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Abstract
In the general submatrix detection problem, the task is to detect the presence of a small k × k
submatrix with entries sampled from a distribution P in an n × n matrix of samples from Q.
This formulation includes a number of well-studied problems, such as biclustering when P and
Q are Gaussians and the planted dense subgraph formulation of community detection when the
submatrix is a principal minor and P and Q are Bernoulli random variables. These problems all
seem to exhibit a universal phenomenon: there is a statistical-computational gap depending on P
andQ between the minimum k at which this task can be solved and the minimum k at which it can
be solved in polynomial time.

Our main result is to tightly characterize this computational barrier as a tradeoff between k
and the KL divergences between P andQ through average-case reductions from the planted clique
conjecture. These computational lower bounds hold given mild assumptions on P and Q arising
naturally from classical binary hypothesis testing. In particular, our results recover and generalize
the planted clique lower bounds for Gaussian biclustering in Ma and Wu (2015); Brennan et al.
(2018) and for the sparse and general regimes of planted dense subgraph in Hajek et al. (2015);
Brennan et al. (2018). This yields the first universality principle for computational lower bounds
obtained through average-case reductions.

To reduce from planted clique to submatrix detection for a specific pair P andQ, we introduce
two techniques for average-case reductions: (1) multivariate rejection kernels which perform an
algorithmic change of measure and lift to a larger submatrix while obtaining an optimal tradeoff in
KL divergence, and (2) a technique for embedding adjacency matrices of graphs as principal mi-
nors in larger matrices that handles distributional issues arising from their diagonal entries and the
matching row and column supports of the k × k submatrix. We suspect that these techniques have
applications in average-case reductions to other problems and are likely of independent interest.
We also characterize the statistical barrier in our general formulation of submatrix detection.
Keywords: statistical-computational gaps, average-case reductions, planted clique conjecture, uni-
versality, submatrix detection, community detection

1. Introduction

In the general submatrix detection problem, the task is to detect the presence of a small k × k
submatrix with entries sampled from a distribution P in an n × n matrix of samples from Q. This
problem arises in many natural contexts for specific pairs of distributions (P,Q). When P and
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Q are Gaussians, this yields the well-studied problem of biclustering arising from applications in
analyzing microarray data Shabalin et al. (2009). A large body of work has studied the information-
theoretic lower bounds, algorithms and limitations of restricted classes of algorithms for biclustering
Butucea and Ingster (2013); Montanari et al. (2015); Shabalin et al. (2009); Kolar et al. (2011);
Balakrishnan et al. (2011); Chen and Xu (2016); Cai et al. (2017). When the k × k submatrix
is a principal minor and P and Q are Bernoulli random variables, general submatrix detection
becomes the planted dense subgraph formulation of community detection. This problem has also
been studied extensively from algorithmic and information-theoretic viewpoints Arias-Castro et al.
(2014); Butucea and Ingster (2013); Verzelen et al. (2015); Chen and Xu (2016); Montanari (2015);
Candogan and Chandrasekaran (2018); Hajek et al. (2016a).

The best known algorithms for both the Gaussian and Bernoulli problems seem to exhibit a
peculiar phenomenon: there appears to be a statistical-computational gap between the minimum
k at which this task can be solved and the minimum k at which it can be solved in polynomial
time. Tight statistical-computational gaps for both biclustering and several parameter regimes of
planted dense subgraph were recently established through average-case reductions from the planted
clique conjecture Ma and Wu (2015); Hajek et al. (2015); Brennan et al. (2018). Furthermore, the
regimes in which these problems are information-theoretically impossible, statistically possible but
computational hard and admit polynomial time algorithms appear to have a common structure. This
raises the following natural question:

Question 1.1 Are the statistical-computational gaps for general submatrix detection a universal
phenomenon regardless of the specific pair of distributions (P,Q)?

We answer this question for a wide class of pairs of distributions (P,Q). Our main result is
to tightly characterize this computational barrier as a tradeoff between k and the KL divergences
between P and Q through average-case reductions from the planted clique conjecture. These com-
putational lower bounds hold given mild assumptions on P and Q arising naturally from classical
binary hypothesis testing. Our results recover and widely generalize the planted clique lower bounds
for Gaussian biclustering in Ma and Wu (2015); Brennan et al. (2018) and for the sparse and general
regimes of planted dense subgraph in Hajek et al. (2015); Brennan et al. (2018). This yields the first
universality principle for computational lower bounds obtained through average-case reductions.
We also characterize the statistical barrier in our general formulation of submatrix detection.

Average-case reductions are notoriously brittle in the sense that most natural maps designed
for worst-case problems fail to faithfully map a natural distribution to a natural distribution over
the target problem. A universality result obtained through an average-case reduction necessarily
overcomes this barrier in a strong way as it would have to simultaneously map to an entire set
of natural distributions over the target problem. A main contribution of the paper is to introduce
techniques handling subtle technical obstacles that arise when devising such a reduction.

Our results are close in flavour to several previous works showing universal phenomena in the
context of submatrix problems. In Montanari (2015), approximate message passing algorithms
were shown to recover the support of the planted submatrix under regularity conditions on (P,Q).
Hajek et al. (2016b) analyzed semidefinite programming algorithms also under regularity conditions
on (P,Q). In Hajek et al. (2017), the information-theoretic thresholds for submatrix localization
– the recovery variant of our detection problem – were shown under very mild assumptions on
(P,Q), characterizing the statistical limit of the problem over a large universality class. In Lesieur
et al. (2015); Deshpande et al. (2015); Krzakala et al. (2016), information-theoretic thresholds for
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universal formulations of rank-one matrix estimation were established by analyzing approximate
message passing and Guerra’s interpolation argument. Our work is the first to analyze both the
information-theoretic and computational lower bounds for submatrix detection universally and the
first work we are aware of producing a universality class of computational lower bounds for any
problem. The conditions on (P,Q) for our computational lower bounds are mild and similar to
those in Hajek et al. (2017).

1.1. Contributions to Techniques for Average-Case Reductions

One of our main contributions is to introduce two new techniques for average-case reductions that
are of independent interest. This work is part of a growing body of literature establishing statistical-
computational gaps in high-dimensional inference problems based on average-case reductions. Pre-
vious reductions include lower bounds for testing k-wise independence Alon et al. (2007), RIP
certification Wang et al. (2016a); Koiran and Zouzias (2014), matrix completion Chen (2015) and
sparse PCA Berthet and Rigollet (2013b,a); Wang et al. (2016b); Gao et al. (2017); Brennan and
Bresler (2019). A number of techniques were introduced in Brennan et al. (2018) to provide the
first web of average-case reductions to problems including planted independent set, planted dense
subgraph, sparse spiked Wigner, sparse PCA, the subgraph stochastic block model and biclustering.
More detailed surveys of this area can be found in the introduction section of Brennan et al. (2018)
and in Wu and Xu (2018). In this work, we introduce the following two techniques to map from a
generalization of planted clique to general submatrix detection:

• Multivariate Rejection Kernels: These are randomized maps that perform an algorithmic
change of measure and lift to a larger submatrix while obtaining an optimal tradeoff in KL
divergence that matches the target lower bounds for submatrix detection.

• Planting Diagonals by Embedding as a Minor: This is a technique for embedding ad-
jacency matrices of graphs as principal minors in larger matrices. It handles distributional
issues arising from missing diagonal entries in adjacency matrices and the matching row and
column supports of the k × k submatrix.

The latter technique solves a central obstacle in the reductions of Ma and Wu (2015), Hajek et al.
(2015), and Brennan et al. (2018) to biclustering and planted dense subgraph. In Hajek et al. (2015),
it is noted that the main issue leading to the complicated analysis of their reduction arises from the
missing diagonal entries in the adjacency matrix of planted clique, which on lifting get mapped
to “holes” in the community. In Brennan et al. (2018), this same obstacle was overcome through
DISTRIBUTIONAL-LIFTING, an involved technique first performing a change of measure and then
iteratively lifting the resulting problem. However, neither of these reductions generalize to the
universal setting with arbitrary (P,Q). Our second technique resolves this obstacle cleanly and is
crucial to yielding lower bounds for arbitrary (P,Q).

1.2. Outline of the Paper

The paper is structured as follows. In Section 2, we formally define the general submatrix problem
and motivate some assumptions on (P,Q) from classical binary hypothesis testing. In Section 3, we
give general statements of our universality results for computational and statistical barriers. We also
specialize these results to universality classes over which we can obtain complete characterizations

3



UNIVERSAL REDUCTIONS TO SUBMATRIX DETECTION

of the computational phase diagram for submatrix detection. In Section B, we provide preliminaries
on average-case reductions in total variation. In Section C, we introduce and analyze multivariate
rejection kernels. In Section D, we give our general average-case reduction TO-SUBMATRIX. In
Section E, we deduce computational lower bounds from this reduction and analyze simple test
statistics showing achievability of these lower bounds. In Section F, we establish the statistical
limits of submatrix detection. In Section G, we discuss the strength of the assumptions giving rise
to our main three universality classes UC-A, UC-B and UC-C and the distributions that they contain.
In Section H, we discuss open problems remaining after this work.

2. Submatrix Problems and Conditions for Universality

2.1. General Submatrix Detection

The primary focus in this work are detection problems, wherein an algorithm is given a set of
observations and tasked with distinguishing between two hypotheses:

• a uniform hypothesis H0, under which observations are generated from the natural noise
distribution for the problem; and

• a planted hypothesis H1, under which observations are generated from the same noise distri-
bution but modified by planting a latent sparse structure.

In the problems we consider, H0 and H1 are typically both simple hypothesis consisting of a single
distribution. As discussed in Brennan et al. (2018) and Hajek et al. (2015), lower bounds for simple
vs. simple hypothesis testing formulations are stronger and technically more difficult than for for-
mulations involving composite hypotheses. For a given detection problem, the goal is to design an
algorithm A(X) ∈ {0, 1} that classifies an input X with low asymptotic Type I+II error

lim sup
n→∞

{PH0 [A(X) = 1] + PH1 [A(X) = 0]}

where n is the parameter indicating the size of X . If the asymptotic Type I+II error of A is zero,
then we say A solves the detection problem. We now define the universal formulation of submatrix
detection that will be our main object of study. Throughout this paper, (P,Q) will either denote
a fixed pair of distributions over a measurable space (X,B) or, when there is a natural problem
parameter n, implicitly denote a pair of sequences of distributions P = (Pn) and Q = (Qn).

Definition 1 (General Symmetric Index Set Submatrix Detection) Given a pair of distributions
(P,Q) over a measurable space (X,B), let SSD(n, k,P,Q) denote the hypothesis testing problem
with observation M ∈ Xn×n and hypotheses

H0 : M ∼ Q⊗n×n and H1 : M ∼M(n, k,P,Q)

where M(n, k,P,Q) is the distribution of matrices M with entries Mij ∼ P if i, j ∈ S and
Mij ∼ Q otherwise that are conditionally independent given S, which is chosen uniformly at
random over all k-subsets of [n].

Similarly, asymmetric index set submatrix detection ASD(n, k,P,Q) is formulated with Mij ∼
P for all (i, j) ∈ S × T where both S and T are chosen independently and uniformly at random
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over all k-subsets of [n]. Note that both information-theoretic and computational lower bounds for
SSD are stronger than for ASD, since an instance of ASD can be obtained from SSD by randomly per-
muting its column indices. Similarly, algorithms for ASD are stronger since permuting the columns
of SSD and applying an ASD blackbox yields an algorithm for SSD. In this work, we characterize the
statistical and computational barriers in these and related problems through average-case reductions
from the planted clique conjecture. For this to be possible, it is necessary to impose assumptions on
(P,Q) so that submatrix detection is well-posed. The next section is devoted to identifying several
reasonable and natural assumptions on (P,Q).

2.2. Natural Assumptions from Classical Binary Hypothesis Testing

Our objective is to examine the statistical-computational tradeoffs that arise in submatrix detection
as a high-dimensional problem with hidden structure. More precisely, we aim to capture the tradeoff
between the dimension k of the hidden submatrix and how distinguishable the two distributions P
and Q are. For this to be possible, the problem of testing between P and Q needs to be well-posed.
Consider the classical binary hypothesis testing formulation of this task with i.i.d. observations
X1, X2, . . . , Xm where

H0 : X1, X2, . . . , Xm ∼i.i.d. Q and H1 : X1, X2, . . . , Xm ∼i.i.d. P

Note that given the latent submatrix indices S, the problem of distinguishing between H0 and H1

in SSD reduces exactly to this classical binary hypothesis testing task with m = k2 samples.
In order to capture the tradeoffs that arise because of hidden structure in high dimensions, SSD

ought to be easy to solve given S. By the Neyman-Pearson Lemma, the optimal test is a log-
likelihood ratio (LLR) test that outputs H1 if

m∑
i=1

L(Xi) ≥ mτ where L(x) = log
dP
dQ

(x)

for some threshold mτ and where L : X → R is the LLR or logarithm of the Radon-Nikodym
derivative between P andQ. We assume that L can be computed efficiently so this test is computa-
tionally feasible. Note that ifQ and P are not close to mutually absolutely continuous distributions
in total variation, then there would be a non-negligible probability of seeing samples from one not in
the support of the other. We assume they are exactly mutually absolutely continuous for simplicity
and so L is well-defined. We also assume that the expectations of the LLR with respect to P and Q
are finite, or in other words that dKL(P‖Q) and dKL(Q‖P) are finite.

The error of this test resolves to the tails of the distribution of the LLR under each of P andQ at
the thresholdmτ . Standard Chernoff bounds on these tails yield that if τ ∈ [−dKL(P‖Q), dKL(Q‖P)],

PH0

[
m∑
i=1

L(Xi) ≥ mτ

]
≤ exp (−m · EQ(τ))

PH1

[
m∑
i=1

L(Xi) < mτ

]
≤ exp (−m · EP(τ))

Here, the Chernoff exponents EP , EQ : R → [−∞,∞) are the Legendre transforms of the log-
moment generating functions

EQ(τ) = sup
λ∈R

λτ − ψQ(λ) and EP(τ) = sup
λ∈R

λτ − ψP(λ)
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where ψQ(τ) = logEQ[exp(λL)] and ψP(τ) = logEP [exp(λL)]. Observe that ψP(λ) = ψQ(λ+
1) and thusEQ(τ)+τ = EP(τ). Note thatψ′Q(0) = −dKL(P‖Q). It is well known that λτ−ψQ(λ)
is concave and has derivative at zero given by τ + dKL(P‖Q). This implies that the maximizer λ∗

to the concave optimization EQ(τ) can be taken to be nonnegative if τ ≥ −dKL(P‖Q). The
same is true for EP(τ) if τ ≤ dKL(Q‖P), justifying the Chernoff bounds above. We also re-
mark that EQ and EP are nonnegative convex functions and are minimized at EQ(−dKL(Q‖P)) =
EP(dKL(P‖Q)) = 0.

Note that statements of the form EQ(τ) ≥ β or EP(τ) ≥ β correspond to large deviation
principles (LDP) for the LLR under Q and P . Our main contribution is show that the tradeoff
between k and the KL divergence between P andQ dictates the computational barrier for submatrix
detection as long as the LLR has LDPs under Q and P . We devise an average-case reduction to
show this given the planted clique conjecture. Our results are described in more detail in the next
section. The natural assumptions arising from the discussion above are summarized in the following
definition of computable pairs (P,Q), that we will adopt throughout the rest of the paper.

Definition 2 (Computable Pair of Distributions) Define a pair of sequences of distributions (P,Q)
over a measurable space (X,B) where P = (Pn) and Q = (Qn) to be computable if:

1. there is an oracle producing a sample from Qn in poly(n) time;

2. Pn and Qn are mutually absolutely continuous and the likelihood ratio satisfies

Ex∼Qn
[
dPn
dQn

(x)

]
= Ex∼Pn

[(
dPn
dQn

(x)

)−1]
= 1

where dPn
dQn is the Radon-Nikodym derivative.

3. the KL divergences dKL(Pn‖Qn) and dKL(Qn‖Pn) are both finite; and

4. there is an oracle computing dPn
dQn (x) in poly(n) time for each x ∈ X .

We assume that algorithms solving our submatrix detection problems have access to these or-
acles and to the values dKL(P‖Q) and dKL(Q‖P). The oracles appearing in this definition can be
viewed as part of the computational model that we adopt. In particular, when these oracles can
be implemented in computational models such as BPP, so can our reductions. We remark that the
assumptions and discussion in this section are similar to the setup in Hajek et al. (2017), which
showed universality of information-theoretic lower bounds for submatrix recovery. See Sections
2.1 and 3 in Hajek et al. (2017) for further discussion of related assumptions on P and Q.

3. Summary of Results

Our main result is an average-case reduction from planted clique showing a computational lower
bound for submatrix detection in terms of KL divergence when the LLR has LDPs under Q and
P . We now briefly define the planted clique and planted dense subgraph problems as well as the
planted clique and planted dense subgraph conjectures.

The planted dense subgraph problem PDS(n, k, p, q) with edge densities 0 < q < p ≤ 1 is the
hypothesis testing problem between

H0 : G ∼ G(n, q) and H1 : G ∼ G(n, k, p, q)
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where G(n, q) denotes an Erdős-Rényi random graph with edge probability q. Here, G(n, k, p, q)
denotes the random graph formed by sampling G(n, q) and replacing the induced graph on a subset
S of size k chosen uniformly at random with a sample from G(k, p). The planted clique prob-
lem PC(n, k, p) is then PDS(n, k, 1, p). There are many polynomial-time algorithms in the litera-
ture for finding the planted clique in G(n, k, p), including approximate message passing, semidef-
inite programming, nuclear norm minimization and several combinatorial approaches Feige and
Krauthgamer (2000); McSherry (2001); Feige and Ron (2010); Ames and Vavasis (2011); Dekel
et al. (2014); Deshpande and Montanari (2015); Chen and Xu (2016). All of these algorithms re-
quire that k = Ω(

√
n) if p is constant, despite the fact that the planted clique can be found by

exhaustive search as soon as k is larger than 2 log1/p n. This leads to the following conjecture.

Conjecture 3 (PC Conjecture) Fix some constant p ∈ (0, 1). Suppose that {An} is a sequence of
randomized polynomial time algorithmsAn : Gn → {0, 1} and kn is a sequence of positive integers
satisfying that lim supn→∞ logn kn <

1
2 . Then if G is an instance of PC(n, k, p), it holds that

lim inf
n→∞

(PH0 [An(G) = 1] + PH1 [An(G) = 0]) ≥ 1.

The PC Conjecture can be seen, through a simple reduction erasing random edges, to imply a
similar barrier at k = o(

√
n) for PDS(n, k, p, q) if 0 < q < p ≤ 1 are constants. We refer to this as

the PDS Conjecture. We can now state our main computational lower bounds. Judging the quality
of these bounds is easy in cases where they can be achieved by efficient algorithms. We describe a
set of universality classes of (P,Q) for which this is true in Section 3.1.

Theorem 4 (Main Computational Lower Bounds) Let p ∈ (0, 1) be a fixed constant and (P,Q)
be a computable pair over (X,B) such that either:

• k = Ω(
√
n) and k4

n2 · dKL(P‖Q)→ 0 and the LLR between (P,Q) satisfies the LDP

EP (m) ≥ ω(m log n)

for some positive m with dKL(P‖Q) ≤ m = o(n2/k4)

• k = o(
√
n) and dKL(P‖Q) < log p−1 and the LLR between (P,Q) satisfies the LDP

EP
(
log p−1

)
≥ 2 log n+ ω(1)

Then assuming the PC conjecture at density p, there is no randomized polynomial time algorithm
solving SSD(n, k,P,Q) with asymptotic Type I+II error less than one.

This is the simplest theorem statement of our lower bounds. A more general computational
lower bound starting from the PDS Conjecture and including the heteroskedastic formulation of
submatrix detection with different pairs (Pij ,Qij) at each entry is stated in Section E. We also give
an alternative version requiring weaker bounds on EP and showing a slightly weaker formulation
of the same computational lower bounds. In addition to computational lower bounds, we show
information-theoretic lower bounds and give inefficient and polynomial time tests providing upper
bounds at the barriers in submatrix detection. In Sections E.2 and F.2, we give general statements
of these results given lower bounds on EP and EQ similar to the conditions in the theorem above.
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Figure 1: Computational and statistical barriers in SSD(n, k,P,Q) where (P,Q) is in UC-A, UC-B

and UC-C with k = Θ̃(nβ) and dSKL(P,Q) = Θ̃(n−α).

3.1. Universality Class with a Complete Phase Diagram

We now outline several assumptions on a computable pair (P,Q) that allow our results to com-
pletely characterize the computational phase diagram for SSD(n, k,P,Q), by providing lower bounds
on EP and EQ. The first class we consider is a universality class that allows our average-case re-
duction to show lower bounds for submatrix detection.

Definition 5 (Universality Class UC-A) Define (P,Q) to be in the universality class UC-A if (P,Q)
is computable and for any fixed ε ∈ (0, 1), it holds that

EP(nε · dKL(Pn‖Qn)) = Ω(nε · dKL(Pn‖Qn) · log n)

The next universality class UC-B that we consider ensures the simple test statistics introduced
in Sections E.2 and F.2 show achievability at the computational and statistical barriers. This class is
introduced as Assumption 2 in Hajek et al. (2017) and is weaker than sub-Gaussianity of the LLR.

Definition 6 (Universality Class UC-B) Define (P,Q) to be in the universality class UC-B if (P,Q)
is computable and there is a constant C ≥ 1 such that

ψP(λ)− dKL(P‖Q) · λ ≤ C · dKL(P‖Q) · λ2 for all λ ∈ [−1, 0]

ψQ(λ) + dKL(Q‖P) · λ ≤ C · dKL(Q‖P) · λ2 for all λ ∈ [−1, 1]

Our last universality class ensures that the information-theoretic lower bound that we show in
Section F.1 matches the upper bound from Section F.2. Let dSKL(P,Q) = dKL(P‖Q) +dKL(Q‖P)
denote symmetric KL divergence.

Definition 7 (Universality Class UC-C) Define (P,Q) to be in the universality class UC-C if (P,Q)
there is a constant C ′ > 0 such that χ2(P‖Q) ≤ C ′ · dSKL(P,Q).
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In Sections E and F, we specialize our theorems on information-theoretic and computational up-
per and lower bounds to these three universality classes. This yields the following characterization
of the computational phase diagram for SSD(n, k,P,Q) when (P,Q) is in UC-A, UC-B and UC-C.
These regimes are depicted in Figure 1. Here,� hides factors that are sub-polynomial n.

Theorem 8 (Submatrix Detection Phase Diagram) The regions of the computational phase dia-
gram in SSD(n, k,P,Q) are:

• (Statistically Impossible) if (P,Q) is in UC-C then SSD is impossible if

dSKL(P,Q)� 1

k
∧ n

2

k4

• (PC-Hard) if (P,Q) is in UC-A then SSD is PC-hard but possible if

1

k
∧ n

2

k4
� dSKL(P,Q)� n2

k4
∧ 1

• (Polynomial Time Algorithms) if (P,Q) is in UC-B then SSD can be solved in poly(n) time if

n2

k4
∧ 1� dSKL(P,Q)

In Section G, we discuss the three universality classes UC-A, UC-B and UC-C and sub-classes of
distributions that they contain. For example, these three classes contain the following pairs (P,Q):

• Pairs (P,Q) with sub-Gaussian LLR i.e. with L = log dP
dQ(x) for x ∼ Q is sub-Gaussian.

• Pairs (P,Q) with bounded LLR i.e. with L = log dP
dQ(x) for x ∼ Q is bounded almost surely.

• A wide variety of other pairs (P,Q) from a common exponential family. The computations
in Appendix B of Hajek et al. (2017) provide a simple method for determining if pairs (P,Q)
from an exponential family are in UC-B. This same method can be applied to check member-
ship in UC-A and UC-C.

The class UC-B is discussed at length in Sections 2.1, 3 and Appendix B of Hajek et al. (2017). In
Section G, we observe that these properties imply that the following three important computable
pairs are in all three of the classes UC-A, UC-B and UC-C:

(DBC) P = N (µ, 1) and Q = N (0, 1) where µ = n−α for some α > 0, in which case SSD

corresponds to Gaussian biclustering;

(DSP) P = Bern(p) and Q = Bern(q) where p = cq = cn−α for some constant c > 1 and α > 0,
in which case the above diagonal entries of SSD are the adjacency matrix of an instance of
sparse planted dense subgraph; and

(DGP) P = Bern(p) and Q = Bern(q) where p = q + Θ(n−γ) and q = n−α for some constants
γ > α > 0, in which case the above diagonal entries of SSD are the adjacency matrix of an
instance of general planted dense subgraph.

The fact that these three examples are in our universality classes implies that our average-case
reduction recovers and generalizes the planted clique lower bounds for Gaussian biclustering in
Ma and Wu (2015); Brennan et al. (2018) and for the sparse and general regimes of planted dense
subgraph in Hajek et al. (2015); Brennan et al. (2018). For the two graph problems, this is achieved
by constructing a graph from the above diagonal terms of the matrix output by the reduction.
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Algorithm MRK(B)

Parameters: Input B ∈ {0, 1}, parameter n, number of iterations N , dimension ` = poly(n),
Bernoulli probabilities 0 < q < p ≤ 1 and ` pairs of computable sequences of distributions
(P i,Qi) for i ∈ {1, 2, . . . , `} over the measurable space (X,B)

1. Initialize z = (z1, z2, . . . , z`) arbitrarily in the support of Q1
n ⊗Q2

n ⊗ · · · ⊗ Q`n

2. Until z is set or N iterations have elapsed:

(1) Form z′ = (z′1, z
′
2, . . . , z

′
`) where z′i ∼ Qin is sampled independently for each i ∈

{1, 2, . . . , `} and compute the log-likelihood ratio

Ln(z′) =
∑̀
i=1

log
dP in
dQin

(z′i)

(2) Proceed to the next iteration if it does not hold that

log

(
1− p
1− q

)
≤ Ln(z′) ≤ log

(
p

q

)
(3) If B = 0, then set z ← z′ with probability 1− q

p · exp(Ln(z′))

(4) If B = 1, then set z ← z′ with probability q
p · exp(Ln(z′))− q(1−p)

p(1−q)

3. Output z

Figure 2: Multivariate rejection kernel algorithm with Bernoulli input B ∈ {0, 1}.

4. Overview of Average-Case Reduction Techniques

In this section, we give a preview of multivariate rejection kernels as well as our reduction from
planted clique to general submatrix detection. Some of the material in this section is repeated in the
Appendix for clarity. We provide formal theorem statements with guarantees for our reductions in
Sections C and D.

4.1. Multivariate Rejection Kernels

The first average-case technique we introduce is multivariate rejection kernels, which effectively
perform an algorithmic change of measure simultaneously with a lift. These are the maps MRK(B),
shown in Figure 2, that send a binary input B ∈ {0, 1} to a higher dimensional space X` simulta-
neously satisfying two Markov transition properties:

1. if B ∼ Bern(p), then MRK(B) is close to P1
n ⊗ P2

n ⊗ · · · ⊗ P`n in total variation; and

2. if B ∼ Bern(q), then MRK(B) is close to Q1
n ⊗Q2

n ⊗ · · · ⊗ Q`n in total variation.

10
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where 0 < q < p ≤ 1 are fixed and (P i,Qi) are pairs of computable sequences of distributions
over a common measurable space (X,B) for i ∈ {1, 2, . . . , `}. The maps MRK will be a key part
of our reduction to SSD, lifting planted dense subgraph and planted clique instances to instances of
submatrix detection with independent entries and the correct marginals.

These maps MRK use rejection sampling to transform the distribution of the input from either
one of two input Bernoulli distributions to two `-fold product distributions, without knowing which
of the two distributions was the input. Multivariate rejection kernels are closely related to previous
average-case reduction techniques in the literature. Univariate Markov transitions taking Bern(1)
and Bern(q) to either a fixed pair of Bernoulli distributions or a fixed pair of normal distributions
were introduced in Ma and Wu (2015) and Gao et al. (2017). More closely related to our map are the
rejection kernel framework introduced in Brennan et al. (2018) and the reduction from planted clique
to planted dense subgraph in Hajek et al. (2015). The rejection kernels in Brennan et al. (2018) used
a similar rejection sampling scheme as we use here to map binary inputs to distributions on R. In
Brennan et al. (2018), it is assumed that both of the target distributions fX and gX have explicit
density or mass functions and have sampling oracles. In contrast, our map MRK only requires
the Radon-Nikodym derivatives dPin

dQin
exist and that there is a sampling oracle for the target noise

distributionsQin rather than for P in as well, keeping the assumptions on (P i,Qi) relatively minimal.
All of the univariate maps in Ma and Wu (2015), Gao et al. (2017) and Hajek et al. (2015) rely

on sampling explicit mass or density functions that are linear combinations of the target distribu-
tions. This requires time at least the size of the support of the target distribution or of a sufficiently
fine net of its support. In the multivariate case mapping to distributions on X`, the size of this
support grows exponentially in ` and this sampling scheme is not feasible in polynomial time. The
rejection sampling scheme used here circumvents this issue and is crucial in our reduction to general
submatrix detection.

4.2. Average-Case Reduction to Submatrix Detection

Figure 3 shows the pseudocode for our main average-case reduction TO-SUBMATRIX from planted
dense subgraph to general submatrix detection. As stated, our reduction produces an instance of the
more general problem of heteroskedastic submatrix detection, where each entry is allowed to have
a different computable pair (Pij ,Qij). It also begins with an instance of planted dense subgraph,
providing a more general class of reductions than just from planted clique. The additional submatrix
problems this implies hardness for are discussed in Section E.

As shown, this reduction begins by cloning the adjacency matrix of a planted dense subgraph
instance to produce two independent samples of the above diagonal portions of their adjacency
matrix. These are then embedded as two halves of a principal minor in a larger matrix in Step 2.
This random embedding hides the previously missing diagonal terms in total variation. Analyzing
this step is one of our technical contributions. The resulting Bernoulli submatrix problem is then
lifted using MRK maps to an instance of heteroskedastic submatrix detection.

This reduction succeeds in mapping to the target submatrix problem as long as the pairs of
planted and noise distributions (Pij ,Qij) are computable and satisfy an LDP of their LLR. Our
reduction implies the computational lower bounds for Gaussian biclustering and planted dense sub-
graph in Ma and Wu (2015), Hajek et al. (2015) and Brennan et al. (2018). The step of embedding
as a principal minor in Step 2 circumvents the arguments in Hajek et al. (2015) and Brennan et al.
(2018) showing that the total variation error introduced by missing diagonal entries is small. It also

11
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Algorithm TO-SUBMATRIX

Inputs: Graph G ∈ Gn, parameters 0 < q < p ≤ 1, intermediate dimension N , expansion factor `,
number of iterations Nit, subgraph size k, pairs of computable sequences of distributions (Pij ,Qij)
for 1 ≤ i, j ≤ N` over the measurable space (X,B)

1. Apply GRAPH-CLONE to G with edge probabilities P = p and Q = 1−
√

(1− p)(1− q) +
1{p=1}

(√
q − 1

)
and t = 2 clones to obtain (G1, G2)

2. Sample s1 ∼ Bin(n, p), s2 ∼ Bin(N,Q) and a set S ⊆ [N ] with |S| = n uniformly at
random. Sample T1 ⊆ S and T2 ⊆ [N ]\S with |T1| = s1 and |T2| = max{s2 − s1, 0}
uniformly at random. Now form the matrix M1 ∈ {0, 1}N×N where

M1
ij =


1{π(i),π(j)}∈E(G1) if i < j and i, j ∈ S
1{π(i),π(j)}∈E(G2) if i > j and i, j ∈ S
1{i∈T1} if i = j and i, j ∈ S
1{i∈T2} if i = j and i, j 6∈ S
∼i.i.d. Bern(Q) if i 6= j and i 6∈ S or j 6∈ S

where π : S → [n] is a bijection chosen uniformly at random

3. Let τ be a random permutation of [N`] and form the matrix M2 ∈ XN`×N` by setting(
M2
ij : s`+ 1 ≤ τ−1(i) ≤ (s+ 1)` ∧ t`+ 1 ≤ τ−1(j) ≤ (t+ 1)`

)
= MRKst

(
M1

(s+1)(t+1)

)
for each 0 ≤ s, t < N , where MRKst is the multivariate rejection kernel with Nit iterations
sending Bern(p) and Bern(Q) to the random set of `2 pairs (Pnij ,Qnij) satisfying that s`+1 ≤
τ−1(i) ≤ (s+ 1)` and t`+ 1 ≤ τ−1(j) ≤ (t+ 1)`

4. Output the matrix M2

Figure 3: Reduction TO-SUBMATRIX for showing universal computational lower bounds for sub-
matrix problems based on the hardness of planted clique or planted dense subgraph. The
pseudocode for the subroutine GRAPH-CLONE is shown in Figure 6 in Section D.

simplifies the reductions PC-LIFTING and DISTRIBUTIONAL-LIFTING in Brennan et al. (2018).
Our reduction extends the Gaussian biclustering lower bounds in Ma and Wu (2015) and Brennan
et al. (2018) to the cases of symmetric indices.
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Appendix A. Notation

In this paper, we adopt the following notation. Let L(X) denote the distribution law of a random
variableX and given two lawsL1 andL2, letL1+L2 denoteL(X+Y ) whereX ∼ L1 and Y ∼ L2
are independent. Given a distributionP , letP⊗n denote the distribution of (X1, X2, . . . , Xn) where
the Xi are i.i.d. according to P . Similarly, let P⊗m×n denote the distribution on Rm×n with i.i.d.
entries distributed as P . Let dTV, dKL and χ2 denote total variation distance, KL divergence and χ2

divergence, respectively. Let [n] = {1, 2, . . . , n} and let 1S denote the vector v ∈ Rn with vi = 1
if i ∈ S and vi = 0 if i 6∈ S where S ⊆ [n].

Appendix B. Average-Case Reductions in Total Variation

B.1. Reductions in Total Variation and the Computational Model

As introduced in Berthet and Rigollet (2013a) and Ma and Wu (2015), we give approximate reduc-
tions in total variation to show that lower bounds for one hypothesis testing problem imply lower
bounds for another. These reductions yield an exact correspondence between the asymptotic Type
I+II errors of the two problems. This is formalized in the following lemma, which is Lemma 3.1
from Brennan et al. (2018) specialized to the case of simple vs. simple hypothesis testing. Its proof
is short and follows from the definition of total variation.

Lemma 9 (Lemma 3.1 in Brennan et al. (2018)) Let PD and P ′D be detection problems with hy-
potheses H0, H1 and H ′0, H

′
1, respectively. Let X be an instance of PD and let Y be an instance of

P ′D. Suppose there is a polynomial time computable map A satisfying

dTV

(
LH0(A(X)),LH′0(Y )

)
+ dTV

(
LH1(A(X)),LH′1(Y )

)
≤ δ

If there is a randomized polynomial time algorithm solving P ′D with Type I+II error at most ε, then
there is a randomized polynomial time algorithm solving PD with Type I+II error at most ε+ δ.

If δ = o(1), then given a blackbox solver B for P ′D, the algorithm that applies A and then B
solves PD and requires only a single query to the blackbox. An algorithm that runs in randomized
polynomial time refers to one that has access to poly(n) independent random bits and must run in
poly(n) time where n is the size of the instance of the problem. For clarity of exposition, in our
reductions we assume that explicit expressions can be exactly computed and that we can sample
a biased random bit Bern(p) in polynomial time. We also assume that the oracles described in
Definition 2 can be computed in poly(n) time.

B.2. Properties of Total Variation

Throughout the proof of our main theorem, we will use the following well-known facts and inequal-
ities concerning total variation distance.

Fact B.1 The distance dTV satisfies the following properties:

1. (Triangle Inequality) Given three distributions P,Q and R on a measurable space (X ,B), it
follows that

dTV (P,Q) ≤ dTV (P,R) + dTV (Q,R)
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2. (Data Processing) Let P and Q be distributions on a measurable space (X ,B) and let f :
X → Y be a Markov transition kernel. If A ∼ P and B ∼ Q then

dTV (L(f(A)),L(f(B))) ≤ dTV(P,Q)

3. (Tensorization) Let P1, P2, . . . , Pn and Q1, Q2, . . . , Qn be distributions on a measurable
space (X ,B). Then

dTV

(
n∏
i=1

Pi,
n∏
i=1

Qi

)
≤

n∑
i=1

dTV (Pi, Qi)

4. (Conditioning on an Event) For any distribution P on a measurable space (X ,B) and event
A ∈ B, it holds that

dTV (P (·|A), P ) = 1− P (A)

5. (Conditioning on a Random Variable) For any two pairs of random variables (X,Y ) and
(X ′, Y ′) each taking values in a measurable space (X ,B), it holds that

dTV
(
L(X),L(X ′)

)
≤ dTV

(
L(Y ),L(Y ′)

)
+ Ey∼Y

[
dTV

(
L(X|Y = y),L(X ′|Y ′ = y)

)]
where we define dTV (L(X|Y = y),L(X ′|Y ′ = y)) = 1 for all y 6∈ supp(Y ′).

Given an algorithm A and distribution P on inputs, let A(P) denote the distribution of A(X)
induced by X ∼ P . If A has k steps, let Ai denote the ith step of A and Ai-j denote the procedure
formed by steps i through j. Each time this notation is used, we clarify the intended initial and
final variables when Ai and Ai-j are viewed as Markov kernels. The next lemma encapsulates the
structure of all of our analyses of average-case reductions.

Lemma 10 LetA be an algorithm that can be written asA = Am◦Am−1◦· · ·◦A1 for a sequence
of steps A1,A2, . . . ,Am. Suppose that the probability distributions P0,P1, . . . ,Pm are such that
dTV(Ai(Pi−1),Pi) ≤ εi for each 1 ≤ i ≤ m. Then it follows that

dTV (A(P0),Pm) ≤
m∑
i=1

εi

Proof This follows from a simple induction on m. Note that the case when m = 1 follows by
definition. Now observe that by the data-processing and triangle inequalities in Fact B.1, we have
that if B = Am−1 ◦ Am−2 ◦ · · · ◦ A1 then

dTV (A(P0),Pm) ≤ dTV (Am ◦ B(P0),Am(Pm−1)) + dTV (Am(Pm−1),Pm)

≤ dTV (B(P0),Pm−1) + εm

≤
m∑
i=1

εi

where the last inequality follows from the induction hypothesis applied with m − 1 to B. This
completes the induction and proves the lemma.
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Algorithm MRK(B)

Parameters: Input B ∈ {0, 1}, parameter n, number of iterations N , dimension ` = poly(n),
Bernoulli probabilities 0 < q < p ≤ 1 and ` pairs of computable sequences of distributions
(P i,Qi) for i ∈ {1, 2, . . . , `} over the measurable space (X,B)

1. Initialize z = (z1, z2, . . . , z`) arbitrarily in the support of Q1
n ⊗Q2

n ⊗ · · · ⊗ Q`n

2. Until z is set or N iterations have elapsed:

(1) Form z′ = (z′1, z
′
2, . . . , z

′
`) where z′i ∼ Qin is sampled independently for each i ∈

{1, 2, . . . , `} and compute the log-likelihood ratio

Ln(z′) =
∑̀
i=1

log
dP in
dQin

(z′i)

(2) Proceed to the next iteration if it does not hold that

log

(
1− p
1− q

)
≤ Ln(z′) ≤ log

(
p

q

)
(3) If B = 0, then set z ← z′ with probability 1− q

p · exp(Ln(z′))

(4) If B = 1, then set z ← z′ with probability q
p · exp(Ln(z′))− q(1−p)

p(1−q)

3. Output z

Figure 4: Multivariate rejection kernel algorithm with Bernoulli input B ∈ {0, 1}.

Appendix C. Multivariate Rejection Kernels

C.1. General MRK Algorithm and Analysis

In this section, we introduce multivariate rejection kernels, which effectively perform an algorithmic
change of measure simultaneously with a lift. More precisely, the map MRK(B) sends a binary input
B ∈ {0, 1} to a higher dimensional space X` simultaneously satisfying two Markov transition
properties:

1. if B ∼ Bern(p), then MRK(B) is close to P1
n ⊗ P2

n ⊗ · · · ⊗ P`n in total variation; and

2. if B ∼ Bern(q), then MRK(B) is close to Q1
n ⊗Q2

n ⊗ · · · ⊗ Q`n in total variation.

where 0 < q < p ≤ 1 are fixed and (P i,Qi) are pairs of computable sequences of distributions
over a common measurable space (X,B) for i ∈ {1, 2, . . . , `}. The maps MRK will be a key part
of our reduction to SSD, lifting planted dense subgraph and planted clique instances to instances of
submatrix detection with independent entries and the correct marginals.
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These maps MRK use rejection sampling to transform the distribution of the input from either
one of two input Bernoulli distributions to two `-fold product distributions, without knowing which
of the two distributions was the input. Multivariate rejection kernels are closely related to previous
average-case reduction techniques in the literature. Univariate Markov transitions taking δ1 and
Bern(q) to either a fixed pair of Bernoulli distributions or a fixed pair of normal distributions were
introduced in Ma and Wu (2015) and Gao et al. (2017). More closely related to our map are the
rejection kernel framework introduced in Brennan et al. (2018) and the reduction from planted clique
to planted dense subgraph in Hajek et al. (2015). The rejection kernels in Brennan et al. (2018) used
a similar rejection sampling scheme as we use here to map binary inputs to distributions on R. In
Brennan et al. (2018), it is assumed that both of the target distributions fX and gX have explicit
density or mass functions and have sampling oracles. In contrast, our map MRK only requires
the Radon-Nikodym derivatives dPin

dQin
exist and that there is a sampling oracle for the target noise

distributionsQin rather than for P in as well, keeping the assumptions on (P i,Qi) relatively minimal.
The reduction in Hajek et al. (2015) relies on a multivariate Markov transition mapping Bern(1)

and Bern(q) to distributions of the form Bern(cQ)⊗` and Bern(Q)⊗` for some constant c > 1.
This is achieved by first performing a univariate map from Bern(1) and Bern(q) to Bin(`, cQ)
and Bin(`,Q), respectively, and then observing that these counts are sufficient statistics for the
target product distributions. As discussed in the survey Wu and Xu (2018), this approach extends
naturally to other target distributions that have a common sufficient statistic with an explicit mass
or density function. For example, the sum of entries is such a sufficient statistic for the family
of distribution N (µ, 1)⊗` for µ ∈ R. On generalizing to any computable pairs (P i,Qi), such a
sufficient statistic common to P1

n ⊗ P2
n ⊗ · · · ⊗ P`n and Q1

n ⊗ Q2
n ⊗ · · · ⊗ Q`n may not exist. We

remark that all of the univariate maps in Ma and Wu (2015), Gao et al. (2017) and Hajek et al.
(2015) rely on sampling explicit mass or density functions that are linear combinations of the target
distributions. This requires time at least the size of the support of the target distribution or of a
sufficiently fine net of its support. In the multivariate case mapping to distributions on X`, the size
of this support grows exponentially in ` and this sampling scheme is not feasible in polynomial
time. The rejection sampling scheme used here circumvents this issue. We now prove the main total
variation guarantees of MRK(B), generalizing the argument in Lemma 5.1 in Brennan et al. (2018).

Lemma 11 (Multivariate Rejection Kernels) Suppose that n is a parameter, 0 < q < p ≤ 1
and N is a positive integer. Let (P i,Qi) for i ∈ {1, 2, . . . , `} be pairs of computable sequences of
distributions over the measurable space (X,B) and let

S =

{
x ∈ X` : log

(
1− p
1− q

)
≤ Ln(x) ≤ log

(
p

q

)}
where Ln(x) =

∑`
i=1 log dPin

dQin
(xi) for each x = (x1, x2, . . . , x`) ∈ X`. Then there is a map

MRK : {0, 1} → X` that can be computed in poly(n, `,N) time satisfying that

dTV

(
MRK(Bern(p)),P1

n ⊗ P2
n ⊗ · · · ⊗ P`n

)
≤ ∆

dTV

(
MRK(Bern(q)),Q1

n ⊗Q2
n ⊗ · · · ⊗ Q`n

)
≤ ∆
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where if P∗n = P1
n ⊗ P2

n ⊗ · · · ⊗ P`n and Q∗n = Q1
n ⊗Q2

n ⊗ · · · ⊗ Q`n, then ∆ is given by

∆ =
Px∼Q∗n [x 6∈ S] + Px∼P∗n [x 6∈ S]

p− q

+ max

{(
Px∼Q∗n [x 6∈ S] +

q

p

)N
,

(
q

p
· Px∼P∗n [x 6∈ S] +

p− 2pq + q2

p− pq

)N}

Proof Let MRK be the poly(n, `,N) time algorithm shown in Figure 4. For the sake of analysis,
consider continuing to iterate Step 2 even after z is set for the first time for a total of N iterations.
Let A0

i and A1
i be the events that z is set in the ith iteration of Step 2 when B = 0 and B = 1,

respectively. For B = 0, let B0
i = (A0

1)
C ∩ (A0

2)
C ∩ · · · ∩ (A0

i−1)
C ∩ A0

i be the event that z is set
for the first time in the ith iteration of Step 2. Let C0 = A0

1 ∪ A0
2 ∪ · · · ∪ A0

N be the event that z is
set in some iteration of Step 2. Define B1

i and C1 analogously. Let z0 be the initialization of z in
Step 1.

Now let Z0 ∼ D0 = L(MRK(0)) and Z1 ∼ D1 = L(MRK(1)). We have that L(Z0|B0
i ) =

L(Z0|A0
i ) and L(Z1|B1

i ) = L(Z1|A1
i ) since Ati is independent of At1, A

t
2, . . . , A

t
i−1 for each t ∈

{0, 1} and the sample z′ chosen in the ith iteration of Step 2. Observe that independence between
Steps 2.1, 2.3 and 2.4 ensures that

P
[
A0
i

]
= Ex∼Q∗n

[(
1− q

p
· exp(Ln(x))

)
· 1S(x)

]
= Px∼Q∗n [x ∈ S]− q

p
· Px∼P∗n [x ∈ S]

P
[
A1
i

]
= Ex∼Q∗n

[(
q

p
· exp(Ln(x))− q(1− p)

p(1− q)

)
· 1S(x)

]
=
q

p
· Px∼P∗n [x ∈ S]− q(1− p)

p(1− q)
· Px∼Q∗n [x ∈ S]

since dP∗n
dQ∗n

(x) = exp (Ln(x)). By the independence of the A0
i , we have that

1− P
[
C0
]

=

N∏
i=1

(
1− P

[
A0
i

])
=

(
1− Px∼Q∗n [x ∈ S] +

q

p
· Px∼P∗n [x ∈ S]

)N
≤
(
Px∼Q∗n [x 6∈ S] +

q

p

)N
Similarly, we have that

1− P
[
C1
]

=
N∏
i=1

(
1− P

[
A1
i

])
=

(
1− q

p
· Px∼P∗n [x ∈ S] +

q(1− p)
p(1− q)

· Px∼Q∗n [x ∈ S]

)N
≤
(
q

p
·
(
1− Px∼P∗n [x ∈ S]

)
+ 1− q

p
+
q(1− p)
p(1− q)

)N
≤
(
q

p
· Px∼P∗n [x 6∈ S] +

p− 2pq + q2

p− pq

)N
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We now have that L(Z0|A0
i ) and L(Z1|A1

i ) are each absolutely continuous with respect toQ∗n with
Radon-Nikodym derivatives

dL(Z0|B0
i )

dQ∗n
(x) =

dL(Z0|A0
i )

dQ∗n
(x) = P

[
A0
i

]−1 · (1− q

p
· exp(Ln(x))

)
· 1S(x)

=
p− q · dP

∗
n

dQ∗n
(x)

p · Px∼Q∗n [x ∈ S]− q · Px∼P∗n [x ∈ S]
· 1S(x)

dL(Z1|B1
i )

dQ∗n
(x) =

dL(Z1|A1
i )

dQ∗n
(x) = P

[
A1
i

]−1 · (q
p
· exp(Ln(z′))− q(1− p)

p(1− q)

)
· 1S(x)

=
(1− q) · dP

∗
n

dQ∗n
(x)− (1− p)

(1− q) · Px∼P∗n [x ∈ S]− (1− p) · Px∼Q∗n [x ∈ S]
· 1S(x)

Now observe that since the conditional laws L(Z0|B0
i ) are all identical, we have that

dD0

dQ∗n
(x) = P

[
C0
]
· dL(Z0|B0

1)

dQ∗n
(x) +

(
1− P

[
C0
])
· 1z0(x)

Therefore it follows that

dTV
(
D0,L(Z0|B0

1)
)

=
1

2
· Ex∼Q∗n

[∣∣∣∣ dD0

dQ∗n
(x)− dL(Z0|B0

1)

dQ∗n
(x)

∣∣∣∣]
=

1

2

(
1− P

[
C0
])
· Ex∼Q∗n

[∣∣∣∣1z0(x)− dL(Z0|B0
1)

dQ∗n
(x)

∣∣∣∣]
≤ 1

2

(
1− P

[
C0
])
· Ex∼Q∗n

[
1z0(x) +

dL(Z0|B0
1)

dQ∗n
(x)

]
= 1− P

[
C0
]

by the triangle inequality. A symmetric argument implies that dTV
(
D1,L(Z1|B1

1)
)
≤ 1− P

[
C1
]
.

Now observe that since dP∗n
dQ∗n

(x) ≤ p
q for x ∈ S, we have that

Ex∼Q∗n

∣∣∣∣∣∣dL(Z0|B0
1)

dQ∗n
(x)−

p− q · dP
∗
n

dQ∗n
(x)

p− q

∣∣∣∣∣∣


=

∣∣∣∣ 1

p · Px∼Q∗n [x ∈ S]− q · Px∼P∗n [x ∈ S]
− 1

p− q

∣∣∣∣ · Ex∼Q∗n [(p− q · dP∗ndQ∗n
(x)

)
· 1S(x)

]

+ Ex∼Q∗n

∣∣∣∣∣∣
p− q · dP

∗
n

dQ∗n
(x)

p− q

∣∣∣∣∣∣ · 1SC (x)


≤
∣∣∣∣1− p · Px∼Q∗n [x ∈ S]− q · Px∼P∗n [x ∈ S]

p− q

∣∣∣∣+ Ex∼Q∗n

p+ q · dP
∗
n

dQ∗n
(x)

p− q
· 1SC (x)


=

∣∣∣∣p · Px∼Q∗n [x 6∈ S]− q · Px∼P∗n [x 6∈ S]

p− q

∣∣∣∣+
p · Px∼Q∗n [x 6∈ S] + q · Px∼P∗n [x 6∈ S]

p− q

≤
2 · Px∼Q∗n [x 6∈ S] + 2 · Px∼P∗n [x 6∈ S]

p− q
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By a symmetric computation, we have that

Ex∼Q∗n

∣∣∣∣∣∣dL(Z1|B1
1)

dQ∗n
(x)−

(1− q) · dP
∗
n

dQ∗n
(x)− (1− p)

p− q

∣∣∣∣∣∣
 ≤ 2 · Px∼Q∗n [x 6∈ S] + 2 · Px∼P∗n [x 6∈ S]

p− q

Now observe that

dP∗n
dQ∗n

(x) = p ·
(1− q) · dP

∗
n

dQ∗n
(x)− (1− p)

p− q
+ (1− p) ·

p− q · dP
∗
n

dQ∗n
(x)

p− q

1 = q ·
(1− q) · dP

∗
n

dQ∗n
(x)− (1− p)

p− q
+ (1− q) ·

p− q · dP
∗
n

dQ∗n
(x)

p− q

Now observe that

dTV (MRK(Bern(p)),P∗n) = dTV
(
p · L(Z1|B1

1) + (1− p) · L(Z0|B0
1),P∗n

)
+ dTV

(
p · L(Z1|B1

1) + (1− p) · L(Z0|B0
1),MRK(Bern(p))

)
≤ p

2
· Ex∼Q∗n

∣∣∣∣∣∣dL(Z1|B1
1)

dQ∗n
(x)−

p− q · dP
∗
n

dQ∗n
(x)

p− q

∣∣∣∣∣∣


+
(1− p)

2
· Ex∼Q∗n

∣∣∣∣∣∣dL(Z0|B0
1)

dQ∗n
(x)−

p− q · dP
∗
n

dQ∗n
(x)

p− q

∣∣∣∣∣∣


+ p · dTV
(
D1,L(Z1|B1

1)
)

+ (1− p) · dTV
(
D0,L(Z0|B0

1)
)

≤ ∆

A symmetric argument shows dTV (MRK(Bern(q)),Q∗n) ≤ ∆, completing the proof of the lemma.

C.2. Homogeneous MRK and Log-Likelihood Ratio LDPs

We now show that when all of the pairs (P i,Qi) = (P,Q) are the same and their LLR satisfies
LDPs with respect to each ofQ and P , then the total variation error ∆ is small in the lemma above.
This will be the form of the lemma that we will apply to show computational lower bounds for SSD.

Lemma 12 Let (P,Q) be a computable pair over (X,B). Define n, `, p and q as in Lemma 11.
Let τ+, τ− ≥ `−1 · log

(
4(p− q)−1

)
and suppose that (P,Q) satisfies

log

(
1− q
1− p

)
< −` · dKL(Q‖P) ≤ ` · dKL(P‖Q) < log

(
p

q

)
and the LLR between (P,Q) satisfies the LDPs

EP

(
`−1 · log

(
p

q

))
≥ τ+ and EQ

(
`−1 · log

(
1− p
1− q

))
≥ τ−
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where the second inequality is only necessary if p 6= 1. Then there is a map MRK : {0, 1} → X`

that can be computed in poly(n, `, pq−1(p− q)−1,min(τ+, τ−)) time satisfying that

dTV

(
MRK(Bern(p)),P⊗`n

)
≤ 3(e−`τ+ + e−`τ−)

p− q

dTV

(
MRK(Bern(q)),Q⊗`n

)
≤ 3(e−`τ+ + e−`τ−)

p− q

Proof Let c+ = log
(
p
q

)
> 0 and c− = log

(
1−p
1−q

)
< 0. Observe that

EQ
(
c+`
−1) = EP

(
c+`
−1)+ c+`

−1 > τ+

EP
(
c−`
−1) = EQ

(
c−`
−1)− c−`−1 > τ−

where the second set of inequalities holds if p 6= 1. Now consider applying Lemma 11 with number
of iterations

N =


` ·min(τ+, τ−)

log
(

1− q(p−q)
2p

)−1
 = O

(
p

q(p− q)
· ` ·min(τ+, τ−)

)

since log(1 − x)−1 ≥ x for x = q(p−q)
2p . Thus it suffices to bound ∆ given that the LLR be-

tween (P,Q) satisfies the LDPs above. For now consider the case where p 6= 1. Let Ln(x) =∑`
i=1 log dPn

dQn (xi) for each x ∈ X`. Now consider λ1 with objective value approaching the supre-
mum in the optimization EP

(
c+`
−1) = supλ∈R c+`

−1λ − ψP(λ). Since the derivative of the
objective at λ = 0 is c+`−1 − dKL(P‖Q) > 0, we can take λ1 ≥ 0. Analogously, we can take
λ2 ≤ 0 approaching the supremum in the optimization EP(c−`

−1). Applying a Chernoff bound
now yields that

Px∼P⊗`n [x 6∈ S] = Px∼P⊗`n

[
exp (λ1 · Ln(x)) >

(
p

q

)λ1]
+ Px∼P⊗`n

[
exp (λ2 · Ln(x)) >

(
1− p
1− q

)λ2]

≤
(
p

q

)−λ1
· EX∼P⊗`n [exp (λ1 · Ln(x))] +

(
1− q
1− p

)−λ2
· EX∼P⊗`n [exp (−λ2 · Ln(x))]

= exp (−c+λ1 + ` · ψP(λ1)) + exp (−c−λ2 + ` · ψP(λ2))

→ exp
(
−` · EP(c+`

−1)
)

+ exp
(
−` · EP(c−`

−1)
)

≤ e−`τ+ + e−`τ−

where the limit holds on taking λ1 and λ2 to approach the two suprema. Note that if p = 1, then the
second probability above trivially satisfies that

Px∼P⊗`n

[
Ln(x) <

1− p
1− q

]
= 0 < e−`τ−

and the bound on Px∼P⊗`n [x 6∈ S] above still holds. By a symmetric argument, we also have that

Px∼Q⊗`n [x 6∈ S] ≤ e−`τ+ + e−`τ−
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Now observe that since e−`τ+ , e−`τ− ≤ 1
4(p− q), we have that

q

p
·Px∼P⊗`n [x 6∈ S]+

p− 2pq + q2

p− pq
≤ q

p
·
(

1

2
(p− q)

)
+1−q(p− q)

p(1− q)
≤ 1− q(p− q)

2p(1− q)
≤ 1−q(p− q)

2p

Similarly, we have

Px∼Q⊗`n [x 6∈ S] +
q

p
≤ 1

2
(p− q) + 1− p− q

p
≤ 1− q(p− q)

2p

Therefore it follows that

max

{(
Px∼Q∗n [x 6∈ S] +

q

p

)N
,

(
q

p
· Px∼P∗n [x 6∈ S] +

p− 2pq + q2

p− pq

)N}

≤
(

1− q(p− q)
2p

)N
≤ max

(
e−`τ+ , e−`τ−

)
and hence that ∆ ≤ 3(e−`τ++e−`τ− )

p−q , completing the proof of the lemma.

C.3. Entrywise Reductions Fail to Show Tight Computational Lower Bounds

A conceptually simpler idea for an average-case reduction would avoid multivariate rejection ker-
nels and instead begin by mapping to a submatrix problem with a specific pair (P∗,Q∗) and then ap-
ply a univariate entry-wise map from (P∗,Q∗) to (P,Q). For example, if (P∗,Q∗) were Bernoulli
random variables, this would correspond to mapping to a submatrix variant of planted dense sub-
graph and then to SSD(n, k,P,Q). We remark that there is a simple barrier to making this approach
produce tight computational lower bounds.

As discussed in the summary of our results in Section 3, the relevant signal in the computational
phase diagram for SSD is dKL(P‖Q). For this approach to lead to a reduction, there would have to
be a univariate map φ such that φ(P∗) ∼ P and φ(Q∗) ∼ Q as long as dKL(P∗‖Q∗) � dKL(P‖Q).
However, looking at the family of pairs of Bernoulli random variables shows that this is not the case.
If (P∗,Q∗) = (Bern(n−α),Bern(2n−α)) then we have that

dKL(P∗‖Q∗) = −n−α log 2−(1−n−α) log

(
1− 2n−α

1− n−α

)
= Θ(n−α) and dTV(Q∗‖P∗) = n−α

Furthermore, let (P,Q) = (Bern(1/2),Bern(1/2 + n−α/2)) and note that

dKL(P‖Q) = −1

2
log(1 + 2n−α/2)− 1

2
log(1− 2n−α/2) = Θ(n−α) and dTV(Q‖P) = n−α/2

By the data-processing applied to dTV, it is impossible for such a map φ to exist even though these
two pairs have KL divergences on the same order.
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Algorithm TO-SUBMATRIX

Inputs: Graph G ∈ Gn, parameters 0 < q < p ≤ 1, intermediate dimension N , expansion factor `,
number of iterations Nit, subgraph size k, pairs of computable sequences of distributions (Pij ,Qij)
for 1 ≤ i, j ≤ N` over the measurable space (X,B)

1. Apply GRAPH-CLONE to G with edge probabilities P = p and Q = 1−
√

(1− p)(1− q) +
1{p=1}

(√
q − 1

)
and t = 2 clones to obtain (G1, G2)

2. Sample s1 ∼ Bin(n, p), s2 ∼ Bin(N,Q) and a set S ⊆ [N ] with |S| = n uniformly at
random. Sample T1 ⊆ S and T2 ⊆ [N ]\S with |T1| = s1 and |T2| = max{s2 − s1, 0}
uniformly at random. Now form the matrix M1 ∈ {0, 1}N×N where

M1
ij =


1{π(i),π(j)}∈E(G1) if i < j and i, j ∈ S
1{π(i),π(j)}∈E(G2) if i > j and i, j ∈ S
1{i∈T1} if i = j and i, j ∈ S
1{i∈T2} if i = j and i, j 6∈ S
∼i.i.d. Bern(Q) if i 6= j and i 6∈ S or j 6∈ S

where π : S → [n] is a bijection chosen uniformly at random

3. Let τ be a random permutation of [N`] and form the matrix M2 ∈ XN`×N` by setting(
M2
ij : s`+ 1 ≤ τ−1(i) ≤ (s+ 1)` ∧ t`+ 1 ≤ τ−1(j) ≤ (t+ 1)`

)
= MRKst

(
M1

(s+1)(t+1)

)
for each 0 ≤ s, t < N , where MRKst is the multivariate rejection kernel with Nit iterations
sending Bern(p) and Bern(Q) to the random set of `2 pairs (Pnij ,Qnij) satisfying that s`+1 ≤
τ−1(i) ≤ (s+ 1)` and t`+ 1 ≤ τ−1(j) ≤ (t+ 1)`

4. Output the matrix M2

Figure 5: Reduction TO-SUBMATRIX for showing universal computational lower bounds for sub-
matrix problems based on the hardness of planted clique or planted dense subgraph.

Appendix D. Average-Case Reduction to Submatrix Detection

In this section, we give a polynomial time reduction TO-SUBMATRIX to SSD detection with pairs
of planted and noise distributions that are computable and satisfy an LDP of their LLR. This reduc-
tion is shown in Figure 5 and its total variation guarantees are stated in Theorem 13 below. The
reduction begins by cloning the adjacency matrix of a planted dense subgraph instance to produce
two independent samples of the above diagonal portions of their adjacency matrix. These are then
embedded as two halves of a principal minor in a larger matrix in Step 2. This random embedding
hides the previously missing diagonal terms in total variation. Analyzing this step is one of our
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technical contributions. The resulting Bernoulli submatrix problem is then lifted using MRK maps
to an instance of submatrix detection.

Our reduction implies the computational lower bounds for Gaussian biclustering and planted
dense subgraph in Ma and Wu (2015), Hajek et al. (2015) and Brennan et al. (2018). The step of
embedding as a principal minor in Step 2 circumvents the arguments in Hajek et al. (2015) and
Brennan et al. (2018) showing that the total variation error introduced by missing diagonal entries
is small. It also simplifies the reductions PC-LIFTING and DISTRIBUTIONAL-LIFTING in Brennan
et al. (2018). Our reduction extends the Gaussian biclustering lower bounds in Ma and Wu (2015)
and Brennan et al. (2018) to the cases of symmetric indices.

In Section D.1, we describe and analyze the subroutine GRAPH-CLONE in Step 1 which trans-
forms one instance of planted dense subgraph into many independent instances, preserving both H0

and H1, at a minor loss in the parameters p and q. In Section D.2, we prove several lemmas to an-
alyze Step 2 of TO-SUBMATRIX and in Section D.3, we complete the proof of Theorem 13. In the
next section, we apply Theorem 13 to deduce computational lower bounds for various forms of sub-
matrix detection. Note that the reduction TO-SUBMATRIX handles a more general setup where the
pairs (Pij ,Qij) are permitted to differ from entry to entry. The additional submatrix problems this
implies hardness for are discussed in Section E. TO-SUBMATRIX also begins with an instance of
planted dense subgraph, providing a more general class of reductions than just from planted clique.

Let Md((Qij)1≤i,j≤d) denote the distribution on d × d matrices M with independent entries
satisfying that Mij ∼ Qij for each 1 ≤ i, j ≤ d. LetMd((Pij ,Qij)1≤i,j≤d, k) denote the distribu-
tion on d× d matrices M generated as follows: choose a k-subset S ⊆ [d] uniformly at random and
then independently sample Mij ∼ Pij for each i, j ∈ S and Mij ∼ Qij otherwise.

Theorem 13 (Reduction to Submatrix Detection) Let n, k ≤ n, N , Nit, ` and 0 < q < p ≤ 1 be
parameters such that q = n−O(1),

N ≥
(
p

Q
+ ε

)
n, k ≤ Qεn

2
and

k2

N
≤ min

{
Q

1−Q
,
1−Q
Q

}
where ε > 0 and Q = 1−

√
(1− p)(1− q) + 1{p=1}

(√
q − 1

)
. Let (Pij ,Qij) for 1 ≤ i, j ≤ N`

be pairs of computable sequences of distributions indexed by n over the measurable space (X,B).
For each pair of `-subsets U, V ⊆ [N`], let ∆U,V be the total variation upper bound as defined
in Lemma 11 for the multivariate rejection kernel MRKU,V with Nit iterations sending Bern(p) and
Bern(Q) to the `2 pairs (Pnij ,Qnij) where i ∈ U and j ∈ V . Let ∆ = maxU,V ∆U,V be the maximum
such upper bound. The algorithm A = TO-SUBMATRIX in Figure 5 runs in poly(N, `) time and
satisfies that

dTV (A(G(n, k, p, q)),MN`((Pij ,Qij)1≤i,j≤N`, k`)) ≤ N2 ·∆ + 4 · exp

(
−Qε

2n2

32N

)
+

√
k2(1−Q)

2QN
+

√
k2Q

2N(1−Q)

dTV (A(G(n, q)),MN`((Qij)1≤i,j≤N`)) ≤ N2 ·∆ + 4 · exp

(
−Qε

2n2

32N

)
Before proceeding to the proofs in this section, we first establish some additional notation.

When all of the pairs (Pij ,Qij) are the same (P,Q), then denote Md((Pij ,Qij)1≤i,j≤d, k) by
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Algorithm GRAPH-CLONE

Inputs: Graph G ∈ Gn, the number of copies t, parameters 0 < q < p ≤ 1 and 0 < Q < P ≤ 1

satisfying 1−p
1−q ≤

(
1−P
1−Q

)t
and

(
P
Q

)t
≤ p

q

1. Generate xij ∈ {0, 1}t for each 1 ≤ i < j ≤ n such that:

• If {i, j} ∈ E(G), sample xij from the distribution on {0, 1}t with

P[xij = v] =
1

p− q

[
(1− q) · P |v|1(1− P )t−|v|1 − (1− p) ·Q|v|1(1−Q)t−|v|1

]
• If {i, j} 6∈ E(G), sample xij from the distribution on {0, 1}t with

P[xij = v] =
1

p− q

[
p ·Q|v|1(1−Q)t−|v|1 − q · P |v|1(1− P )t−|v|1

]
2. Output the graphs (G1, G2, . . . , Gt) where {i, j} ∈ E(Gk) if and only if xijk = 1

Figure 6: Subroutine GRAPH-CLONE for producing independent samples from planted graph prob-
lems.

Md(P,Q, k). Given a k-subset S ⊆ [d], letMd((Pij ,Qij)1≤i,j≤d, S) denoteMd((Pij ,Qij)1≤i,j≤d, k)
conditioned on the selection of S as the planted index set. DefineMd(P,Q, S) analogously. Sim-
ilarly, let VN (P,Q, S) denotes the distribution of vectors V ∈ XN with independent entries and
Vi ∼ P if i ∈ S and Vi ∼ Q if i 6∈ S. Let VN (P,Q, k) denote the mixture of VN (P,Q, S)
induced by choosing S uniformly at random from all k-subsets of [N ]. Let G(n, S, p, q) denote
the distribution of planted dense subgraph instances from G(n, k, p, q) conditioned on the subgraph
being planted on the vertex set S where |S| = k. Given an algorithm A with k steps, let Ai denote
the ith step ofA andAi-j denote the procedure formed by steps i through j. Each time this notation
is used, we clarify the intended initial and final variables when Ai and Ai-j are viewed as Markov
kernels.

D.1. Graph Cloning

We begin with the subroutine GRAPH-CLONE which produces several independent samples from
a planted subgraph problems given a single sample. This procedure is a simple generalization of
PDS-CLONING in Section 10 of Brennan et al. (2018) and can be viewed as an exact variant of a
simple multivariate rejection kernel to products of Bernoulli random variables.

Lemma 14 (Graph Cloning) Let t ∈ N, 0 < q < p ≤ 1 and 0 < Q < P ≤ 1 satisfy that

1− p
1− q

≤
(

1− P
1−Q

)t
and

(
P

Q

)t
≤ p

q
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Then the algorithmA = GRAPH-CLONE runs in poly(t, n) time and satisfies that for each S ⊆ [n],

A (G(n, q)) ∼ G(n,Q)⊗t and A (G(n, S, p, q)) ∼ G(n, S, P,Q)⊗t

Proof Let R0, R1 : {0, 1}t → R be given by

R0(v) =
1

p− q

[
p ·Q|v|1(1−Q)t−|v|1 − q · P |v|1(1− P )t−|v|1

]
R1(v) =

1

p− q

[
(1− q) · P |v|1(1− P )t−|v|1 − (1− p) ·Q|v|1(1−Q)t−|v|1

]
Now observe that for each v ∈ {0, 1}t, the fact that P > Q implies that

1− p
1− q

≤
(

1− P
1−Q

)t
≤ P |v|1(1− P )t−|v|1

Q|v|1(1−Q)t−|v|1
≤
(
P

Q

)t
≤ p

q

which implies that R0(v) ≥ 0 and R1(v) ≥ 0 for each v ∈ {0, 1}t. Furthermore, we have that∑
v∈{0,1}t

R0(v) =
∑

v∈{0,1}t
R1(v) = 1

which implies that R0 and R1 are well-defined probability mass functions. Also observe that

(1− p) ·R0(v) + p ·R1(v) = P |v|1(1− P )t−|v|1

(1− q) ·R0(v) + q ·R1(v) = Q|v|1(1−Q)t−|v|1

Therefore it follows that if 1{i,j}∈E(G) ∼ Bern(p), then xij ∼ Bern(P )⊗t and if 1{i,j}∈E(G) ∼
Bern(q), then xij ∼ Bern(Q)⊗t. Since the edge indicators 1{i,j}∈E(G) are independent in each
of G(n, q) and G(n, S, p, q), this implies that (G1, G2, . . . , Gt) ∼ G(n,Q)⊗t if G ∼ G(n, q) and
(G1, G2, . . . , Gt) ∼ G(n, P )⊗t if G ∼ G(n, k, p, q), completing the proof of the lemma.

D.2. Planting Diagonals by Embedding as a Principal Minor

The next two lemmas are a key technical component in the analysis of TO-SUBMATRIX. Specifi-
cally, they are crucial to showing the correctness of Step 2 in TO-SUBMATRIX, which plants missing
diagonal entries while randomly embedding entries derived from the adjacency matrix of the input
instance as a principal minor into a larger matrix to hide the planted entries in total variation. We
remark that the applications of Cauchy-Schwarz reducing the proof of the second lemma to bound-
ing χ2 divergences are unlikely to be tight. However, the resulting bounds are sufficient for our
purposes. We also remark that Lemma 16 can be proven by directly bounding sums of differences
of binomial coefficients. Instead, our approach yields more elegant computations, as carried out in
Lemma 15, and can be generalized to bound sums of random variables beyond binomial distribu-
tions.

Lemma 15 Suppose that P and Q are probability distributions on a measurable space (X,B)
where P is absolutely continuous with respect to Q. Then for any positive integers k and m with
k2 · χ2(P‖Q) ≤ m, we have that

χ2
(
Vm(P,Q, k) ‖Q⊗m

)
≤ 2k2 · χ2(P‖Q)

m
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Proof Let f : X → [0,∞) be the Radon-Nikodym derivative f = dP
dQ . Note that Vm(P,Q, k) is

absolutely continuous with respect to Q⊗m with Radon-Nikodym derivative

dVm(P,Q, k)

dQ⊗m
(x) = ES∼Uk,m

[∏
i∈S

f(xi)

]
for each x ∈ Xm where Uk,m is the uniform distribution on k-subsets of [m]. Now note that by
Fubini’s theorem

χ2
(
Vm(P,Q, k) ‖Q⊗m

)
+ 1

= Ex∼Q⊗m

[(
dVm(P,Q, k)

dQ⊗m
(x)

)2
]

= Ex∼Q⊗m

[
ES∼Uk,m

[∏
i∈S

f(xi)

]
· ET∼Uk,m

[∏
i∈S

f(xi)

]]

= ES,T∼Uk,m

[
Ex∼Q⊗m

[(∏
i∈S

f(xi)

)(∏
i∈T

f(xi)

)]]

= ES,T∼Uk,m

 ∏
i∈S∩T

Exi∼Q
[
f(xi)

2
] ∏
i∈S\T

Exi∼Q [f(xi)]
∏
i∈T\S

Exi∼Q [f(xi)]


= ES,T∼Uk,m

[
(1 + χ2(P‖Q))|S∩T |

]
where the last equality holds since Exi∼Q[f(xi)] = 1 and 1 + χ2(P‖Q) = Exi∼Q[f(xi)

2]. We
now apply an argument in Addario-Berry et al. (2010) to bound this last quantity. Observe that
|S ∩ T | ∼ Hypergeometric(m, k, k) and is identically distributed to |[k] ∩ S| =

∑k
i=1 1{i∈S}.

As shown in Section 3.2 of Joag-Dev and Proschan (1983), the variables 1{i∈S} are negatively
associated which implies that

ES,T∼Uk,m
[
(1 + χ2(P‖Q))|S∩T |

]
= ES∼Uk,m

[
k∏
i=1

(1 + χ2(P‖Q))1{i∈S}

]

≤
k∏
i=1

ES∼Uk,m
[
(1 + χ2(P‖Q))k·1{i∈S}

]
=

(
k

m
(1 + χ2(P‖Q)) + 1− k

m

)k
=

(
1 +

k

m
· χ2(P‖Q)

)k
≤ exp

(
k2 · χ2(P‖Q)

m

)
≤ 1 +

2k2 · χ2(P‖Q)

m

if k2 · χ2(P‖Q) ≤ m. This completes the proof of the lemma.

We now apply this lemma to bound the total variation between support sizes of the matrix
diagonals produced in TO-SUBMATRIX and the target matrix distributions.
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Lemma 16 (Planting Diagonals) Suppose that 0 < Q < P ≤ 1 and N ≥
(
P
Q + ε

)
n where

ε > 0. Let k ≤ n satisfy that

k ≤ Qεn

2
and

k2

N
≤ min

{
Q

1−Q
,
1−Q
Q

}
Let t1 ∼ Bin(k, P ), t2 ∼ Bin(n − k, P ) and t3 ∼ Bin(N,Q) be independent and set t4 =
max{t3 − t1 − t2, 0}. Then it holds that

dTV (L(t1, t2 + t4), Bin(k, P )⊗ Bin(N − k,Q)) ≤ 4 · exp

(
−Qε

2n2

32N

)
+

√
k2(1−Q)

2NQ

+

√
k2Q

2N(1−Q)

dTV (L(t1 + t2 + t4), Bin(N,Q)) ≤ 4 · exp

(
−Qε

2n2

32N

)
Proof First consider applying Lemma 15 to P = δ0 andQ = Bern(Q). Note that since Q ∈ (0, 1),
this choice of P is absolutely continuous with respect to Q. We have that if K and M are such that
K2Q ≤M(1−Q) then

χ2
(
VM (δ0,Bern(Q),K)‖Bern(Q)⊗M

)
≤ 2K2Q

M(1−Q)

Now by Cauchy-Schwarz and the data-processing property in Fact B.1 on taking the sum of the
entries of the vectors, we have that

dTV (Bin(M −K,Q),Bin(M,Q)) ≤ dTV
(
VM (δ0,Bern(Q),K), Bern(Q)⊗M

)
≤ 1

2

√
χ2 (VM (δ0,Bern(Q),K)‖Bern(Q)⊗M )

≤

√
K2Q

2M(1−Q)

Now apply Lemma 15 to P = δ1 andQ = Bern(Q). By the same argument, if K2(1−Q) ≤MQ,
then we have that

dTV (K + Bin(M −K,Q),Bin(M,Q)) ≤

√
K2(1−Q)

2MQ

Combining these two inequalities and applying the triangle inequality in Fact B.1 yields that

dTV
(
K ′ + Bin(M −K,Q),Bin(M,Q)

)
≤ dTV

(
K ′ + Bin(M −K,Q),Bin(M −K +K ′, Q)

)
+ dTV

(
Bin(M −K +K ′, Q),Bin(M,Q)

)
≤

√
K ′2(1−Q)

2(M −K +K ′)Q
+

√
(K −K ′)2Q
2M(1−Q)
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as long as K ′ ≤ K and it holds that

K ′2 ≤ (M −K +K ′)Q

1−Q
and (K −K ′)2 ≤ M(1−Q)

Q

Note that both of these inequalities are satisfied if K2/M ≤ min
{
Q−1(1−Q), Q(1−Q)−1

}
.

Standard Chernoff bounds imply that the binomial distribution satisfies the following concentration
inequalities

P [Bin(M, r) > (1 + δ)rM ] ≤ exp

(
− δ2

2 + δ
· rM

)
P [Bin(M, r) < (1− δ)rM ] ≤ exp

(
−δ

2

2
· rM

)
for δ > 0. These inequalities can be derived by standard Chernoff bounds. Now observe that if
t3 ≥ QN− Qεn

2 + m
2 and t2 ≤ P (n−k)+ Qεn

2 −
m
2 hold, then t3 ≥ m+t2 sinceQN ≥ (P+Qε)n.

Therefore we have that

P [t4 6= t3 − t1 − t2|t1 = m] = P[t3 < m+ t2]

≤ P
[
t3 < QN − Qεn

2
+
m

2

]
+ P

[
t2 > P (n− k) +

Qεn

2
− m

2

]
≤ P

[
t3 < QN − Qεn

4

]
+ P

[
t2 > P (n− k) +

Qεn

4

]
≤ exp

(
−1

2

( εn
4N

)2
·QN

)
+ exp

(
− 1

2 + Qεn
4P (n−k)

·
(

Qεn

4P (n− k)

)2

· P (n− k)

)

≤ exp

(
−Qε

2n2

32N

)
+ exp

(
− 1

8P (n− k) +Qεn
· Q

2ε2n2

4

)
≤ 2 · exp

(
−Qε

2n2

32N

)
The first inequality above is a union bound, the second inequality holds since 2m ≤ 2k ≤ Qεn and
the last inequality holds since 8P (n− k) +Qεn ≤ 8QN . Marginalizing this bound over t1 yields
that

P[t4 6= t3 − t1 − t2] = Em∼L(t1)P [t4 6= t3 − t1 − t2|t1 = m] ≤ 2 · exp

(
−Qε

2n2

32N

)
Now by the conditioning property in Fact B.1, we have

dTV (L(t1 + t2 + t4),L(t3|t1 + t2 + t4 = t3)) ≤ P [t1 + t2 + t4 6= t3]

dTV (L(t3),L(t3|t1 + t2 + t4 = t3)) ≤ P [t1 + t2 + t4 6= t3]

Since t3 ∼ Bin(N,Q), the triangle inequality in Fact B.1 implies that

dTV (L(t1 + t2 + t4),Bin(N,Q)) ≤ 2 · P [t1 + t2 + t4 6= t3] ≤ 4 · exp

(
−Qε

2n2

32N

)
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which proves the second inequality in the lemma. Now observe that by the conditioning property in
Fact B.1, we have that

dTV (L(t2 + t4|t1 = m),L(t2 + t4|t1 = m, t1 + t2 + t4 = t3)) ≤ P [t4 6= t3 − t1 − t2|t1 = m]

dTV (L(t3),L(m+ t2 + t4|t1 = m, t1 + t2 + t4 = t3)) ≤ P [t4 6= t3 − t1 − t2|t1 = m]

Note that t3 ∼ Bin(N,Q) is independent of t1 and thus L(t3) = L(t3|t1 = m). Applying the
inequality derived above using Lemma 15 with M = N , K = k and K ′ = m yields that

dTV (L(t3),m+ Bin(N − k,Q)) ≤

√
m2(1−Q)

2(N − k +m)Q
+

√
(k −m)2Q

2N(1−Q)

≤

√
k2(1−Q)

2NQ
+

√
k2Q

2N(1−Q)

as long as k2/N ≤ min
{
Q−1(1−Q), Q(1−Q)−1

}
. Applying the triangle inequality twice now

yields that

dTV (L(t2 + t4|t1 = m),Bin(N − k,Q))

= dTV (L(m+ t2 + t4|t1 = m),m+ Bin(N − k,Q))

≤ 2 · P [t4 6= t3 − t1 − t2|t1 = m] +

√
k2(1−Q)

2NQ
+

√
k2Q

2N(1−Q)

≤ 4 · exp

(
−Qε

2n2

32N

)
+

√
k2(1−Q)

2NQ
+

√
k2Q

2N(1−Q)

Now note that by the conditioning on a random variable property in Fact B.1, we have that

dTV (L(t1, t2 + t4), Bin(k, P )⊗ Bin(N − k,Q))

≤ Em∼Bin(k,P )dTV (L(t2 + t4|t1 = m),Bin(N − k,Q))

Combining this with the inequality derived above completes the proof of the lemma.

D.3. Proof of Theorem 13

We now combine the lemmas in the previous two sections and Lemma 11 to prove Theorem 13.
First consider the case where G ∼ G(n,R, p, q) where R ⊆ [n] satisfies |R| = k. In the first part
of the proof of this proposition, let M1 = A1-2(G) be the matrix M1 after Steps 1 and 2 in A. First
observe by AM-GM that

√
pq ≤ p+ q

2
= 1− (1− p) + (1− q)

2
≤ 1−

√
(1− p)(1− q)

Let Q = 1 −
√

(1− p)(1− q) + 1{p=1}
(√
q − 1

)
. If p 6= 1, then it follows that P = p > Q,

1−p
1−q =

(
1−P
1−Q

)2
and the inequality above rearranges to

(
P
Q

)2
≤ p

q . If p = 1, then Q =
√
q,
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the inequality 1−p
1−q ≤

(
1−P
1−Q

)2
holds trivially and

(
P
Q

)2
= p

q . Applying Lemma 14 with t = 2

therefore yields that (G1, G2) ∼ G(n,R, p,Q)⊗2. Let U = π−1(R) be the subset of [N ] that
the dense subgraph vertices are mapped to in Step 2, on choosing S and π. Let R′ ⊆ [N ] be
a fixed subset with |R′| = k. Observe that the matrix M1 in Step 2 conditioned on U = R′

has independent off-diagonal entries satisfying M1
ij ∼ Bern(p) if i, j ∈ R′ and M1

ij ∼ Bern(Q)
otherwise, matching the off-diagonal distribution of MN (Bern(p),Bern (Q) , R′). Furthermore
these entries are independent of the diagonal entries of M1. Thus the tensorization property in Fact
B.1 implies that

dTV
(
L(M1|U = R′),MN

(
Bern(p),Bern (Q) , R′

))
= dTV

(
L(diag(M1)|U = R′),VN

(
Bern(p),Bern (Q) , R′

))
Fix some subset S′ ⊆ [N ] with |S′| = n. Now observe that conditioned on S = S′, the entries
M1
ii with i ∈ S′ are i.i.d. distributed as Bern(p) since the number of i ∈ S′ with M1

ii = 1 is
s1 ∼ Bin(n, p) and (M1

ii : i ∈ S′) is exchangeable. Therefore, conditioned on U = R′ and S = S′,
the entries of diag(M1) are distributed as (M1

ii : i ∈ S′) ∼ Bern(p)⊗n and (M1
ii : i 6∈ S′) is

exchangeable with support of size |T2| = max{s2 − s1, 0} where s1 is the size of the support of
(M1

ii : i ∈ S′) and s2 ∼ Bin(N,Q) is sampled independently. Since S is chosen uniformly at
random, conditioned on U = R′, the elements of S\R′ are a uniformly at random chosen subset
of [N ]\R′ of size n − k. Thus relaxing the conditioning to only U = R′ yields that the entries
of diag(M1) are distributed as (M1

ii : i ∈ R′) ∼ Bern(p)⊗k and (M1
ii : i 6∈ R′) is exchangeable

with support of size t2 + |T2| = t2 + max{s2 − t1 − t2, 0} where t1 is the size of the support of
(M1

ii : i 6∈ R′) and t2 ∼ Bin(n− k, p) is sampled independently.
Note that the distributions of L(diag(M1)|U = R′) and VN (Bern(p),Bern (Q) , R′) restricted

to the indices in R′ and [N ]\R′ are each exchangeable. Therefore conditioning on the pair of
support sizes within R′ and [N ]\R′ and applying the conditioning property in Fact B.1 yields that

dTV
(
L(diag(M1)|U = R′),VN

(
Bern(p),Bern (Q) , R′

))
= dTV (L(t1, t2 + max{s2 − t1 − t2, 0}),Bin(k, p)⊗ Bin (N − k,Q))

≤ 4 · exp

(
−Qε

2n2

32N

)
+

√
k2(1−Q)

2QN
+

√
k2Q

2N(1−Q)

by Lemma 16. Applying the conditioning property in Fact B.1 to conditioning on R and U = R′

now yields that

dTV (L(A1-2(G(n, k, p, q))),MN (Bern(p),Bern (Q) , k))

≤ ER∼Uk,NEU
[
dTV

(
L(diag(M1)|U),VN (Bern(p),Bern (Q) , U)

)]
≤ 4 · exp

(
−Qε

2n2

32N

)
+

√
k2(1−Q)

2QN
+

√
k2Q

2N(1−Q)

where Uk,N is the uniform distribution on the k-subsets of [N ]. Now let A3 denote Step 3 of A
with input M1 and output M2. Let M1 ∼ MN (Bern(p),Bern (Q) , R′) and M2 = A3(M

1).
Consider also conditioning on the permutation τ = τ ′ where τ ′ is a fixed permutation of [N`]. Let
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Us = τ ′({s` + 1, s` + 2, . . . , (s + 1)`}) for each 0 ≤ s < N and note that MRKst = MRKUs,Ut .
Now applying Lemma 11 to the rejection kernels MRKst yields that

dTV

(
MRKst(Bern(p)),

⊗
(i,j)∈Us×Ut

Pnij

)
≤ ∆ and

dTV

(
MRKst (Bern (Q)) ,

⊗
(i,j)∈Us×Ut

Qnij

)
≤ ∆

Now let V =
⋃
i∈R′ Ui−1 be the set of indices of [N`] that R′ is mapped to and let M ′ be sampled

as M ′ ∼MN`((Pij ,Qij)1≤i,j≤N`, V ). The tensorization property in Fact B.1 now yields that

dTV
(
L(M2|τ = τ ′),MN`((Pij ,Qij)1≤i,j≤N`, V )

)
≤

N∑
i,j=1

dTV
(
L(M2

ab : a ∈ Ui−1, b ∈ Uj−1),L(M ′ab : a ∈ Ui−1, b ∈ Uj−1)
)

=
∑

(i,j)∈R′2
dTV

(
RK(i−1)(j−1)(Bern(p)),

⊗
(a,b)∈Ui−1×Uj−1

Pnab

)

+
∑

(i,j)6∈R′2
dTV

(
RK(i−1)(j−1) (Bern (Q)) ,

⊗
(a,b)∈Ui−1×Uj−1

Qnab

)
≤ N2 ·∆

Now note that when τ = τ ′ is chosen uniformly at random, the set V is a uniformly at random
chosen k`-subset of [N`]. Applying the conditioning property in Fact B.1 to conditioning onR′ and
τ = τ ′ now yields that

dTV (A3 (MN (Bern(p),Bern (Q) , k)) ,MN`((Pij ,Qij)1≤i,j≤N`, k`)) ≤ N2 ·∆

Applying Lemma 10 to the stepsA1-2 andA3 with the sequence of distributions P0 = G(n, k, p, q),
P1-2 =MN (Bern(p),Bern (Q) , k) and P3 =MN`((Pij ,Qij)1≤i,j≤N`, k`) yields that

dTV (A(G(n, k, p, q)),MN`((Pij ,Qij)1≤i,j≤N`, k`)) ≤ N2 ·∆ + 4 · exp

(
−Qε

2n2

32N

)
+

√
k2(1−Q)

2QN
+

√
k2Q

2N(1−Q)

We now follow an analogous and simpler argument to analyze the case G ∼ G(n, q). Let
M1 = A1-2(G) and note that (G1, G2) ∼ G(n,Q)⊗2 by Lemma 14. Therefore the entries of
M1 are distributed as M1

ij ∼i.i.d. Bern(Q) for all i 6= j independently of diag(M1), which is an
exchangeable distribution on {0, 1}N with support size s1 +max{s2−s1, 0} where s1 ∼ Bin(n, p)
and s2 ∼ Bin(N,Q). Applying the tensorization and conditioning properties in Fact B.1 as in the
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previous case yields that

dTV

(
L(A1-2(G(n, q))),Bern (Q)⊗N×N

)
= dTV

(
L
(
diag(M1)

)
,Bern (Q)⊗N

)
= dTV (L(s1 + max{s2 − s1, 0}),Bin (N,Q))

≤ 4 · exp

(
−Qε

2n2

32N

)
by Lemma 16. Conditioning on τ = τ ′ and applying the tensorization property in Fact B.1 yields

dTV

(
L
(
A3

(
Bern (Q)⊗N×N

) ∣∣∣τ = τ ′
)
,MN` ((Qij)1≤i,j≤N`)

)
≤

N∑
i,j=1

dTV

(
MRK(i−1)(j−1) (Bern (Q)) ,

⊗
(a,b)∈Ui−1×Uj−1

Qnab

)
≤ N2 ·∆

Applying the conditioning property in Fact B.1 to conditioning on τ = τ ′ now yields that

dTV

(
L
(
A3

(
Bern (Q)⊗N×N

))
,MN` ((Qij)1≤i,j≤N`)

)
≤ N2 ·∆

Applying Lemma 10 to A1-2 and A3 with distributions P0 = G(n, q), P1-2 = Bern (Q)⊗N×N and
P3 =MN` ((Qij)1≤i,j≤N`) yields that

dTV (A(G(n, q)),MN` ((Qij)1≤i,j≤N`)) ≤ N2 ·∆ + 4 · exp

(
−Qε

2n2

32N

)
which completes the proof of the theorem.

Appendix E. Computational Barriers in Submatrix Detection

E.1. Computational Lower Bounds from Our Average-Case Reduction

The average-case reduction from planted dense subgraph in the previous section implies lower
bounds for a more general heteroskedastic version of submatrix detection where the pairs of planted
and noise distributions are allowed to vary from entry to entry, that we now formally define in the
notation from the previous section.

Definition 17 (Heteroskedastic Symmetric Index Set Submatrix Detection) Given computable pairs
(Pij ,Qij) for 1 ≤ i, j ≤ n over a common measurable space (X,B), define HSSD(n, k, (Pij ,Qij)1≤i,j≤n)
to have observation M ∈ Xn×n and hypotheses

H0 : M ∼Mn ((Qij)1≤i,j≤n) and H0 : M ∼Mn ((Pij ,Qij)1≤i,j≤n, k)

The reduction TO-SUBMATRIX from the previous section yields the following lower bounds
for HSSD based on the PDS conjecture. We state the implied lower bounds when k = Ω(

√
n) and

k = o(
√
n) separately in the next two theorems.
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Theorem 18 (Heteroskedastic PDS Lower Bounds when k = o(
√
n)) Let k = o(

√
n), let 0 <

q < p ≤ 1 be fixed constants and let (Pij ,Qij) be a computable pairs over (X,B) for each
1 ≤ i, j ≤ n such that

sup
1≤i,j≤n

PX∼Dij

[
log

dPij
dQij

(X) 6∈
[
log

(
1− p
1− q

)
, log

(
p

q

)]]
= o

(
n−2

)
under both the settings Dij = Pij and Dij = Q for each i, j ∈ [n]. Then assuming the PDS

conjecture at densities 0 < q < p ≤ 1, there is no randomized polynomial time algorithm solving
HSSD(n, k, (Pij ,Qij)1≤i,j≤n) with asymptotic Type I+II error less than one.

Proof Consider applying Lemma 9 and Theorem 13 with ` = 1 and starting planted dense subgraph
instance with subgraph size k, n vertices and densities 0 < q < p ≤ 1. Excluding n2 · ∆, all of
the terms in both of the total variation upper bounds in Theorem 13 are o(1) since k2 = o(n) and
Q < P are constants. It suffices to show that n2 ·∆ = o(1). By the definition of ∆, we have that
∆ = maxi,j∈[n] ∆ij since ` = 1. Now consider the definition of ∆ij in Lemma 11. The condition
in the theorem statement above implies that Px∼Q∗n [x 6∈ S] = o(n−2) and Px∼P∗n [x 6∈ S] = o(n−2)
and in particular that they both are at most 1

4(p−q). By the same argument as in the proof of Lemma
12, this is sufficient to imply that ∆ij = o(n−2). Since this holds for each i, j ∈ [n], we have that
∆ = o(n−2), which proves the theorem.

Theorem 19 (Heteroskedastic PDS Lower Bounds when k = Ω(
√
n)) Let k = Ω(

√
n), let 0 <

q < p ≤ 1 be fixed constants and let (Pij ,Qij) be a computable pairs over (X,B) for each
1 ≤ i, j ≤ n. Suppose that there is some m = ω(k2/n) with m = o(n) such that

sup
S,T⊆[n]:|S|=|T |=m

PXS×T∼DS×T

∑
i∈S

∑
j∈T

log
dPij
dQij

(Xij) 6∈
[
log

(
1− p
1− q

)
, log

(
p

q

)] = o

(
m2

n2

)

under both the settings DS×T = ⊗i∈S ⊗j∈T Pij and DS×T = ⊗i∈S ⊗j∈T Qij for each S, T . Then
assuming the PDS conjecture at densities 0 < q < p ≤ 1, there is no randomized polynomial time
algorithm solving HSSD(n, k, (Pij ,Qij)1≤i,j≤n) with asymptotic Type I+II error less than one.

Proof Consider applying Lemma 9 and Theorem 13 with ` = m and starting planted dense sub-
graph instance with subgraph size bk/mc, bn/mc vertices and densities 0 < q < p ≤ 1. Since
m = ω(k2/n), it follows that k/m = o(

√
n/m) and thus it suffices to show that the total variation

upper bounds in Theorem 13 are o(1). As in the proof of the previous theorem, this reduces to show-
ing that (n/m)2 ·∆ = o(1). For each pair S, T ⊆ [n] with |S| = |T | = m, consider the definition of
∆S,T in Lemma 11. We have that Px∼Q∗n [x 6∈ S] = o(n−2) and Px∼P∗n [x 6∈ S] = o(m2/n2) by the
guarantees in the theorem statement. Since m = o(n), these probabilities are at most 1

4(p − q) for
large n. By the same reasoning as in the previous theorem, we have that ∆ = o(m2/n2), proving
the theorem.

We remark that we ignored issues of divisibility in the previous theorem statement, reducing to
an instance with mbn/mc vertices and submatrix size mbk/mc instead of exactly n and m. This
can be resolved by taking all of n, k,m, ` to be powers of two without affecting their sizes by more
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than a factor of 2. Constructing a sequence of indices with these parameters is enough to rule out
polynomial time algorithms given our forms of the PC and PDS conjectures.

From this point forward, we will restrict our attention to the homoskedastic formulation of
submatrix detection that we have so far focused on. However, we first remark that these general
heteroskedastic lower bounds can be specialized to imply hardness for submatrix problem with
dependences between entries induced by natural column-wise and row-wise mixtures. Let P(θ) be
a family of distributions indexed by θ such that (P(θ),Q) is a computable pair for each θ ∈ Θ. Now
consider the submatrix problem with H0 : M ∼ Q⊗n×n and H1 distribution formed as follows:

• Select a subset S ⊆ [n] with |S| = k uniformly at random

• Sample θi ∼i.i.d. D for each i ∈ [n]

• Sample Mij ∼ P(θi) for each i, j ∈ S and Mij ∼ Q otherwise independently

for some distribution D on Θ. For example, if P(θ) = N (θ, 1), Q = N (0, 1) and D is normally
distributed, this model has row-wise dependences resembling sparse PCA. Now suppose that an
algorithmA solve this problem with asymptotic Type I+II error ε, then there must be a deterministic
choice of the θi such that A solves the problem with asymptotic Type I+II error ε. When θi are
deterministic, this problem is exactly HSSD(n, k, (Pij ,Qij)1≤i,j≤n) with Pij = P(θi) and Qij =
Q.

We now combine the heteroskedastic lower bounds in Theorems 18 and 19 with the MRK upper
bound on ∆ given in Lemma 12 to yield clean statements of the implied computational lower bounds
for SSD based on the PDS and PC conjectures.

Corollary 20 (PDS Lower Bounds for Submatrix Detection) Let 0 < q < p ≤ 1 be fixed con-
stants and (P,Q) be a computable pair over (X,B) such that either:

• k = Ω(
√
n) and k4

n2 · dSKL(P,Q)→ 0 and the LLR between (P,Q) satisfies the LDP

EP (m) = ω(m log n) and EQ (−m) = ω(m log n)

for some positive m satisfying max {dKL(Q‖P), dKL(P‖Q)} ≤ m = o(n2/k4) and where
the second inequality is only necessary if p 6= 1

• k = o(
√
n), dKL(Q‖P) < log

(
1−q
1−p

)
and dKL(P‖Q) < log

(
p
q

)
and the LLR between

(P,Q) satisfies the LDP

EP

(
log

(
p

q

))
≥ 2 log n+ ω(1) and EQ

(
log

(
1− p
1− q

))
≥ 2 log n+ ω(1)

where the second inequality is only necessary if p 6= 1

Then assuming the PDS conjecture at densities 0 < q < p ≤ 1, there is no randomized polynomial
time algorithm solving SSD(n, k,P,Q) with asymptotic Type I+II error less than one.

Proof We first consider the case where k = Ω(
√
n). Consider the reduction in Theorem 19 with

blow-up factor ` = ω(k2/n) where ` is chosen so that `−2 = ω(m) wherem is the positive constant
in the statement of the corollary. Applying Lemma 12 to the MRK with blow-up factor `2 yields

∆ ≤
3 exp

(
−`2 · EP

(
c+`
−2))+ 3 exp

(
−`2 · EQ

(
c−`
−2))

p− q
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where c+ = log
(
p
q

)
and c− = log

(
1−p
1−q

)
. Since EP(λ) is convex and minimized at dKL(Q‖P), it

follows that since c+`−2 ≥ m we have that

EP
(
c+`
−2)

c+`−2 − dKL(Q‖P)
≥ EP (m)

m− dKL(Q‖P)
= ω(log n)

ThereforeEP
(
c+`
−2) = ω(`−2 log n). A symmetric argument shows thatEQ

(
c−`
−2) = ω(`−2 log n).

Now it follows that ∆ = o(n−2), which yields the first statement on applying Theorem 19. Now
consider the case where k = o(

√
n). Applying Lemma 12 to the MRK with blow-up factor 1 to the

reduction in Theorem 18 yields that

∆ ≤ 3 exp (−EP (c+)) + 3 exp (−EQ (c−))

p− q
= o(n−2)

by the given conditions. Combining this with Theorem 18 completes the proof.

Note that the constraints on EQ are no longer necessary if p = 1. The next corollary states our
PC lower bounds and is a restatement of the main theorem on computational lower bounds from
Section 3.

Corollary 21 (PC Lower Bounds for Submatrix Detection) Let p ∈ (0, 1) be a fixed constant
and (P,Q) be a computable pair over (X,B) such that either:

• k = Ω(
√
n) and k4

n2 · dKL(P‖Q)→ 0 and the LLR between (P,Q) satisfies the LDP

EP (m) ≥ ω(m log n)

for some positive m with dKL(P‖Q) ≤ m = o(n2/k4)

• k = o(
√
n) and dKL(P‖Q) < log p−1 and the LLR between (P,Q) satisfies the LDP

EP
(
log p−1

)
≥ 2 log n+ ω(1)

Then assuming the PC conjecture at density p, there is no randomized polynomial time algorithm
solving SSD(n, k,P,Q) with asymptotic Type I+II error less than one.

We now give another corollary of Theorems 18 and 19 yielding a slight variation of these lower
bounds for submatrix detection based on the PC conjecture. This corollary implies that the lower
bounds stated in Section 3.1 hold for all (P,Q) in the universality class UC-A. Note that unlike the
previous corollary which yielded clean lower bounds given the PC conjecture for any fixed p, we
deduce the desired lower bounds up to a factor of nε(p) where ε(p) tends to zero with p. The proof
of this corollary is very similar to that of Corollary 20, making crucial use of the convexity of EP
and the definition of UC-A.

Corollary 22 (Computational Lower Bounds for UC-A) Suppose that (P,Q) is a computable pair
in UC-A. Fix any ε ∈ (0, 1) and suppose that either:

• k = Ω(
√
n) and dKL(P‖Q) = o

(
n2−ε

k4

)
or
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• k = o(
√
n) and dKL(P‖Q) = o (n−ε)

Then there is a sufficiently small p = p(ε) > 0 such that assuming the PC conjecture at density
p, there is no randomized polynomial time algorithm solving SSD(n, k,P,Q) with asymptotic Type
I+II error less than one.

Proof We first consider the case where k = Ω(
√
n). Consider the reduction in Theorem 19 with

blow-up factor ` = Θ(k2/n1−ε/4). Observe that by the given assumption, we have that nε/2 ·
dKL(P‖Q) = o(`−2). Applying Lemma 12 to the MRK with blow-up factor `2 yields

∆ ≤
3 exp

(
−`2 · EP

(
`−2 log p−1

))
1− p

Since EP(λ) is convex and minimized at dKL(Q‖P), it follows that since `−2 log p−1 ≥ nε/2 ·
dKL(P‖Q) we have that

EP
(
`−2 log p−1

)
`−2 log p−1 − dKL(Q‖P)

≥
EP
(
nε/2 · dKL(P‖Q)

)
nε/2 · dKL(P‖Q)− dKL(Q‖P)

≥ c · log n

for some constant c > 0 since (P,Q) is in UC-A. Using the fact that dKL(Q‖P) ≤ 1
2ell

−2 log p−1

for sufficiently large n, we have that

∆ ≤ exp
( c

2
log p−1 · log n

)
= o(n−2)

if p is taken to be sufficiently small. The first statement follows on applying Theorem 19. Now
consider the case where k = o(

√
n). Applying Lemma 12 to the MRK with blow-up factor 1 to the

reduction in Theorem 18 yields that

∆ ≤
3 exp

(
−EP

(
log p−1

))
1− q

by the given conditions. We now apply a similar convexity step, noting that since n−ε ·dKL(P‖Q) ≤
log p−1 for sufficiently large n, we have that

EP
(
log p−1

)
log p−1 − dKL(Q‖P)

≥ EP (nε · dKL(P‖Q))

nε · dKL(P‖Q)− dKL(Q‖P)
≥ c′ · log n

for some c′ > 0. Now it similarly follows that ∆ ≤ exp
(
c′

2 log p−1 · log n
)

= o(n−2) if p is taken
to be sufficiently small. Combining this with Theorem 18 completes the proof.

E.2. Polynomial Time Test Statistics for Submatrix Detection

In this section, we show algorithmic upper bounds for submatrix detection using two simple test
statistics that can be computed in polynomial time. Given a computable pair of distributions (P,Q)
over the measurable space (X,B) and a matrix M ∈ Xn×n, define

Tsum(M) =
1

n2

n∑
i,j=1

log
dP
dQ

(Mij)

Tmax(M) = max
1≤i,j≤n

log
dP
dQ

(Mij)

40



UNIVERSAL REDUCTIONS TO SUBMATRIX DETECTION

Note that both Tsum and Tmax can be computed inO(n2 ·T ) time where the Radon-Nikodym deriva-
tive dP

dQ(Mij) can be evaluated inO(T ) time. Given that (P,Q) is a computable pair, it follows that
Tsum and Tmax can be computed in polynomial time. We now show that thresholding these statistics
solves the asymmetric detection problem ASD given sufficient LDPs for the LLR under each of Q
and P . We begin with the sum test Tsum.

Proposition 23 (Sum Test) Let M be an instance of ASD(n, k,P,Q) and let

τsum = −dKL(Q‖P) +
k2

2n2
· dSKL(P,Q)

Suppose that k � n and

EP

(
1

2
· dKL(P‖Q)

)
= ω(k−2)

EQ

(
− 2n2 − k2

2n2 − 2k2
· dKL(Q‖P)

)
= ω(n−2)

EQ

(
−2n2 − k2

2n2
· dKL(Q‖P)

)
= ω(n−2)

Then PH0 [Tsum(M) ≥ τsum]→ 0 and PH1 [Tsum(M) < τsum]→ 0 as n→∞.

Proof Let τ ′ = −2n−k2
2n · dKL(Q‖P) and note that τ ′ ≤ τsum. Under H0, by a Chernoff bound we

have that if λ ≥ 0 then

PH0 [Tsum(M) ≥ τsum] ≤ PH0

[
Tsum(M) ≥ τ ′

]
= PH0

[
exp

(
n2λ · Tsum(M)

)
≥ exp

(
n2λ · τ ′

)]
≤ exp

(
n2 · ψQ (λ)− n2λ · τ ′

)
Since τ ′ ≥ −dKL(Q‖P), we may take λ ≥ 0 so that λ · τ ′ − ψQ(λ) is arbitrarily close to EQ(τ ′).
Therefore we have that

PH0 [Tsum(M) ≥ τsum] ≤ exp
(
−n2 · EQ(τ ′)

)
= o(1)

Let S′, T ′ ⊆ [n] be the latent row and column indices of the planted part of M under H1. Note that
τsum = (1 − k2

n2 ) · τ1 + k2

n2 · τ2 where τ1 = − 2n2−k2
2n2−2k2 · dKL(Q‖P) and τ2 = 1

2 · dKL(P‖Q). Thus
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under H1, by a Chernoff and union bound we have that if λ1, λ2 ≤ 0

PH1 [Tsum(M) < τsum] ≤ PH1

 ∑
(i,j)6∈S′×T ′

log
dP
dQ

(Mij) <

(
1− k2

n2

)
· τ1


+ PH1

 ∑
(i,j)∈S′×T ′

log
dP
dQ

(Mij) <
k2

n2
· τ2


≤ exp

(
−(n2 − k2)λ1 · τ1

)
· EH1

exp

λ1 · ∑
(i,j)6∈S′×T ′

log
dP
dQ

(Mij)


+ exp

(
−k2λ2 · τ2

)
· EH1

exp

λ2 · ∑
(i,j)∈S′×T ′

log
dP
dQ

(Mij)


= exp

(
(n2 − k2) · ψQ(λ1)− (n2 − k2) · λ1 · τ1

)
+ exp

(
k2 · ψP(λ2)− k2 · λ2 · τ2

)
Since τ1 ≤ −dKL(Q‖P) and τ2 ≤ dKL(P‖Q), we may take λ1 ≤ 0 and λ2 ≤ 0 so that λ1 · τ1 −
ψQ(λ1) is arbitrarily close toEQ(τ1) and λ2 ·τ2−ψP(λ2) is arbitrarily close toEP(τ2). This yields
that

PH1 [Tsum(M) < τsum] ≤ exp
(
−(n2 − k2) · EQ(τ1)

)
+ exp

(
−k2 · EP(τ2)

)
= o(1)

which completes the proof of the proposition.

Given an LDP for the LLR under Q and P , it also holds that Tsum solves the asymmetric detec-
tion problem.

Proposition 24 (Max Test) Let M be an instance of ASD(n, k,P,Q) and suppose there is a
τmax ∈ (−dKL(Q‖P), dKL(P‖Q)) with

EQ(τmax) ≥ 2 log n+ ω(1) and EP(τmax) = ω(1)

then PH0 [Tmax(M) ≥ τmax]→ 0 and PH1 [Tmax(M) < τmax]→ 0 as n→∞.

Proof This follows from the same argument used to analyze the search test Tsearch in the proof of
Proposition 30 applied with k = 1.

We now proceed to show that our algorithmic upper bounds hold for all computable pairs (P,Q)
in UC-B. To do this, we will establish the following simple consequences for (P,Q) in UC-B. As
mentioned in Section 3, the class UC-B is introduced in Hajek et al. (2017). The third property
below is derived in Section 3 of Hajek et al. (2017).

Lemma 25 (Properties of UC-B) Suppose that (P,Q) is in UC-A with constant C ≥ 1. Then

1. It holds for all τ ∈ [−2C · dKL(P‖Q), 0] that

EP (dKL(P‖Q) + τ) ≥ τ2

4C · dKL(P‖Q)
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2. It holds for all τ ∈ [−2C · dKL(Q‖P), 2C · dKL(Q‖P)] that

EQ (−dKL(Q‖P) + τ) ≥ τ2

4C · dKL(Q‖P)

3. It holds that dKL(P‖Q) = Θ(dKL(Q‖P)).

Proof The fact that (P,Q) is in UC-B implies that

EP (dKL(P‖Q) + τ) = sup
λ∈R
{(dKL(P‖Q) + τ) · λ− ψP(λ)}

≥ sup
λ∈[−1,0]

{
τ · λ− C · dKL(P‖Q) · λ2

}
Now set λ = τ

2C·dKL(P‖Q) ∈ [−1, 0] and note that this implies that

EP (dKL(P‖Q) + τ) ≥ τ2

4C · dKL(P‖Q)

Similarly, we have that

EQ (−dKL(Q‖P) + τ) ≥ sup
λ∈[−1,1]

{
τ · λ− C · dKL(Q‖P) · λ2

}
≥ τ2

4C · dKL(Q‖P)

on setting λ = τ
2C·dKL(Q‖P) ∈ [−1, 1]. Property 3 follows from Lemma 2 in Hajek et al. (2017),

which shows that

min {dKL(Q‖P), dKL(P‖Q)} ≥ 1

C
·max {dKL(Q‖P), dKL(P‖Q)}

This implies that dKL(P‖Q) = Θ(dKL(Q‖P)).

We now combine these properties with Propositions 23 and 24 to show algorithmic achievability
of the computational barriers shown above for SSD when (P,Q) is in UC-B.

Corollary 26 (Algorithmic Upper Bounds for UC-B) Suppose that (P,Q) is a computable pair
in UC-B. Then it follows that:

• If k = o(n), k = Ω(
√
n) and dSKL(P,Q) = ω

(
n2

k4

)
, then Tsum solves SSD(n, k,P,Q).

• If k = o(
√
n) and dSKL(P,Q) ≥ c · log n for some sufficiently large constant c > 0, then

Tmax with τmax = 0 solves SSD(n, k,P,Q).

Proof We begin with the first statement. By Proposition 23, it suffices to verify the lower bounds
on EP and EQ in the statement of the proposition. To do this, we apply properties (1) and (2) in
Lemma 25. Let C ≥ 1 be the constant for which (P,Q) is in UC-B and observe that

EP

(
1

2
· dKL(P‖Q)

)
≥
(
−1

2 · dKL(P‖Q)
)2

4C · dKL(P‖Q)
=

1

16C
· dKL(P‖Q) = ω(k−2)

EQ

(
− 2n2 − k2

2n2 − 2k2
· dKL(Q‖P)

)
≥

(
k2

2n2−2k2 · dKL(Q‖P)
)2

4C · dKL(Q‖P)
=

k4

16C(n2 − k2)2
· dKL(Q‖P) = ω(n−2)

EQ

(
−2n2 − k2

2n2
· dKL(Q‖P)

)
≥

(
k2

2n2 · dKL(Q‖P)
)2

4C · dKL(Q‖P)
=

k4

16C · n4
· dKL(Q‖P) = ω(n−2)
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since k = o(n), dKL(P‖Q) = Θ(dKL(Q‖P)) and dSKL(P,Q) = ω
(
n2

k4

)
. We now verify the

second statement for τmax = 0. It suffices to verify the two lower bounds on EP and EQ in the
statement of Proposition 24. Note that

EP(0) ≥ (−dKL(P‖Q))2

4C · dKL(P‖Q)
=

1

4C
· dKL(P‖Q) ≥ 3 log n

EQ(0) ≥ (dKL(Q‖P))2

4C · dKL(Q‖P)
=

1

4C
· dKL(Q‖P) ≥ 3 log n

for sufficiently large c > 0. This completes the proof of the corollary.

Appendix F. Statistical Limit of Submatrix Detection

In this section, we show information-theoretic lower bounds for our universal formulations of sub-
matrix detection and provide a test statistic showing that this boundary is achievable.

F.1. Information-Theoretic Lower Bound for Submatrix Detection

Assuming thatP andQ have finite χ2 divergence, we can obtain the following information-theoretic
lower bound for SSD with the distribution pair (P,Q). The proof uses a similar χ2 divergence
computation as in Lemma 15 and the information-theoretic lower bounds for planted dense subgraph
shown in Hajek et al. (2015).

Theorem 27 Suppose that P and Q are probability distributions on a measurable space (X,B)
where P is absolutely continuous with respect to Q. If χ2(P‖Q) is finite and satisfies that

χ2(P‖Q) <
1

16e

(
1

n
log
(en
k

)
∧ n

2

k4

)
then there is a function τ : R>0 → R>0 such that limt→0+ τ(t) = 0 and

dTV
(
Mn(P,Q, k), Q⊗n×n

)
≤ τ

(
χ2(P‖Q)

1
n log

(
en
k

)
∧ n2

k4

)

To prove this, we will need the following lemma of Hajek et al. (2015) bounding the moment
generating function of a hypergeometric random variable squared.

Lemma 28 (Lemma 6 in Hajek et al. (2015)) There exists a function τ1 : R>0 → R>0 satisfying
that limt→0+ τ1(t) = 1 such that for any k ≤ n the following holds: ifH ∼ Hypergeometric(n, k, k)

and λ = κ
(
1
k log

(
en
k

)
∧ n2

k4

)
where 0 < κ < 1

16e then

E
[
exp

(
λH2

)]
≤ τ1(κ)

Using this upper bound, we now can prove the information-theoretic lower bounds for submatrix
detection in Theorem 27.
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Proof [Proof of Theorem 27] Let f : X → [0,∞) be the Radon-Nikodym derivative f = dP
dQ .

Observe thatMn(P,Q, k) can be written as the mixture

Mn(P,Q, k) =

(
n

k

)−1 ∑
S⊆[n]:|S|=k

RS

where RS is the distribution of n × n matrices M ∈ Xn×n with independent entries such that
Mij ∼ P if i, j ∈ S and Mij ∼ Q otherwise. Note that RS is therefore absolutely continuous
with respect to Q⊗n×n with Radon-Nikodym derivative dRS

dQ⊗n×n (M) =
∏
i,j∈S f(Mij) for each

M ∈ Xn×n. It follows thatMn(P,Q, k) is also absolutely continuous with respect toQ⊗n×n with
Radon-Nikodym derivative

dMn(P,Q, k)

dQ⊗n×n
(M) =

(
n

k

)−1 ∑
S⊆[n]:|S|=k

dRS
dQ⊗n×n

(M) = ES∼Uk,n

 ∏
i,j∈S

f(Mij)


for each x ∈ Xn×n where Uk,n is the uniform distribution on k-subsets of [n]. By Fubini’s theorem,

χ2
(
Mn(P,Q, k) ‖Q⊗n×n

)
+ 1

= EM∼Q⊗n×n

[(
dMn(P,Q, k)

dQ⊗n×n
(M)

)2
]

= EM∼Q⊗n×n

ES∼Uk,n
 ∏
i,j∈S

f(Mij)

 · ET∼Uk,n
 ∏
i,j∈S

f(Mij)


= ES,T∼Uk,n

EM∼Q⊗n×n
∏

i,j∈S
f(Mij)

∏
i,j∈T

f(Mij)


= ES,T∼Uk,n

 ∏
i,j∈S∩T

EMij∼Q
[
f(Mij)

2
] ∏
(i,j)∈S2∪T 2−(S∩T )2

EMij∼Q [f(Mij)]


= ES,T∼Uk,n

[
(1 + χ2(P‖Q))|S∩T |

2
]

where the last equality holds since EMij∼Q[f(Mij)] = 1 and 1 + χ2(P‖Q) = EMij∼Q[f(Mij)
2].

Note that H = |S ∩ T | ∼ Hypergeometric(n, k, k). Let τ1 be the function in Lemma 28. The given
bounds on χ2(P‖Q) imply that we can apply Lemma 28 with λ = χ2(P‖Q). Combining this with
Cauchy-Schwarz and the fact that 1 + χ2(P‖Q) ≤ exp

(
χ2(P‖Q)

)
yields that

2 · dTV
(
Mn(P,Q, k), Q⊗n×n

)2 ≤ χ2
(
Mn(P,Q, k) ‖Q⊗n×n

)
= ES,T∼Uk,n

[
(1 + χ2(P‖Q))|S∩T |

2
]
− 1

≤ E
[
exp

(
H2 · χ2(P‖Q)

)]
− 1

≤ τ1

(
χ2(P‖Q)

1
n log

(
en
k

)
∧ n2

k4

)
− 1
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Setting τ =
√

1
2(τ1 − 1) which satisfies limt→0+ τ(t) = 0 completes the proof of the theorem.

Now using the fact that the minimum Type I+II error of a hypothesis testing problem between
L0 and L1 is 1 − dTV(L0,L1), we arrive at the following corollary providing a regime in which
submatrix detection is statistically impossible.

Corollary 29 Suppose that P and Q are probability distributions on a measurable space (X,B)
where P is absolutely continuous with respect to Q. If χ2(P‖Q) is finite and satisfies that

χ2(P‖Q) = o

(
1

k
log
(n
k

)
∧ n

2

k4

)
then any test φ : Xn×n → {0, 1} has an asymptotic Type I+II error of at least one on SSD(n, k,P,Q).

Note that this corollary implies that if (P,Q) is in UC-C and satisfies that χ2(P‖Q) = O(dSKL(P,Q)),
then SSD(n, k,P,Q) is information-theoretically impossible if

dSKL(P,Q) = o

(
1

k
log
(n
k

)
∧ n

2

k4

)
which matches the bounds in Section 3.1.

F.2. Search Test Statistic

In this section, we give a simple search test statistic showing statistical achievability. Given a
computable pair of distributions (P,Q) over the measurable space (X,B) and a matrixM ∈ Xn×n,
define

Tsearch(M) = max
S,T⊆[n]:|S|=|T |=k

 1

k2

∑
i∈S

∑
j∈T

log
dP
dQ

(Mij)


Note that Tsearch can be computed inO(n2k ·T ) time where the Radon-Nikodym derivative dP

dQ(Mij)
can be evaluated inO(T ) time. We now show that thresholding this statistics solves the asymmetric
detection problem ASD given sufficient LDPs for the LLR under each of Q and P . We begin with
the sum test Tsum.

Proposition 30 (Search Test) Let M be an instance of ASD(n, k,P,Q) and suppose there is a
τsearch ∈ (−dKL(Q‖P), dKL(P‖Q)) with

EQ(τsearch) ≥ 2

k
log
(n
k

)
+ ω(k−2) and EP(τsearch) = ω(k−2)

then PH0 [Tsearch(M) ≥ τsearch]→ 0 and PH1 [Tsearch(M) < τsearch]→ 0 as n→∞.
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Proof By a union bound and Chernoff bound, we have that for if λ ≥ 0 then

PH0 [Tsearch(M) ≥ τsearch]

=
∑

S,T⊆[n]:|S|=|T |=k

PH0

∑
i∈S

∑
j∈T

log
dP
dQ

(Mij) ≥ k2 · τsearch


≤
(
n

k

)2

· PH0

exp

λ · k∑
i,j=1

log
dP
dQ

(Mij)

 ≥ exp
(
λ · k2 · τsearch

)
≤ exp

(
2 log

(
n

k

)
+ k2 · ψQ (λ)− k2λ · τsearch

)
Since τsearch ∈ (−dKL(Q‖P), dKL(P‖Q)), we may take λ ≥ 0 so that λ·τsearch−ψQ(λ) is arbitrarily
close to EQ(τsearch). This implies that

PH0 [Tsearch(M) ≥ τsearch] ≤ exp
(

2k · log
(n
k

)
− k2 · EQ(τsearch)

)
= o(1)

since
(
n
k

)
≤
(
n
k

)k. Let S′, T ′ ⊆ [n] be the latent row and column indices of the planted part of M
under H1. Now it follows that for λ ≤ 0 we have that

PH1 [Tsearch(M) < τsearch] = PH1

∑
i∈S′

∑
j∈T ′

log
dP
dQ

(Mij) < k2 · τsearch


≤ PH1

exp

λ ·∑
i∈S′

∑
j∈T ′

log
dP
dQ

(Mij)

 > exp
(
λ · k2 · τsearch

)
≤ exp

(
k2 · ψP (λ)− k2λ · τsearch

)
Again, since τsearch ∈ (−dKL(Q‖P), dKL(P‖Q)), we may take λ ≤ 0 so that λ · τsearch − ψP(λ) is
arbitrarily close to EP(τsearch). Therefore

PH1 [Tsearch(M) < τsearch] ≤ exp (−EP(τsearch)) = o(1)

which proves the desired result.

We now show that the search test solves SSD(n, k,P,Q) for UC-B in (P,Q) in the parameter
regime described in Section 3.1.

Corollary 31 (Statistically Achievability for UC-B) Suppose that (P,Q) is a computable pair in
UC-B. If dSKL(P,Q) ≥ c

k log
(
n
k

)
for a sufficiently large constant c > 0, then Tsearch with τsearch = 0

solves SSD(n, k,P,Q).

Proof It suffices to verify the lower bounds on EP and EQ in Proposition 30. Since (P,Q) is in
UC-B, by Lemma 25 we have that

EP(0) ≥ (−dKL(P‖Q))2

4C · dKL(P‖Q)
=

1

4C
· dKL(P‖Q) ≥ 3

k
log
(n
k

)
EQ(0) ≥ (dKL(Q‖P))2

4C · dKL(Q‖P)
=

1

4C
· dKL(Q‖P) ≥ 3

k
log
(n
k

)
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Since 1
k log

(
n
k

)
= ω(k−2), applying Proposition 30 now proves the corollary.

Appendix G. The Universality Classes UC-A, UC-B and UC-C

G.1. Universality Classes UC-A and UC-B

The universality class UC-B is discussed at length in Section 2.1 and 3 of Hajek et al. (2017),
which introduces it as Assumption 2 in the context of their information-theoretic lower bounds for
general submatrix recovery. The provide a means to check whether a pair (P,Q) belonging to an
exponential family is in UC-B in Appendix B of Hajek et al. (2017). The discussion below shows
that this method also checks membership in UC-A and UC-C.

Recall that a random variable X is sub-Gaussian if there are a, b ∈ R with b > 0 such that
logE[eλX ] ≤ a + E[X] · λ + bλ2 for all λ ∈ R. Given a computable pair (P,Q), let L(x) =
log dP

dQ(x) denote its LLR. The inequalities

ψP(λ)− dKL(P‖Q) · λ ≤ C · dKL(P‖Q) · λ2 for all λ ∈ [−1, 0]

ψQ(λ) + dKL(Q‖P) · λ ≤ C · dKL(Q‖P) · λ2 for all λ ∈ [−1, 1]

defining UC-B are exactly the inequalities required for the two distributions L(X) where X ∼ P
and L(X) where X ∼ Q to be sub-Guassian, but only required to hold for λ in restricted intervals.
Thus UC-B is weaker than sub-Gaussianity of L under P and Q. We now observe that it similarly
holds that UC-A is weaker than sub-Gaussianity of L under P . If the sub-Gaussianity inequality
holds for the following interval

ψP(λ)− dKL(P‖Q) · λ ≤ C · dKL(P‖Q) · λ2 for λ ∈ [0,Θ(log n)]

then the same argument showing Property 1 in Lemma 25 shows that

EP ((λ+ 1) · dKL(P‖Q)) = Ω
(
dKL(P‖Q) · (log n)2

)
for λ = Θ(log n). The convexity of EP and the fact that EP(dKL(P‖Q)) = 0 implies that if n is
large enough so that nε ≥ λ+ 1, then

EP (nε · dKL(P‖Q))

(nε − 1) · dKL(P‖Q)
≥ EP ((λ+ 1) · dKL(P‖Q))

λ · dKL(P‖Q)
= Ω(log n)

and thus the condition needed for UC-A holds. It is also shown in Hajek et al. (2017) that (P,Q)
with bounded LLR are in UC-B.

Lemma 32 (Lemma 1 in Hajek et al. (2017)) If |L| ≤ B for some constant B > 0, then (P,Q)
is in UC-B with constant C = e5B .

We now show that the three pairs of interest DBC, DSP and DGP introduced in Section 3 are in
UC-A and UC-B. In Sections 2.1 and 3 of Hajek et al. (2017), it is shown that all three of these pairs
lie in UC-B. Thus it suffices to verify that they lie in UC-A. Consider DBC where P = N (µ, 1) and
Q = N (0, 1). As shown in Section 2.1 of Hajek et al. (2017), we have that

EP(θ) =
1

8

(
µ− 2θ

µ

)2
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Suppose that θ = nε · dKL(P‖Q) = 1
2n

ε · µ2 by a standard formula for the KL divergence between
two Gaussians. Then it follows that

EP(θ) =
1

8
(µ− nε · µ)2 = Θ(n2εµ2)

Since n2ε = ω(log n), it follows thatDBC is in UC-A. In the following, we use several computations
dKL computations to be carried in Section G.2. As shown in Hajek et al. (2017), if P = Bern(p)
and Q = Bern(q) then

EP(θ) = D(α‖p) where α =
θ + log 1−q

1−p

log p(1−q)
q(1−p)

where D(·‖·) is the binary entropy function. Letting θ = D(p‖q) + τ yields that

EP(D(p‖q) + τ) = D

(
p+ τ

(
log

p(1− q)
q(1− p)

)−1 ∥∥∥p)

When p = cq = cn−α for some c > 1, it is not difficult to verify that if τ is such that τ =
Θ(nε ·D(p‖q)) = Θ(nε−α) then

EP(D(p‖q) + τ) = Θ
(
nε−α log n

)
and thus DSP is in UC-A. Furthermore, if p = n−α + Θ(n−γ) and q = n−α where γ > α > 0, then
D(p‖q) = Θ(nα−2γ). Observe that log p(1−q)

q(1−p) = Θ(nα−γ). Now taking τ = Θ(nε · D(p‖q)) =

Θ(nε+α−2γ) yields that

EP(D(p‖q) + τ) = Θ

(
τ2

p

(
log

p(1− q)
q(1− p)

)−2)
= Θ

(
n2ε+α−2γ

)
and since nε = ω(log n), it follows that DGP is in UC-A. We conclude this section by generalizing
these computations to show that if a pair (P,Q) has bounded LLR then it is also in UC-A. The proof
is similar to that of Lemma 1 in Hajek et al. (2017).

Lemma 33 If |L| ≤ B for some constant B > 0, then (P,Q) is in UC-A.

Proof First note that if λ ∈ [0, λmax] then

ψ′′P(λ) =
EP [L2 · exp(λL)] · ψP(λ)− EP [L · exp(λL)]2

ψP(λ)2
≤ EP [L2 · exp(λL)]

EP [exp(λL)]
≤ e2Bλmax ·EP [L2]

As in Hajek et al. (2017), let φ(x) = ex − x − 1 and note that if |x| ≤ B then 1
2e
−Bx2 ≤ φ(x) ≤

1
2e
Bx2 since φ is nonnegative, convex and satisfies φ(0) = φ′(0) = 0 and φ′′(x) = ex ∈ [e−B, eB]

if |x| ≤ B. Therefore we have that

EP [L2] = EQ
[
L2 exp(L)

]
≤ eB · EQ[L2] ≤ 2e2B · EQ[φ(L)] = 2e2B · dKL(Q‖P)
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Applying Lemma 32 yields that (P,Q) is in UC-B and thus dKL(Q‖P) ≤ c · dKL(P‖Q) for some
c > 0 by Property 3 in Lemma 25. Thus ψ′′P(λ) ≤ 2c ·e2B(λmax+1) ·dKL(P‖Q) for all λ ∈ [0, λmax].
Combining this with ψ′P(0) = dKL(P‖Q) and ψP(0) = 0 yields that

ψP(λ) ≤ dKL(P‖Q) · λ+ c · e2B(λmax+1) · dKL(P‖Q) · λ2 for all λ ∈ [0, λmax]

This inequality implies that

EP(dKL(P‖Q)+τ) ≥ sup
λ∈[0,λmax]

{
τ · λ− c · e2B(λmax+1) · dKL(P‖Q) · λ2

}
≥ τ2

4c · e2B(λmax+1)dKL(P‖Q)

where the last inequality holds as long as

τ

2c · e2B(λmax+1)dKL(P‖Q)
≤ λmax

Now take τ = (nε− 1) · dKL(P‖Q) and λmax + 1 = 1
2B [ε log n− log logn] + c′ for some constant

c′ > 0. It follows that
τ

2c · e2B(λmax+1)dKL(P‖Q)
≤ e−2Bc

′

2c
· log n

which is at most λmax for a large enough choice of c′ = c′(B, c) > 0. Furthermore, substituting this
pair (τ, λmax) into the inequality above yields thatEP(nε ·dKL(P‖Q)) = Ω(nε ·dKL(P‖Q) · log n),
which implies that (P,Q) is in UC-A.

G.2. Universality Class UC-C

The condition for (P,Q) to be in UC-C is also weaker than sub-Gaussianity of the LLR. Observe
that if the sub-Gaussian inequality

ψQ(λ) + dKL(Q‖P) · λ ≤ C · dKL(Q‖P) · λ2

holds for λ = 2, then χ2(P‖Q) = ψQ(2) ≤ (4C − 2) · dKL(Q‖P) and (P,Q) is in UC-C. In light
of this, taking λmax ≥ 2 in the proof of Lemma 33 also shows that |L| ≤ B implies that (P,Q) is
in UC-C. For the sake of the exposition, we now verify directly that the three pairs DBC, DSP and
DGP are in UC-C by explicitly computing their KL and χ2 divergences.

(DBC) If P = N (µ, 1) and Q = N (0, 1) where µ = n−α for some α > 0, then we have that

χ2(P‖Q) =
1

2

(
eµ

2 − 1
)

= Θ(µ2)

dSKL(P,Q) = dKL(Q‖P) + dKL(P‖Q) = µ2

as µ→ 0, by well-known formulas for these divergences.
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(DSP) If P = Bern(p) andQ = Bern(q) where p = cq = cn−α for some constant c > 1 and α > 0,
then we have that

χ2(P‖Q) =
(p− q)2

q(1− q)
=

(c− 1)2

1− n−α
· n−α = Θ(n−α)

dKL(Q‖P) = −n−α log c− (1− n−α) log

(
1− (c− 1)n−α

1− n−α

)
= −n−α log c− (1− n−α) ·

(
−(c− 1)n−α

1− n−α
+O(n−2α)

)
= (c− 1− log c)n−α +O(n−2α) = Θ(n−α)

dKL(P‖Q) = (c−1 − 1− log c−1)cn−α +O(n−2α) = Θ(n−α)

(DGP) If P = Bern(p) and Q = Bern(q) where p = q + Θ(n−γ) and q = n−α for some constants
γ > α > 0, then we have that

χ2(P‖Q) =
(p− q)2

q(1− q)
= Θ(n−2γ+α)

dKL(Q‖P) = −q log

(
1 +

p− q
q

)
− (1− q) log

(
1− p− q

1− q

)
= −q

(
p− q
q
−
(
p− q
q

)2

+O

(
(p− q)3

q3

))

− (1− q)

(
−p− q

1− q
−
(
p− q
1− q

)2

+O

(
(p− q)3

(1− q)3

))

=
(p− q)2

q(1− q)
+O(n−3γ+2α) = Θ(n−2γ+α)

dKL(P‖Q) = Θ(n−2γ+α)

These computations verify that all three pairs (P,Q) are in the universality class UC-C.

Appendix H. Further Questions

This work leaves a number of questions about submatrix detection and planted clique reductions
unresolved. The following is an overview of some of these problems.

• Weaker Universality Assumptions: Can our required lower bound on EP in our main com-
putational lower bounds be relaxed? In other words, is there a reduction from planted clique
or another conjecturally hard average-case problem to the general submatrix detection prob-
lem for a wider universality class of (P,Q)?

• Other Possible Computational Phase Diagrams: Outside of our universality classes, are
there any natural universality classes (P,Q) with different phase diagrams that can be char-
acterized through average-case reductions? One example of a pair (P,Q) outside of our
universality classes that we do not show hardness for is P = Bern(p) and Q = Bern(q)
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Figure 7: Computational and statistical barriers in the recovery variant of SSD(n, k,P,Q) under
regularity assumptions on (P,Q). The red region is conjectured to be computationally
hard but no PC reductions showing this hardness are known. Axes are parameterized as
k = Θ̃(nβ) and dSKL(P,Q) = Θ̃(n−α).

where p = n−α and q = n−β where β > α. The graph variant of this submatrix detection
problem corresponds to the log-density regime of planted dense subgraph and seems to obey
a completely different phase diagram. Algorithms and conjectured hardness for this prob-
lem are discussed in Bhaskara et al. (2010); Chlamtac et al. (2012); Chlamtáč et al. (2017);
Chlamtáč and Manurangsi (2018).

• Computational Lower Bounds for Submatrix Recovery: Through similar detection-recovery
reductions as in Section 10 of Brennan et al. (2018), our computational lower bounds for sub-
matrix detection yields computational lower bounds for the general recovery variant. How-
ever, Tsum does not translate into a natural recovery algorithm and the computational barrier
for recovery appears to be different from that of submatrix detection. This has left a region of
the phase diagram with an unknown computational complexity. Semidefinite programming
algorithms for recovery under regularity assumptions on (P,Q) were analyzed in Hajek et al.
(2016b) meeting the polynomial time threshold shown in Figure 7. In a distributionally robust
sub-Gaussian variant of submatrix recovery, planted clique lower bounds were shown by Cai
et al. (2017). The known and open regions of the phase diagram for recovery are shown in
Figure 7.
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