ≤ t and t` ≤ s ≤ t with

∣∣µ̂[s1,s2](a)− µ̂[s,t](a)
∣∣ >√ 2 log T

n[s1,s2](a)
+

√
2 log T

n[s,t](a)
.

Since L[t`, t] = 0 and µs1(a) = µs(a), this contradicts Assumption 6.
Now we consider the start of a new episode when condition (4) is met. Then there is an arm a ∈

BADt and a time t` ≤ s ≤ t with

∣∣µ̂[s,t](a)− µ̃`(a)
∣∣ > ∆̃`(a)/4 +

√
2 log T

n[s,t](a)
.

Let [s′, t′] be the time interval on which the eviction of arm a from the good arms was based in (1).
Then µ̃`(a) = µ̂[s′,t′](a) and

∆̃`(a) >

√
C1 log T

n[s′,t′] − 1
> 4

√
2 log T

n[s′,t′]
(5)

for sufficiently large C1. Together with the above inequality, this contradicts Assumption 6.

From Lemma 7 we get immediately that the total number of episodes is bounded by the number of
changes, L̃ ≤ L.

4.3. Properties of the selection rule

An arm a is eligible at time t, if a ∈ GOODt or a ∈ BADt and St(a) 6= {}. Since the algorithm
selects the arm that has been selected least recently among the eligible arms, all eligible arms are
selected almost equally often, the maximal difference being 1. In particular, if arm a has been
eligible throughout an interval [s, t], then for any arm a′,

n[s,t](a) ≥ n[s,t](a′)− 1.

Furthermore, if an arm a is eligible throughout the interval [s, t], then

n[s,t](a) ≥ b(t− s+ 1)/Kc.
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4.4. Dividing episodes into intervals with no change

In the regret analysis we will rely on time intervals without change. Thus for each episode ` we
consider all change points β`,1, . . . , β`,m` in episode `, L[t`, t`+1 − 1] = m`, with

t` = β`,0 ≤ β`,1 < . . . < β`,m` < β`,m`+1 = t`+1

and L[β`,i, β`,i+1−1] = 0 for i = 0, . . . ,m` and L[β`,i−1, β`,i] = 1 for i = 1, . . . ,m`. We denote
the intervals with no change by

I`,i = [β`,i, β`,i+1 − 1]

for i = 0, . . . ,m`. Since each episode is split into at most m` + 1 intervals, over all episodes there
are at most L+ L̃ ≤ 2L such intervals.

4.5. Distinguishing the sources of regret

In this section we decompose the regret
∑T

t=1 [maxa µt(a)− µt(at)] horizontally and vertically.
By horizontally we mean the decomposition of the regret

max
a

µt(a)− µt(at) = [ max
a∈GOODt

µt(a)− µt(at)] + [max
a

µt(a)− max
a∈GOODt

µt(a)]

into the regret in respect to the best good arm, and the regret of the best good arm in respect to the
optimal arm. We denote by

a∗t = arg max
a

µt(a)

the optimal arm and by
agt = arg max

a∈GOODt
µt(a)

the best good arm at time t. (If there are several optimal arms, then an arbitrary one can be chosen.)
By vertical decomposition we mean the classification of the time steps into several classes,

depending on the selections of the algorithm. For the regret in respect to the best good arm, we are
distinguishing the following cases for each episode `:

1. A good arm is selected by the algorithm,

G`,1 = {t` ≤ t < t`+1 : at ∈ GOODt}.

The regret in this case is similar to the regret in the stationary bandit problem, when the best
arm has not been distinguished yet.

2. A bad arm is selected, and its regret is not much larger than its eviction gap ∆̃`,

G`,2 = {t` ≤ t < t`+1 : at ∈ BADt, µt(a
g
t )− µt(at) ≤ 4∆̃`(at)}.

The regret in this case is for the effort of checking whether a previously bad arm has become
optimal.
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3. A bad arm is selected, its regret is large, and the mean reward is far from the mean reward
when it was evicted,

G`,3 = {t` ≤ t < t`+1 : at ∈ BADt, µt(a
g
t )− µt(at) > 4∆̃`(at),

µ̃`(at)− µt(at) > (µt(a
g
t )− µt(at))/2}.

In this case the mean reward of the bad arm has decreased significantly, causing larger regret
when this arm is selected.

4. A bad arm is selected, its regret is large, but the mean reward is relatively close to the mean
reward when it was evicted,

G`,4 = {t` ≤ t < t`+1 : at ∈ BADt, µt(a
g
t )− µt(at) > 4∆̃`(at),

µ̃`(at)− µt(at) ≤ (µt(a
g
t )− µt(at))/2}.

In this case the best good arm has significantly improved (compared to the time when at was
evicted), and additional regret is caused by the resulting larger gap between the best good and
the bad arm.

For the regret of the best good arm in respect to the optimal arm, we distinguish two cases. Obvi-
ously there is no such regret if the optimal arm is among the good arms.

1. The optimal arm is among the bad arms and its mean reward is close to the mean reward when
it was evicted,

B`,1 = {t` ≤ t < t`+1 : a∗t ∈ BADt, µt(a
∗
t )− µ̃`(a∗t ) ≤ ∆̃`(a

∗
t )/2}.

In this case the mean rewards of the good arms have significantly decreased, causing regret
when the algorithm keeps selecting them.

2. The optimal arm is among the bad arms and its mean reward is far from the mean reward
when it was evicted,

B`,2 = {t` ≤ t < t`+1 : a∗t ∈ BADt, µt(a
∗
t )− µ̃`(a∗t ) > ∆̃`(a

∗
t )/2}.

In this case the mean reward of the currently optimal arm may have significantly improved,
causing regret when not selected.

In the following sections we show that in each of these cases the respective regret is of order√
KLT log T . Summing over all these cases gives the result of Theorem 1.

Because of space constraints we give only brief intuition about the cases t ∈ B`,1 and t ∈ B`,2.
Full proofs are provided in the appendix.

4.6. Bounding the regret in respect to agt
4.6.1. CASE t ∈ G`,1
In this case at ∈ GOODt. Let t ∈ I`,i for some interval without change I`,i = [β`,i, β`,i+1 − 1] in
episode `. Since at ∈ GOODt, at was not evicted at time t− 1, and by (1) we have

µ̂[β`,i,t−1](a
g
t )− µ̂[β`,i,t−1](at) ≤

√
C1 log T

n[β`,i,t−1](at)− 1

10
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if n[β`,i,t−1](at) ≥ 2. By Assumption 6 we get

µt(a
g
t )− µt(at) ≤ µ̂[β`,i,t−1](a

g
t )− µ̂[β`,i,t−1](at) +

√
2 log T

n[β`,i,t−1](a
g
t )

+

√
2 log T

n[β`,i,t−1](at)

≤
√

C1 log T

n[β`,i,t−1](at)− 1
+

√
2 log T

n[β`,i,t−1](a
g
t )

+

√
2 log T

n[β`,i,t−1](at)

≤ (
√
C1 + 2

√
2)

√
log T

n[β`,i,t−1](at)− 1
,

since agt and at are both good arms and thus n[β`,i,t−1](a
g
t ) ≥ n[β`,i,t−1](at) − 1 (see Section 4.3).

Summing over t ∈ I`,i ∩ G`,1 with at = a for some arm a gives

∑
t∈I`,i∩G`,1,at=a

[µt(a
g
t )− µt(at)] ≤ (

√
C1 + 2

√
2)
√

log T

2 +

n[I`,i]
(a)∑

k=2

√
1

k − 1


≤ (
√
C1 + 2

√
2)
√

log T
(

2 + 2
√
n[I`,i](a)

)
.

Since ∑
`,i,a

n[I`,i](a) = T

and there are at most 2L intervals I`,i, summing over all intervals and all arms gives

L̃∑
`=1

∑
t∈G`,1

[µt(a
g
t )− µt(at)] = O

(√
KLT log T

)
. (6)

4.6.2. CASE t ∈ G`,2
In this case at ∈ BADt and µt(a

g
t ) − µt(at) ≤ 4∆̃`(at). We bound the expected number of times

that such a bad arm a is selected.
A bad arm a is selected at time t, at = a, only if there is (ε, n, s) ∈ St(a) with s ≤ t and

n[s,t](a) < n. We recall that ε = 2−i ≥ ∆̃`(a)/16 for some i ≥ 1, and n = d2(log T )/ε2e. Thus
for t ∈ G`,2,

µt(a
g
t )− µt(at) ≤ 64ε.

Furthermore, (ε, n, s) is added to Ss(at) with probability ε
√
`/(KT log T ) if a ∈ BADs. Thus the

expected number of times that a specific bad arm a is selected in episode ` for a specific ε, is at most

ε(t`+1 − t`)

√
`

KT log T
(2(log T )/ε2 + 1).

Summing over the possible ε = 2−i with ε ≥ [µt(a
g
t )− µt(a)]/64 gives

(t`+1 − t`)

√
`

KT log T

(
256 log T

µt(a
g
t )− µt(a)

+ 1

)

11
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as an upper bound on the expected number of times arm a is selected in G`,2. Summing over all
arms we get for the respective expected regret

∑
t∈G`,2

[µt(a
g
t )− µt(at)] ≤ K(t`+1 − t`)

√
`

KT log T
(256 log T + 1) ,

and summing over all episodes gives∑
`

∑
t∈G`,2

[µt(a
g
t )− µt(at)] = O

(√
KLT log T

)
. (7)

4.6.3. CASE t ∈ G`,3
In this case at ∈ BADt, µt(a

g
t ) − µt(at) > 4∆̃`(at), and µ̃`(at) − µt(at) > [µt(a

g
t ) − µt(at)]/2.

Thus the mean reward for arm at is significantly worse than µ̃`(at). We show that with this con-
dition, arm at can be selected only a few times in an interval I`,i. This is because otherwise the
algorithm would detect the change.

4.6.4. CASE t ∈ G`,4
In this case at ∈ BADt, µt(a

g
t )− µt(at) > 4∆̃`(at), and µ̃`(at)− µt(at) ≤ (µt(a

g
t )− µt(at))/2.

The major part of the regret contribution comes from the increase of the mean of agt , the best good
arm. But since this arm is selected often, the change of the reward can be detected quickly by
condition (3), obtaining the desired regret bound.

4.7. Bounding the regret of µt(agt ) in respect to µt(a∗t )

4.7.1. CASE t ∈ B`,1
In this case a∗t ∈ BADt and µt(a∗t ) − µ̃`(a∗t ) ≤ ∆̃`(a

∗
t )/2. This means that the reward of the bad

arm a∗t has not changed much, but that the rewards of the good arms have decreased. There are
basically two cases: (a) The arm a′ that evicted a∗t from the good arms is still a good arm. Then the
reward of this arm has changed significantly which is detected by condition (3) of the algorithm.
(b) Arm a′ has also been evicted from the good arms. This case is more complicated, but we can
show that also in this case the best good arm a∗t has changed significantly.

4.7.2. CASE t ∈ B`,2
In this case a∗t is among the bad arms and µt(a∗t ) − µ̃`(a∗t ) > ∆̃`(a

∗
t )/2. Since the reward of the

best good arm µt(a
g
t ) cannot be much below µ̃`(a

∗
t ) without causing the start of a new episode,

µt(a
∗
t )− µt(a

g
t ) . µt(a

∗
t )− µ̃`(a∗t ).

If µt(a∗t ) − µ̃`(a∗t ) is small, then the contribution to the regret is also small and is easily dealt
with. If µt(a∗t ) − µ̃`(a∗t ) is large, though, then the larger µt(a∗t ) needs to be detected quickly. The
algorithm needs roughly n = (log T )/ε2 samples, ε ≈ µt(a

∗
t ) − µ̃`(a

∗
t ), to detect the change.

These samples are provided by a sampling obligation (ε, n, s). By the definition of the algorithm,
such a sampling obligation is added with probability ε

√
`/(KT log T ). Thus it takes roughly time

(1/ε)
√
KT (log T )/` until the sampling obligation is added and the change is detected, causing√

KT (log T )/` regret. Summing over the episodes gives the desired bound
√
KLT (log T ).

The actual proof is a bit more complicated, because arms may change during the sampling.

12
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5. Conclusion

Extending the work in (Auer et al., 2018), we have constructed the first algorithm for the stochastic
multi-armed bandit problem with abrupt changes of the reward distributions that achieves optimal
regret bounds without knowing the number of changes in advance. The main technical contribution
is the delicate testing schedule of the apparently inferior arms. This testing is necessary to detect
when a previously inferior arm becomes the best arm.

We note that our algorithm (without any change) also provides optimal regret bounds in terms of
total variation. These optimal bounds have also been achieved in (Chen et al., 2019), which provides
also optimal bounds for the more general stochastic contextual bandits setting.

Regarding the adversarial bandit setting, it remains an open problem to construct an algorithm
with optimal regret bounds without a priori tuning in respect to the number of arm changes.
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Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

Peter Auer, Pratik Gajane, and Ronald Ortner. Adaptively tracking the best arm with an unknown
number of distribution changes. In 14th European Workshop on Reinforcement Learning, EWRL
2018, 2018.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-
stationary rewards. In Advances in Neural Information Processing Systems 27, NIPS 2014, pages
199–207, 2014.

Lilian Besson and Emilie Kaufmann. What doubling tricks can and can’t do for multi-armed bandits.
CoRR, abs/1803.06971, 2018. URL http://arxiv.org/abs/1803.06971.
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Appendix A. Some proof details of Section 4.6
Bounding the regret in respect to (agt )

A.1. Case t ∈ G`,3
In this case at ∈ BADt, µt(a

g
t ) − µt(at) > 4∆̃`(at), and µ̃`(at) − µt(at) > [µt(a

g
t ) − µt(at)]/2.

Thus the mean reward for arm at is significantly worse than µ̃`(at). We show that with this con-
dition, arm at can be selected only a few times in an interval I`,i. This is because otherwise the
algorithm would detect the change.

If condition (4) is not triggered, we have for bad arm at and t < t`+1 − 1 that

µ̃`(at)− µ̂[t`,t](at) ≤ ∆̃`(at)/4 +

√
2 log T

n[t`,t](at)
.

Using the condition of G`,3 and Assumption 6, we get

µt(a
g
t )− µt(at) < 2[µ̃`(at)− µt(at)] < 2

[
µ̃`(at)− µ̂[t`,t](at) +

√
2 log T

n[t`,t](at)

]

≤ 2

[
∆̃`(at)/4 + 2

√
2 log T

n[t`,t](at)

]
< [µt(a

g
t )− µt(at)]/8 + 4

√
2 log T

n[t`,t](at)

and by solving for µt(a
g
t )− µt(at),

µt(a
g
t )− µt(at) <

32

7

√
2 log T

n[t`,t](at)
.

Summing over all arms and episodes gives∑
`

∑
t∈G`,3

[µt(a
g
t )− µt(at)] = O

(√
KLT log T

)
. (8)

A.2. Case t ∈ G`,4
In this case at ∈ BADt, µt(a

g
t )− µt(at) > 4∆̃`(at), and µ̃`(at)− µt(at) ≤ (µt(a

g
t )− µt(at))/2.

We bound the number of times that a bad arm a is selected within an interval without change
I`,i = [β`,i, β`,i+1−1], while the above condition holds. Let [s′, t′] be the interval and a′ be the arm
that caused the eviction of at from the good arms by condition (1),

µ̂[s′,t′](a
′)− µ̂[s′,t′](at) >

√
C1 log T

n[s′,t′](at)− 1
,

with µ̃`(at) = µ̂[s′,t′](at) and ∆̃`(at) = µ̂[s′,t′](a
′) − µ̃`(at). By the construction of the algorithm

(see Section 4.3), n[s′,t′](at) ≤ n[s′,t′](a
′) + 1 and n[β`,i,t](at) ≤ n[β`,i,t](a

g
t ) + 1 ≤ 2n[β`,i,t](a

g
t ).
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By Assumption 6,

µ̂[β`,i,t](a
g
t )− µ̂[s′,t′](a

g
t ) > µt(a

g
t )−

√
2 log T

n[β`,i,t](a
g
t )
− µ̂[s′,t′](a′)

= µt(a
g
t )−

√
2 log T

n[β`,i,t](a
g
t )
− µ̃`(at)− ∆̃`(at)

= [µt(a
g
t )− µt(at)]−

√
2 log T

n[β`,i,t](a
g
t )
− [µ̃`(at)− µt(at)]− ∆̃`(at)

≥ 1

4
[µt(a

g
t )− µt(at)]−

√
2 log T

n[β`,i,t](a
g
t )
.

For t < t`+1 − 1, we get from condition (3) that

µ̂[β`,i,t](a
g
t )− µ̂[s′,t′](a

g
t ) ≤

√
2 log T

n[s′,t′](a
g
t )

+

√
2 log T

n[β`,i,t](a
g
t )

≤
√

2 log T

n[s′,t′](at)− 1
+

√
2 log T

n[β`,i,t](a
g
t )

≤
√

2

C1
∆̃`(at) +

√
2 log T

n[β`,i,t](a
g
t )

≤ 1

4

√
2

C1
[µt(a

g
t )− µt(at)] +

√
2 log T

n[β`,i,t](a
g
t )
.

Putting the lower and the upper bound together we find

1

4

(
1−

√
2

C1

)
[µt(a

g
t )− µt(at)] ≤ 2

√
2 log T

n[β`,i,t](a
g
t )
≤ 2

√
4 log T

n[β`,i,t](at)
.

Thus the contribution to the regret for some arm a during I`,i in respect to G`,4 is at most

32
√

(log T )n[I`,i](a)

/(
1−

√
2

C1

)
.

Summing over all intervals I`,i and all arms a, we get∑
`

∑
t∈G`,4

[µt(a
g
t )− µt(at)] = O

(√
KLT log T

)
(9)

Appendix B. Proof details of Section 4.7
Bounding the regret of µt(agt ) in respect to µt(a∗t )

B.1. Case t ∈ B`,1
In this case a∗t ∈ BADt and µt(a∗t ) − µ̃`(a∗t ) ≤ ∆̃`(a

∗
t )/2. This implies that the mean of the best

good arm has dropped significantly. Thus there cannot be too many such steps without detecting the
change.
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We consider some interval without change I`,i = [β`,i, β`,i+1 − 1], t ∈ I`,i. Let [s′, t′] be the
time interval and a′ the arm that caused the eviction of a∗t from the good arms by condition (1),

µ̂[s′,t′](a
′)− µ̂[s′,t′](a∗t ) >

√
C1 log T

n[s′,t′](a
∗
t )− 1

.

If a′ is not a good arm anymore, a′ 6∈ GOODt, then its eviction was caused by some interval [s1, s2]
and some arm a′′ with

µ̂[s1,s2](a
′′)− µ̂[s1,s2](a

′) >

√
C1 log T

n[s1,s2](a
′)− 1

.

Since the episode has not stopped at time s2, we have by (3),√
C1 log T

n[s1,s2](a
′)− 1

< µ̂[s1,s2](a
′′)− µ̂[s1,s2](a

′)

< µ̂[s′,t′](a
′′)− µ̂[s′,t′](a′)

+

√
2 log T

n[s1,s2](a
′′)

+

√
2 log T

n[s1,s2](a
′)

+

√
2 log T

n[s′,t′](a′′)
+

√
2 log T

n[s′,t′](a′)

≤
√

2 log T

n[s1,s2](a
′′)

+

√
2 log T

n[s1,s2](a
′)

+

√
2 log T

n[s′,t′](a′′)
+

√
2 log T

n[s′,t′](a′)

≤ 2

√
2 log T

n[s1,s2](a
′)− 1

+ 2

√
2 log T

n[s′,t′](a′)− 1

≤ 1

2

√
C1 log T

n[s1,s2](a
′)− 1

+ 2

√
2 log T

n[s′,t′](a′)− 1

for sufficiently large C1, and therefore√
C1 log T

n[s1,s2](a
′)− 1

≤ 4

√
2 log T

n[s′,t′](a′)− 1
,

and
n[s′,t′](a

′) ≤ 64

C1
n[s1,s2](a

′).

Since a′ was evicted based on interval [s1, s2] and agt was not, we have

µ̂[s1,s2](a
g
t ) > µ̂[s1,s2](a

′) +

√
C1 log T

n[s1,s2](a
′)− 1

−
√

C1 log T

n[s1,s2](a
g
t )− 1

.
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Then

µt(a
g
t ) ≥ µ̂[β`,i,t](a

g
t )−

√
2 log T

n[β`,i,t](a
g
t )
≥ µ̂[s1,s2](a

g
t )− 2

√
2 log T

n[β`,i,t](a
g
t )
−
√

2
log T

n[s1,s2](a
g
t )

≥ µ̂[s1,s2](a
′)− 2

√
2 log T

n[β`,i,t](a
g
t )
− (
√

2 +
√
C1)

√
log T

n[s1,s2](a
g
t )− 1

≥ µ̂[s′,t′](a′)− 2

√
2 log T

n[β`,i,t](a
g
t )
− (
√

2 +
√
C1)

√
log T

n[s1,s2](a
′)− 2

−
√

2 log T

n[s1,s2](a
′)
−
√

2 log T

n[s′,t′](a′)

≥ µ̂[s′,t′](a′)− 2

√
2 log T

n[β`,i,t](a
g
t )− 1

−
√

C2 log T

n[s′,t′](a′)

for some suitable constant C2 independent of C1.
Also if a′ is still among the good arms, a′ ∈ GOODt, we get for t < t`+1−1, by Assumption 6

and the checking condition (3), that

µt(a
g
t ) ≥ µt(a′) ≥ µ̂[β`,i,t](a

′)−
√

2 log T

n[β`,i,t](a
′)
≥ µ̂[s′,t′](a′)− 2

√
2 log T

n[β`,i,t](a
′)
−
√

2 log T

n[s′,t′](a′)

≥ µ̂[s′,t′](a′)− 2

√
2 log T

n[β`,i,t](a
g
t )− 1

−
√

2 log T

n[s′,t](a′)

≥ µ̂[s′,t′](a′)− 2

√
2 log T

n[β`,i,t](a
g
t )− 1

−
√

C2 log T

n[s′,t′](a′)
.

Since

µ̂[s′,t′](a
′) = µ̃`(a

∗
t ) + ∆̃`(a

∗
t ) ≥ µt(a∗t ) + ∆̃`(a

∗
t )/2 ≥ µt(a∗t ) +

1

2

√
C1 log T

n[s′,t′](a
∗
t )− 1

≥ µt(a∗t ) +
1

2

√
C1 log T

n[s′,t′](a′)
,

we get for sufficiently large C1,

µt(a
∗
t )− µt(a

g
t ) ≤ 2

√
2 log T

n[β`,i,t](a
g
t )− 1

≤ 2

√
2 log T

b(t− β`,i + 1)/Kc − 1
.

Summing over t ∈ I`,i gives∑
t∈I`,i∩B`,1

[µt(a
∗
t )− µt(a

g
t )] ≤ 2K + 4

√
2K|I`,i| log T

and summing over all intervals gives∑
`

∑
t∈B`,1

[µt(a
∗
t )− µt(a

g
t )] = O

(√
KLT log T

)
. (10)
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B.2. Case t ∈ B`,2
In this case a∗t is among the bad arms and µt(a∗t )− µ̃`(a∗t ) > ∆̃`(a

∗
t )/2. We show that the change

in the mean of a∗t can be detected relatively quickly.
Let t ∈ I`,i. We start by bounding the regret in terms of ∆̃`(a

∗
t ). Let [s′, t′] be the interval

through which a∗t was evicted from the good arms. Then, by using (3),

µt(a
∗
t )− µt(a

g
t ) ≤ µt(a∗t )− µ̃`(a∗t ) + µ̃`(a

∗
t )− µ̂[β`,i,t](a

g
t ) +

√
2 log T

n[β`,i,t](a
g
t )

≤ µt(a∗t )− µ̃`(a∗t ) + µ̂[s′,t′](a
∗
t )− µ̂[s′,t′](a

g
t ) +

√
2 log T

n[s′,t′](a
g
t )

+ 2

√
2 log T

n[β`,i,t](a
g
t )

≤ µt(a∗t )− µ̃`(a∗t ) +

√
C1 log T

n[s′,t′](a
∗
t )− 1

+ 2

√
2 log T

n[β`,i,t](a
g
t )

≤ µt(a∗t )− µ̃`(a∗t ) + ∆̃`(a
∗
t ) + 2

√
2 log T

n[β`,i,t](a
g
t )

≤ 3[µt(a
∗
t )− µ̃`(a∗t )] + 2

√
2 log T

n[β`,i,t](a
g
t )

for sufficiently large C1.
For t ∈ I`,i, let εi be the largest ε = ∆̃`(a

∗
t )/2

j such that ε ≤ [µt(a
∗
t ) − µ̃`(a

∗
t )]/8, and

ni = d(2 log T )/ε2i e. Then [µt(a
∗
t )− µ̃`(a∗t )] ≤ 16εi and the regret is bounded as

µt(a
∗
t )− µt(a

g
t ) ≤ 48εi + 2

√
2 log T

n[β`,i,t](a
g
t )
.

Since n[β`,i,t](a
g
t ) ≥ b(t− β`,i + 1)/Kc, the overall contribution to the regret of the second term on

the right hand side is

∑
`,i

∑
t∈I`,i∩B`,2

2

√
2 log T

n[β`,i,t](a
g
t )

=
∑
`,i

O

(√
K|I`,i| log T

)
= O

(√
KLT log T

)
.

The overall contribution of small εi, εi ≤
√
K(log T )/|I`,i|, is also at most O

(√
KLT log T

)
.

Thus we consider only εi >
√
K(log T )/|I`,i|.

For the first term 48εi, we start with considering intervals of small size, |I`,i| < 2Kni. The
contribution of such an interval is bounded as

2Kniεi ≤ 4K(log T )/εi +K ≤ 4
√
K|I`,i|(log T ) +K.

Summing over all such intervals gives again O
(√
KLT log T

)
.

Finally, we consider the contribution of εi in large intervals, |I`,i| ≥ 2Kni. If the algorithm
selects a∗t in the interval I`,i for ni times, ni = n[β`,i,t](a

∗
t ), then by Assumption 6, the conditions
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of B`,2, and since
√

2(log T )/ni ≤ εi ≤ [µt(a
∗
t )− µ̃`(a∗t )]/8, we have

µ̂[β`,i,t](a
∗
t )− µ̃`(a∗t ) > µt(a

∗
t )− µ̃`(a∗t )−

√
2 log T

ni

≥ µt(a∗t )− µ̃`(a∗t ) +

√
2 log T

ni
− 2εi

≥ 3

4
[µt(a

∗
t )− µ̃`(a∗t )] +

√
2 log T

ni
≥ ∆̃`(a

∗
t )/4 +

√
2 log T

ni
,

such that condition (4) for starting a new episode is satisfied. Such selections of arm a∗t are enforced,
if the algorithm adds the checking obligation (εi, ni, s) to Ss(a∗t ) for any β`,i ≤ s ≤ β`,i+1 −Kni.

Let J1, . . . , JN , Jk = [αk, αk+1 − 1], be the partition of [1, T ] into intervals without change.
Then µs1(a) = µs2(a) for s1, s2 ∈ Jk and any arm a, and µαk(a) 6= µαk+1

(a) for some arm a.
Note that each I`,i is subset of some Jk, and that the intervals I`,i are random and depend on the
random rewards observed by the algorithm.

We will prove a bound on the total future expected contributions of the εi when t ∈ B`,2 and
t is in a large interval, starting from the current interval I`,i with starting point β`,i. We denote
this contribution by R`,i which is conditioned on β`,i. Let I`,i ⊆ Jk. We will show by backward
induction that

R`,i ≤
L∑
l=`

√
KT log T

l
+ 4
√
K(log T )(2L− k − `)(T + 1− β`,i).

This is obviously true after all time steps when β`,i = T + 1.
Since we are interested only in large intervals, we assume that αk+1 − β`,i ≥ ni. A change

is detected if a checking obligation (εi, ni, s) is executed, and such a checking obligation is added
with probability p`εi, p` =

√
`/(KT log T ). Thus the contribution R′`,i within interval I`,i is at

most

R′`,i ≤ εi

αk+1−β`,i−Kni∑
h=1

(1− p`εi)h +Kni

 ≤ εi [1− (1− p`εi)αk+1−β`,i−Kni

p`εi
+Kni

]
=

1

p`

[
1− (1− p`εi)αk+1−β`,i−Kni

]
+Kniεi

≤ 1

p`

[
1− (1− p`εi)αk+1−β`,i−Kni

]
+ 4K(log T )/εi.

Let q`,i be the probability that episode ` does not end within I`,i, which means that β`,i+1 = αk+1.
Then

q`,i ≤ (1− p`εi)αk+1−β`,i−Kni
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and by induction

R`,i ≤ R′`,i + q`,iR`,i+1 + (1− q`,i)R`+1,1

≤ 1

p`
[1− q`,i] + 4q`,i

√
K(log T )(αk+1 − β`,i) + 4(1− q`,i)

√
K(log T )(β`+1,1 − β`,i)

+
q`,i
p`

+

L∑
l=`+1

1

pl

+ 4q`,i
√
K(log T )(2L− k − `− 1)(T + 1− αk+1)

+ 4(1− q`,i)
√
K(log T )(2L− k − `− 1)(T + 1− β`+1,1)

≤
L∑
l=`

1

pl
+ 4
√
K(log T )(2L− k − `)(T + 1− β`,i),

since
√
x+
√
ny ≤

√
(n+ 1)(x+ y). The total contribution of long intervals is bounded by

R1,1 ≤ 2
√
KLT log T + 4

√
2KLT (log T ),

which concludes the regret analysis.
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