
Proceedings of Machine Learning Research vol 99:1–27, 2019 32nd Annual Conference on Learning Theory

On the Computational Power of Online Gradient Descent

Vaggos Chatziafratis VAGGOS@CS.STANFORD.EDU
Department of Computer Science, Stanford University

Tim Roughgarden TR@CS.COLUMBIA.EDU
Department of Computer Science, Columbia University

Joshua R. Wang JOSHW0@GMAIL.COM

Google Research, Mountain View

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
We prove that the evolution of weight vectors in online gradient descent can encode arbitrary
polynomial-space computations, even in very simple learning settings. Our results imply that, under
weak complexity-theoretic assumptions, it is impossible to reason efficiently about the fine-grained
behavior of online gradient descent.
Keywords: Stochastic Gradient Descent, Complexity Theory, PSPACE hardness, SVMs, reduction

1. Introduction

In online convex optimization (OCO), an online algorithm picks a sequence of points w1,w2, ...
from a compact convex set K ⊆ Rd while an adversary chooses a sequence f1, f2, ... of convex
cost functions (from K to R). The online algorithm can choose wt based on the previously-seen
f1, ..., f t−1 but not later functions; the adversary can choose f t based on w1, ...,wt. The algorithm
incurs a cost of f t(wt) at time t. Canonically, in a machine learning context, K is the set of
allowable weight vectors or hypotheses (e.g., vectors with bounded `2-norm), and f t is induced
by a data point xt, a label yt, and a loss function ` (e.g., absolute, hinge, or squared loss) via
f t(wt) = `(wt, (xt, yt)).

One of the most well-studied algorithms for OCO is online gradient descent (OGD), which
always chooses the point wt+1 := wt − η · ∇f t(wt) (Zinkevich, 2003), projecting back to K if
necessary. This algorithm enjoys good guarantees for OCO problems, such as vanishing regret (see
e.g. Hazan (2016)).

The main message of this paper is:

OGD captures arbitrary polynomial-space computations, even in very simple settings.

For example, this result is true for binary classification using soft-margin support vector machines
(SVMs) or neural networks with one hidden layer, ReLU activations, and the squared loss function.
(For even simpler models, like ordinary linear least squares, such a result appears impossible; see
Appendix A.)

A bit more precisely: for every polynomial-space computation, there is a sequence of data points
(x1, y1), . . . , (xT , yT) that have polynomial bit complexity such that, if these data points are fed
to OGD (specialized to one of the aforementioned settings) in this order over and over again, the

c© 2019 V. Chatziafratis, T. Roughgarden & J.R. Wang.

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

consequent sequence of weight vectors simulates the given computation. Figure 1 gives a cartoon
view of what such a simulation looks like.1

(a) (b)

Figure 1: Cartoon view of simulating a computation using a sequence of weight vectors. On the left,
the evaluation of a Boolean circuit on a specific input (with “T” and “F” indicating which inputs
and gates evaluate to true and false, respectively). On the right, a corresponding sequence of weight
vectors (with updates triggered by a carefully chosen data set), with each vector evaluating one more
gate of the circuit than the previous one. Weights of +1,−1, and 0 indicate that an input has been
assigned true, has been assigned false, or has not yet been assigned a value, respectively.

Our simulation implies that, under weak complexity-theoretic assumptions, it is impossible to
reason efficiently about the fine-grained behavior of OGD. For example, the following problem is
PSPACE-hard2: given a sequence (x1, y1), . . . , (xT , yT) of data points, to be fed into OGD over
and over again (in the same order), with initial weights w1 = 0, does any weight vector wt produced
by OGD (with soft-margin SVM updates) have a positive first coordinate?3

Our results have similar implications for a common-in-practice variant of stochastic gradient
descent (SGD), where every epoch performs a single pass over the data points, in a fixed but arbitrary
order. Our work implies that this variant of SGD can also simulate arbitrary PSPACE computations
(when the data points and their ordering can be chosen adversarially).

1. Our actual simulation in Section 3 and Section 4 is similar in spirit to but more complicated than the picture in Figure 1.
For example, we use a constant number of OGD updates to simulate each circuit gate (not just one), and each weight
can take on up to a polynomial number of different values.

2. In fact, for the case where we are promised that the weights are bounded and only require polynomial bits of precision
(they are so in our constructions), the problem is PSPACE-complete, because we can store the weights in our
polynomially-sized memory and can keep a polynomially-sized timer to check whether we are cycling.

3. PSPACE is the set of decision problems decidable by a Turing machine that uses space at most polynomial in the
input size, and it contains problems that are believed to be very hard (much harder than NP-complete). For example,
the problem of deciding which player has a winning strategy in chess (for a suitable asymptotic generalization of
chess) belongs to (and is complete for) PSPACE (Storer (1983)).

2

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

1.1. Related Work

There are a number of excellent sources for further background on OCO, OGD, and SVMs; see
e.g. Hazan (2016); Shalev-Shwartz and Ben-David (2014). We use only classical concepts from
complexity theory, covered e.g. in Sipser (2006).

There is a long history of PSPACE-completeness results for reasoning about iterative algo-
rithms. For example, PSPACE-completeness results were proved for computing the final outcome
of local search (Johnson et al., 1988) and other path-following-type algorithms (Goldberg et al.,
2013). For a more recent example that concerns finding a limit cycle of certain dynamical systems,
see Papadimitriou and Vishnoi (2016).

This paper is most closely related to a line of work showing that certain widely used algorithms
inadvertently solve much harder problems than what they were originally designed for. For example,
Adler et al. (2014), Disser and Skutella (2015), and Fearnley and Savani (2015) show how to
efficiently embed an instance of a hard problem into a linear program so that the trajectory of the
simplex method immediately reveals the answer to the instance. Roughgarden and Wang (2016)
proved an analogous PSPACE-completeness result for Lloyd’s k-means algorithm.

More distantly related are previous works that treat stochastic gradient descent as a dynamical
system and then show that the system is complex in some sense. Examples include Van Den Doel
and Ascher (2012), who provide empirical evidence of chaotic behavior, and Chaudhari and Soatto
(2018), who show that, for DNN training, SGD can converge to stable limit cycles. We are not aware
of any previous works that take a computational complexity-based approach to the problem.

2. Preliminaries

2.1. Soft-Margin SVMs

We begin with the following special case of OCO, corresponding to soft-margin support vector
machines (SVMs) under a hinge loss.4 For some fixed regularization parameter λ, every cost function
f t will have the form

`hinge(w
t, (xt, yt)) + λ

2‖w
t‖22

for some data point xt ∈ Rd and label yt ∈ {−1,+1}, where the hinge loss is defined as
`hinge(w

t, (xt, yt)) = max{0, 1 − yt(wt · xt)}.5 In this case, the weight updates in OGD have a
special form (where η is the step size):

wt+1 = (1− λη)wt + η ·
{
yt(xt) if yt(wt · xt) < 1

0 if yt(wt · xt) > 1.

2.2. Complexity Theory Background

A decision problem L ⊆ {0, 1}∗ is in the class PSPACE if and only if there exists a Turing machine
M and a polynomial function p(·) such that, for every n-bit string z, M correctly decides whether or
not z is in L while using space at most p(n).

PSPACE is obviously at least as big as P, the class of polynomial-time-decidable decision
problems (it takes s operations to use up s tape cells). It also contains every problem in NP (just try

4. Neural networks with ReLU activations and squared loss are discussed in Appendix D.
5. For simplicity, we have omitted the bias term here; see also Section 5.1.

3

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

all possible polynomial-length witnesses, reusing space for each computation), co-NP (for the same
reason), the entire polynomial hierarchy, and more. A problem L is PSPACE-hard if every problem
in PSPACE polynomial-time reduces to it, and PSPACE-complete if additionally L belongs to
PSPACE. While the current state of knowledge does not rule out P = PSPACE (which would be
even more surprising than P = NP), the widespread belief is that PSPACE contains many problems
that are intrinsically computationally difficult (like the aforementioned chess example). Thus a
problem that is complete (or hard) for PSPACE would seem to be very hard indeed.

Our main reduction is from the C-PATH problem. In this problem, the input is (an encoding of) a
Boolean circuit C with n inputs, n outputs, and gates of fan-in 2; and a target n-bit string s∗. The
goal is to decide whether or not the repeated application of C to the all-false string ever produces
the output s∗. This problem is PSPACE-complete (see Adler et al. (2014)), and in this sense every
polynomial-space computation is just a thinly disguised instance of C-PATH.

3. PSPACE-Hardness Reduction

In this section, we present our main reduction from the C-PATH problem. Our reduction uses several
types of gadgets, which are organized into an API in Subsection 3.2.

The implementation of two gadgets is given in Section 4 and the remaining implementations
can be found in Appendix B. After presenting the API, this section concludes by showing how the
reduction can be performed using the API.

3.1. Simplifying Assumptions

For this section, we make a couple of simplifying assumptions to showcase the main technical ideas
used in our proof. We later show how to extend the proof to remove these assumptions in Section 5.
Our simplifying assumptions are:

(i) There is no bias term, i.e. b is fixed to 0.

(ii) The learning rate η is fixed to 1.

(iii) The loss function is not regularized, i.e. λ = 0.

3.2. API for Reduction Gadgets

We use a number of gadgets to encode an instance of C-PATH into training examples for OGD. The
high level plan is to use the weights wt to encode boolean values in our circuit. A weight of +1 will
represent a true bit, while a weight of −1 will represent a false bit. Additionally, we use a weight
of 0 to represent a bit that we have not yet computed (which we refer to as “unset”). For example,
our simplest gadget is reset(i1), which takes the index of a weight that is set to either +1 or -1,
and provides a sequence of training examples that causes that weight to update to 0 (thus unsetting
the bit). Our next simplest gadget is not(i1), which takes the index of a weight that is set to either
+1 or -1, and provides a sequence of training examples that causes the weight to update to -1 or +1,
respectively (thus setting it to the not of itself). Note that our main reduction does not use the not
gadget directly, but it serves as a subgadget for our other gadgets and is also useful for performing
other reductions.

It is well known that every {±1} Boolean circuit can be efficiently converted into a circuit
that only has NAND gates (where the output is −1 if both inputs are +1, and +1 otherwise),

4

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 1: Public API

Function Precondition(s) Description

reset(i1) i1 ∈ {1, . . . , d} wi1 ← 0
(for implementation, see Table 2) wi1 ∈ {−1,+1}

not(i1) i1 ∈ {1, . . . , d} wi1 ← NOT(wi1)
(for implementation, see Table 3) wi1 ∈ {−1,+1}

copy(i1, i2) i1, i2 ∈ {1, . . . , d} wi2 ← wi1
(for implementation, see Table 5) wi1 ∈ {−1,+1}

wi2 = 0

destructive_nand(i1, i2, i3) i1, i2, i3 ∈ {1, . . . , d} wi3 ← NAND(wi1 , wi2)
(for implementation, see Table 6) wi1 ∈ {−1,+1} wi1 ← 0

wi2 ∈ {−1,+1} wi2 ← 0
wi3 = 0

set_false_if_unset(i1) i1 ∈ {1, . . . , d} If wi1 == 0, wi1 ← −1
(for implementation, see Table 7) wi1 ∈ {−1, 0,+1}

copy_if_true(i1, i2) i1, i2 ∈ {1, . . . , d} If wi1 > 0, wi2 ← +1
(for implementation, see Table 8) wi1 ∈ {−1,+1} If wi1 < 0, wi2 remains at 0

wi2 = 0 (including in intermediate steps)

and so we focus on such circuits. We would like a gadget that takes two true/false bits and an
unset bit and writes the NAND of the first two into the third. Unfortunately, the nature of the
weight updates makes it difficult to implement NAND directly. As a result, we instead use two
smaller gadgets that can together be used to compute a NAND. The bulk of the work is done by
destructive_nand(i1, i2, i3), which performs the above but has the unfortunate side-effect of
unsetting the first two bits. As a result, we need a way to increase the number of copies we have of a
boolean value. The copy(i1, i2) gadget takes a true/false bit and an unset bit and writes the former
into the latter. Taken together, we can compute NAND by copying our two bits of interest and then
using the copies to compute the NAND.

Our next gadget allows the starting weights w0 to be the all-zeroes vector. The gadget
set_false_if_unset(i1) takes a weight that may correspond to either a true/false bit or to an
unset bit. If the weight is already true/false, it does nothing. Otherwise, it takes the unset bit and
writes false into it.

Finally, we have a simple gadget for the purpose of presenting a concrete PSPACE-hard decision
problem about the OGD process. The question we aim for is, does any weight vector wt produced
by OGD (with soft-margin SVM updates) have a positive first coordinate? Correspondingly, the
copy_if_true(i1, i2) gadget takes a true/false bit and a zero-weight coordinate (intended to be
the first coordinate). If the first bit is true, this gadget gives the zero-weight coordinate a weight of +1.
If the first bit is false, this gadget leaves the zero-weight coordinate completely untouched, even in
intermediate steps between its training examples. This property is not present in the implementation
of our other gadgets, so this will be the only gadget that we use to modify the first coordinate.

This API is formally specified in Table 1.

5

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

3.3. Performing the Reduction using the API

We now show how to use our API to transform an instance of the C-PATH problem into a set of
training examples for a soft-margin SVM that is being optimized by OGD.

Theorem 1 There is a reduction which, given a circuit C and a target binary string s∗, produces a
set of training examples for OGD (with soft-margin SVM updates) such that repeated application
of C to the all-false string eventually produces the string s∗ if and only if OGD beginning with
the all-zeroes weight vector and repeatedly fed this set of training examples (in the same order)
eventually produces a weight vector wt with positive first coordinate.

Proof Our reduction begins by converting C into a more complex circuit C′. First, we assume that
C has only NAND gates (see above). Next, we augment our circuit with an additional input/output
bit, intended to track if the current output is s∗. The circuit C′ ignores its additional input bit,
and its additional output bit is true if the original output bits are s∗ and false otherwise. These
transformations keep the size of C′ polynomial in the input/output size.

Let n denote the input/output size of C′ and let m denote the number of gates in C′. Our reduction
produces training examples for an SVM with a d-dimensional weight vector, where d = n+m+ 3.
We denote the first three indices for this weight vector using ⊥, �, and ♦: notably, ⊥ denotes the
first coordinate whose weight should remain zero unless the input to the C-PATH problem should be
accepted. We denote the next n indices 1, . . . , n and associate each with an input bit. We denote the
last m indices n+ 1, . . . , n+m and associate them with gates of C′, in some topological order.

We begin with an empty training set. Each time we call a function from our API (which can
be found in Table 1), we append its training examples to the end of our training set. We now give
the construction, and then finish the proof by proving the resulting set of training examples has the
desired property. Our construction proceeds in five phases.

In the first phase of our reduction, we set the starting input for the C-PATH problem. We iterate
in order through i = 1, 2, . . . , n. In iteration i, we call set_false_if_unset(i).

In the second phase of our reduction, we simulate the computation of the circuit C′. We iterate
in order through i = n + 1, n + 2, . . . , n +m. In iteration i, we examine the NAND gate in C′
associated with i. Suppose its inputs are associated with indices i1 and i2. We call copy(i1,�),
copy(i2,♦), destructive_nand(�,♦, i) in that order.

In the third phase of our reduction, we check if we have found s∗. Let the additional output bit of
C′ be at index i1. We call copy_if_true(i1,⊥).

In the fourth phase of our reduction, we copy the output of the circuit back to the input. We
iterate in order through i = 1, 2, . . . , n. In iteration i, let the ith output bit of C′ correspond to the
gate associated with index i1. We call reset(i) and copy(i1, i), in that order.

In the fifth phase of our reduction, we reset the circuit for the next round of computation. We
iterate in order through i = n+ 1, n+ 2, . . . , n+m. In iteration i, we call reset(i).

We now explain why the resulting training data has the desired property. Let’s consider what
OGD does in (i) the first pass over the training data and (ii) in later passes over the data. We begin
with case (i). Before the first phase of our reduction, all weights are zero, corresponding to unset
bits. The first phase of our reduction hence sets the weights at indices 1, . . . , n to correspond to an
all-false input. The second phase of our reduction then computes the appropriate output for each gate
and sets it. Note that it is important we proceeded in topological order, so that the inputs of a NAND
gate are set before we attempt to compute its output. The third phase of our reduction checks if we

6

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

have found s∗, and if the ⊥ weight gets set to a positive coordinate, this implies that C immediately
produced s∗ when applied to the all-false string. The fourth phase of our reduction unsets the weights
at indices 1, . . . , n and then copies the output of C′ into them. The fifth phase of our reduction then
unsets the weights at indices n+ 1, . . . , n+m.

If we are continuing after this first pass, then the weights at indices⊥, �, ♦, and n+1, . . . , n+m
are unset while the weights at indices 1, . . . , n are set to the next circuit input. We now analyze case
(ii), assuming it also leaves the weights in this state after each pass. In the first phase of our reduction,
nothing happens because the input is already set. The second through fifth phases of our reduction
then proceed exactly as in case (i), computing the circuit based on this input, checking if we found
s∗, copying the output to the input, and resetting the circuit for another round of computation. As
a result, we again arrive at a state where the weights at indices ⊥, �, ♦, and n+ 1, . . . , n+m are
unset while the weights at indices 1, . . . , n are set to the next circuit input.

In other words, repeatedly passing over our training data causes OGD to simulate the repeated
application of C, as desired. By construction, our first coordinate ⊥ has a positive weight if and only
if our simulated C computation manages to find s∗. This completes the proof.

Remark 2 Although our decision question about OGD asked whether the first coordinate ever
became positive, our reduction technique is flexible enough to result in many possible decision
questions. For example, we might ask if OGD, after a single complete pass over the training
examples, winds up producing the same weight vector wt that it had produced immediately preceding
the complete pass (since C may be rewired so that its only stationary point is s∗). As another example,
with a simple modification of our copy_if_true(i1, i2) gadget to place a high value into wi2 , we
could ask whether OGD ever produces a weight vector wt with norm above some threshold.

4. API Implementation

Now that we have described at a high level how to simulate the circuit computation using OGD
updates, we proceed by giving the technical details of the implementation for each gadget operation
on the circuit bits: reset, not, copy, destructive_nand, set_false_if_unset(i1),
copy_if_true(i1, i2). Note that in all of our constructions the training examples required are
extremely sparse; each construction involves at most 3 non-zero coordinates.

4.1. Implementation of reset(i1)

The reset gadget (see Table 2) takes as input one index i1 and resets the corresponding weight
coordinate to zero independent of what this coordinate used to be (either −1 or +1). The plan is to
collapse the two possible states into a single state, then force the weight coordinate to zero.

Since this is our first gadget, we will need to do some legwork and write down the gradi-
ents involved in an update. For a datapoint (x, y), the hinge loss function is: `hinge(w,x, y) =
max{0, 1− yw · x)} and the update is:

∂`hinge(w,x, y)

∂wi
=

{
−yxi if yw · x < 1

0 if yw · x > 1

Following our plan, we don’t know wi1 but want to collapse the two possible states to a single
state. What is an appropriate training example that will allow us to do so? Consider the first training

7

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 2: Training data for reset(i1).

xi1 y Effect on (wi1)

−2 1 (−1)→ (−1)
(1)→ (−1)

1 1 (−1)→ (0)
(add trick) (−1)→ (0)

Table 3: Training data for not(i1).

xi1 y Effect on (wi1)

4 1 (−1)→ (3)
(1)→ (1)

−2 1 (3)→ (1)
(add trick) (1)→ (−1)

example listed in Table 2; we have that xi1 = −2, x is zero on the remainder of its coordinates, and
y = +1. There are two cases to consider when we apply this training example.

• In the case of wi1 = −1, we have yw · x = (−1)(−2) > 1 and so there is no update since the
gradient of the hinge loss is zero. Hence wi1 remains −1.

• If wi1 = +1, we have yw · x = (+1)(−2) < 1, and so there is an update. After this update
we get: wi1 ← wi1 + (+1)(−2) =⇒ wi1 ← −1, as desired.

We have now successfully collapsed into a single state. The next step of our plan was to force
the weight coordinate to zero; we want to add +1 to −1. As it turns out, adding a positive amount to
a negative weight (or a negative amount to a positive weight) is easy, and can be done in a single
training example. The signs work out so that we can ignore the hinge criterion and choose values that
would result in the correct update, and the hinge criterion is naturally satisfied. In the implementation
of other gadgets, we will refer to this as the add trick.

Consider the second training example listed in Table 2; we have that xi1 = +1, x is zero
on the remainder of its coordinates, and y = +1. Since we know that wi1 = −1, we have
that yw · x = (+1)(−1) < 1 and so there is an update. After this update we get: wi1 ←
wi1 + (+1)(+1) =⇒ wi1 ← 0, as desired.

4.2. Implementation of not(i1)

The not gadget (see Table 3) takes as input one index i1 and negates the corresponding weight
coordinate. The gadget construction plan is to first swap the roles of high state/low state while
maintaining a gap of two, then lower states to the proper values.

Following our plan, we don’t know wi1 but want to reverse the order of the states. The more
important training example is the first training example listed in Table 3; we have that xi1 = +4, x is
zero on the remaining coordinates, and the label is +1.

• If wi1 = −1, we have yw · x = (−1)(+4) < 1, and so there is an update. After this update
we get: wi1 ← wi1 + (+1)(+4) =⇒ wi1 ← +3.

• In the case of wi1 = +1, we have yw · x = (+1)(+4) > 1 and so there is no update since the
gradient of the hinge loss is zero. Hence wi1 remains +1.

Hence we have swapped the low-value state with the high-value state, while maintaining a
difference of two between the two states. The second training example is the same add trick that we
used before; we add −2 to two possible (positive) states, resulting in our desired final values.

8

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 4: Training data to correct the bias term.

xb1 xb2 y Effect on (wb1 , wb2)

−1 −1 1 (−1, −1)→ (−1, −1)
(0, 0)→ (−1, −1)

−1 −1 −1 (−1, −1)→ (0, 0)
(−1, −1)→ (0, 0)

All the necessary technical details on how one can implement copy,destructive_nand,
set_false_if_unset and copy_if_true are provided in Appendix B.

5. Extensions

In this section, we give extensions to our proof techniques to remove the assumptions we made in
Section 3.

5.1. Handling a Bias Term

In this subsection, we show how to remove assumption (i) and handle an SVM bias term. With the
bias term added back in, the loss function is now:

`hinge(w, b,x, y) = max{0, 1− y(w · x− b)}

Using a standard trick, we can simulate this bias term by adding an extra dimension b1 and
insisting that xb1 = −1 for every training point; the corresponding wb1 entry plays the role of b. We
now explain how to modify the reduction to follow the restriction that xb1 = −1 for every training
point.

The key insight is that if we can ensure that the value of this bias term is wb1 = 0 immediately
preceding every training example from the base construction, then y(w · x) will remain the same
and the base construction will proceed as before. The problem is that whenever a base construction
training example is in the first case for the derivative (namely y(w · x) < 1), this will result in an
update to wb1 . Since every base construction training example chooses y = +1, we know the first
case causes wb1 to be updated from 0 to −1. We need to insert an additional training example to
correct it back to 0. To complicate matters further, we sometimes don’t know whether we are in the
first or second case for the derivative, so we don’t know whether wb1 has remained at 0 or has been
altered to −1. We need to provide a gadget such that for either case, wb1 is corrected to 0.

In order to avoid falling on the border of the hinge loss function (y(w · x) = 1), we will be
using two mirrored bias terms. In other words, we add two extra dimensions, b1 and b2 and insist
that xb1 = xb2 = −1 for every training point. We ensure that wb1 = wb2 = 0 before every base
construction training example. Since they always have the same weight, the two points always
receive the same update, and the situtation is now that either (i) they both remained at 0 or (ii) they
both were altered to −1. We would like to correct them both to 0.

The two training examples that implement this behavior can be found in Table 4. The first training
example combines cases by transforming case (i) into case (ii) and resulting in no updates when in
case (ii). The second training example then resets both values to 0. To fix the base construction, we

9

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

insert this gadget immediately after every base training example. As stated previously, this guarantees
that wb1 = 0 immediately before every base construction training example, which thus proceeds in
the same fashion.

5.2. Handling a Fixed Learning Rate

In this subsection, we show how to remove our assumption that the learning rate η = 1. Suppose
we have some other step size η, possibly a function of T , the total number of steps to run OGD. We
perform our reduction from C-PATH as before, pretending that η = 1. This yields a value for T ,
which we can then use to determine η(T).

We then scale all training vectors x (but not labels y) by 1√
η . We claim that our analysis holds

when the weight vectors w are scaled by
√
η. To see why, we reconsider the updates performed by

OGD. First, consider the gradient terms:

∂`hinge(w,x, y)

∂wi
=

{
−yxi if y(w · x) < 1

0 if y(w · x) > 1

Notice that the scaling of x and the scaling of w cancel out when computing w · x, so we stay
in the same case. Since x was scaled by 1√

η , our gradients scale by that amount as well. However,
since the updates performed are η times the new gradient, the net scaling of updates to w is by a
factor of

√
η. Since our analysis of w is scaled up by exactly this amount as well, w is updated as

we previously reasoned.
As an aside, one common use case is annealing the learning rate, e.g. ηt = 1/

√
t. For this case,

it is possible to use our machinery to perform a circuit to OGD reduction, but the result would be
that determining the exact result of OGD after it is fed a series of examples once (not repeatedly)
is P-complete (computable in polynomial time, but probably not parallelizable). The issue is that
different passes over the training data would be performed at different scales, but we can still get
some complexity out of a single pass.

It is natural to ask whether or not our PSPACE-hardness results can be extended for the case
of annealing learning rate schedules. We note here that known positive results restrict which
hardness results could possibly hold. In particular, there cannot be a hardness result for the variable
learning rate (ηt = 1/

√
t) setting that is as strong as what we prove for the fixed rate case (unless

P = PSPACE).
For example, consider the following concrete computational problem (parameterized by a learning

rate schedule). The setting is minimizing the hinge loss with a regularizer (see Section 5.3). An
instance of the problem is defined by a set of n data points, which meets the following promise: if
OGD (with a TBA learning rate) is run on this data set, then the first weight will either (a) always
be zero or (b) become at least 0.01 within 2n steps and remain at least 0.01 forevermore. The
following statements hold for this computational problem: (i) With a fixed learning rate, the problem
is PSPACE-complete. (This is a direct consequence of our main reduction.) (ii) With the variable
learning rate ηt = 1/

√
t, the problem is not PSPACE-complete, unless P = PSPACE. The reason

is that this version of OGD converges in the limit to the optimal point (since the objective is strongly
convex), and the optimal point can be computed (to arbitrary precision) in polynomial time, for
example using the ellipsoid method. If the first coordinate of the optimal point is 0 (or very close to it),
then we are in case (a); otherwise we are in case (b). Thus if this problem were PSPACE-complete,
we could conclude that P = PSPACE.

10

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

5.3. Handling a Regularizer

In this subsection, we discuss how to handle a regularization parameter λ which is not too large.
Consider the hinge loss objective with a regularizer:

`reg(w,x, y) = max{0, 1− y(w · x)}+ λ
2 ‖w‖

2
2

∂`reg(w,x, y)

∂wi
=

{
−yxi if y(w · x) < 1

0 if y(w · x) > 1

+ λwi

Conceptually, the regularizer causes our weights to slowly decay over time. In particular, this
new λwi term in the gradient means that weights decay by α = (1 − λ) at each step. We assume
that this decay rate is not too fast: α ∈

(
1√
2
, 1
)

. Equivalently, λ ∈
(
0, 1− 1√

2

)
. Due to this decay,

we will no longer be able to maintain the association that a true bit is +1, a false bit is −1, and an
unset bit is 0. Instead, for each weight index i the reduction will need to maintain a counter εi which
represents the current magnitude of any true/false bit being stored in that weight variable wi. A true
bit will be +εi, a false bit will be −εi, and an unset bit will still be 0. After each training example it
adds, the reduction should multiply each counter εi by α.

Correspondingly, our API will need to grow more complex as well. The new API, the modified
reduction which uses it, and the formal implementation can all be found in Appendix C.

6. Proof Extensions for Neural Networks

Our hardness results can also be extended for two additional, more complex models. In the first
(easier) model, we consider a network with a single dense layer followed by a ReLU activation
(dense-ReLU); the output of this network is compared against the training output using squared
loss. In the second (harder) model, we consider a network with a dense layer followed by a ReLU
activation followed by another dense layer (dense-ReLU-dense); the output of this network is
also evaluated against the training output using squared loss. More specifically the loss functions
are `DR(wt, (xt, yt)) = (yt − σ(wt · xt))2 and `DRD((wt, vt), (xt, yt)) = (yt − vtσ(wt · xt))2
respectively for the two models, where σ(·) is the coordinate-wise ReLU activation. The proof of the
following theorem follows the steps in our previous reduction for the soft-margin SVM updates and
is provided in Appendix D.

Theorem 3 There is a reduction which, given a circuit C and a target binary string s∗, produces
a set of training examples for OGD (where the updates are based on the `DR or the `DRD loss
function) such that repeated application of C to the all-false string eventually produces the string s∗

if and only if OGD beginning with the all-zeroes weight vector and repeatedly fed this set of training
examples (in the same order) eventually produces a weight vector wt with positive first coordinate.

7. Open Problems

We would like to highlight that there remain intriguing open questions about generalizing our work.
Notice that our hardness results apply to OGD where the examples are presented in a specific order
over and over again and that our reductions are extremely sensitive to the ordering by which we

11

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

present the examples to OGD. Can one prove any computational hardness results about SGD where
the ordering of the examples is random and not adversarial? Another concrete question is whether
adding (small) noise to the training examples produced by our reductions can significantly influence
the computational power of OGD and SGD.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. TR was supported
in part by NSF awards CCF-1524062 and CCF-181318, a Google Faculty Research Award, and a
Guggenheim Fellowship. This work was performed in part while the authors were visiting London
School of Economics.

12

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

References

Ilan Adler, Christos Papadimitriou, and Aviad Rubinstein. On simplex pivoting rules and complexity
theory. In International Conference on Integer Programming and Combinatorial Optimization,
pages 13–24. Springer, 2014.

Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference, con-
verges to limit cycles for deep networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=HyWrIgW0W.

Yann Disser and Martin Skutella. The simplex algorithm is np-mighty. In Proceedings of the
twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 858–872. Society for
Industrial and Applied Mathematics, 2015.

John Fearnley and Rahul Savani. The complexity of the simplex method. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages 201–208. ACM, 2015.

Paul W Goldberg, Christos H Papadimitriou, and Rahul Savani. The complexity of the homotopy
method, equilibrium selection, and lemke-howson solutions. ACM Transactions on Economics
and Computation, 1(2):9, 2013.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends R© in Optimization,
2(3-4):157–325, 2016. ISSN 2167-3888. doi: 10.1561/2400000013. URL http://dx.doi.
org/10.1561/2400000013.

David S Johnson, Christos H Papadimitriou, and Mihalis Yannakakis. How easy is local search?
Journal of computer and system sciences, 37(1):79–100, 1988.

Christos H Papadimitriou and Nisheeth K Vishnoi. On the computational complexity of limit cycles
in dynamical systems. In Itcs" 16: Proceedings Of The 2016 Acm Conference On Innovations In
Theoretical Computer Science, pages 403–403. Assoc Computing Machinery, 2016.

Tim Roughgarden and Joshua R Wang. The complexity of the k-means method. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 57. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course Technology,
2006.

James A Storer. On the complexity of chess. Journal of computer and system sciences, 27(1):77–100,
1983.

Kees Van Den Doel and Uri Ascher. The chaotic nature of faster gradient descent methods. Journal
of Scientific Computing, 51(3):560–581, 2012.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages 928–
936, 2003.

13

https://openreview.net/forum?id=HyWrIgW0W
http://dx.doi.org/10.1561/2400000013
http://dx.doi.org/10.1561/2400000013

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Appendix A. Barrier for Quadratic Models

In this appendix, we explain why our reductions cannot go through for a large class of models. This
class includes the method of least squares, in which the loss function for the current choice of weights
wt and a point (xt, yt) is given by:

`LS(w
t, (xt, yt)) = (yt −wt · xt)2

More specifically, this barrier applies to any model where the loss function is quadratic in the
weights, i.e. of the following form.

`(wt, (xt, yt)) =

d∑
i=1

d∑
j=1

αi,j(x
t, yt)wiwj +

d∑
i=1

βi(x
t, yt)wi + γ(xt, yt)

Note that the coefficients α, β, γ may be arbitrary functions of the training points, and without loss
of generality we consider the coefficients α to be symmetrized so that αi,j = αj,i.

The key point about such functions is that the gradient update with respect to point (xt, yt) is a
linear transformation of the weights. In particular, notice that the derivative with respect to the kth

weight is:
∂`

∂wk
= 2

d∑
i=1

αi,k(x
t, yt)wi + βk(x

t, yt)

Hence an OGD with fixed step size η will have the form:

wt+1
k = wtk − η

[
2

d∑
i=1

αi,k(x
t, yt)wi + βk(x

t, yt)

]

We can hence write our update as a matrix-vector product if we augment our weight vector with
a one:

wt+1
1

wt+1
2
...

wt+1
d

1

 =

Id+1 − η

2α1,1 2α1,2 . . . 2α1,d β1
2α2,1 2α2,2 . . . 2α2,d β2

...
...

. . .
...

...
2αd,1 2αd,2 . . . 2αd,d βd
0 0 . . . 0 0

︸ ︷︷ ︸

denote this as Mt

wt1
wt2
...
wtd
1

Hence, for such a “quadratic” model, each training example (xt, yt) is equivalent to a specific
linear6 transformation M t. However, we know that circuit gates (e.g. NAND) are nonlinear! Since
the composition of linear transformations is still linear, we cannot encode a general circuit as a series
of training examples for OGD.

As an aside, this suggests a fast method for approximately computing the weights of OGD on
such a quadratic model after τ iterations. Specifically, consider the situation where OGD is repeatedly
fed a sequence of T points (x1, y1), (x2, y2), ..., (xT , yT) over and over again (in the same order)
with initial weights w1. We want to know wτ , the resulting weights after τ − 1 iterations of OGD;
we can compute these weights with only O(T + log τ) matrix multiplications.

6. Strictly speaking, these transformations are actually affine.

14

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

First, we compute the product M = MTMT−1 · · ·M1, which can be done with (T − 1) =
O(T) matrix multiplications. Next, let τ ′ = b(τ − 1)/T c. We compute M τ ′ using the standard
exponentiating by squaring trick, which requires 2 log2 τ

′ = O(log τ) matrix multiplications. Finally,
we can apply the remaining (τ − 1)− Tτ ′ < T matrices through O(T) more matrix multiplications.
We take the resulting matrix and multiply it with our original weight vector. As claimed, we computed
the new weight vector in only O(T + log τ) matrix multiplications.

The slight issue with the above method is that if we want to compute the weight vector exactly, the
repeated squaring will rapidly increase the magnitude of the matrix entries and make multiplication
expensive. It is possible to circumvent this issue by working with limited precision or over a finite
field.

Appendix B. API Implementation (Continued)

In this appendix, we implement the remaining functions of our API for soft-margin SVMs, which
were listed in Table 1.

B.1. Implementation of copy(i1, i2)

Suppose we want to copy the i1-th coordinate of the weight vector to its i2-th coordinate. How
can we do that using only gradient updates? The plan is to have a training example with both xi1
and xi2 nonzero. Intuitively, this first training example will “read” from wi1 and “write” to wi2
(it actually writes to both). We then perform some tidying so that the two possible states for each
weight coordinate become−1 and +1. The sequence of operations together with the resulting weight
vector after the gradient updates are provided in Table 5. Observe that in the end, the value of the
i2-th coordinate of the weight vector is exactly the same as the i1-coordinate and the operation
copy(i1, i2) is performed correctly.

The aforementioned read-write training example has label +1, xi1 = −4, xi2 = +2 and
xi = 0,∀i 6= i1, i2. After this example, we use a not(i1) gadget and the add trick to clean up.

• Let’s focus in the case where wi1 = −1 (upper half of every row in Table 5). Without loss
of generality let wi2 = 0 since otherwise we can just perform reset(i2) using previously
defined gadgets.

The gradient update on the first example will not affect the weight vector as yw · x =
(+1)(−1)(−4) = 4 > 1. Then we just add +2 to get (wi1 , wi2) = (+1, 0). After the not and
the add trick, we end up with the desired (wi1 , wi2) = (−1,−1) outcome.

• This is similar to the previous case and by tracking down the gradient updates we end up with
the desired (wi1 , wi2) = (+1,+1) outcome.

B.2. Implementation of destructive_nand(i1, i2, i3)

We want to implement a NAND gate with inputs the coordinates wi1 , wi2 and output the result in wi3 .
Following our intuition, we will need a training example that is nonzero in xi1 , xi2 , and xi3 , so that it
can read the first two and write to the third. However, as before, such a training example necessarily
modifies all three weights. To keep things simple, we will only ask our gadget to zero out wi1 and
wi2 , not restore them to their original values. This loss of input values is why we refer to this gadget

15

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 5: Training data for copy(i1, i2).

xi1 xi2 y Effect on (wi1 , wi2)

−4 2 1 (−1, 0)→ (−1, 0)
(1, 0)→ (−3, 2)

2 0 1 (−1, 0)→ (1, 0)
(add trick) (−3, 2)→ (−1, 2)

not(i1) (1, 0)→ (−1, 0)
(−1, 2)→ (1, 2)

0 −1 1 (−1, 0)→ (−1, −1)
(add trick) (1, 2)→ (1, 1)

as destructive NAND. The operations needed are provided in Table 6, and we only give the intuition
regarding how this gadget was constructed.

As stated, our main training example will have nonzero values in all three coordinates. We would
like to set things up so that the hinge criterion is satisfied only in the false case of NAND. To do
so, we begin with an add trick which adds −1 to the third weight coordinate. Now, the sum of the
three weights is either −3, −1, or +1, and this last case is the one we want to single out. For our
main training example, we choose a magnitude of 2 for our training values so that the possible sums
become −6, −2, and +2; this puts the hinge threshold of +1 firmly between the two cases we care
about. We finish with two reset gadgets and an add trick.

B.3. Implementation of set_false_if_unset(i1)

The effect of set_false_if_unset(i1) is to map the i1-th coordinate (which is either−1, 0,+1)
to−1, unless it is +1 in which case it should remain +1. The 4 steps in Table 7 with the add gadgets
should be clear by now. Here we give the calculations of the gradients and updates for the 3 steps
that contain training examples.

• The training example has label y = +1, with xi1 = +3 and xi = 0,∀i 6= i1. If wi1 = 0 then
yw · x = (+1)(0) = 0 < 1 so the gradient step will add yxi1 = (+1)(+3) = 3 to wi1 . If
wi1 = +1 then yw · x = (+1)(+1)(+3) = 3 > 1 so there is no update. If wi1 = +2, then
again there is no update.

• The training example has label y = +1, with xi1 = +2 and xi = 0,∀i 6= i1. If wi1 = +2 then
yw · x = (+1)(+2)(+2) = +4 > 1 so there is no update. If wi1 = 0, then yw · x = 0 < 1,
so the gradient step will add yxi1 = (+1)(+2) = 2 to wi1 . If wi1 = +1 then yw · x =
(+1)(+1)(+2) = 2 > 1 so there is no update.

• Training on the final training example is similar to the first case above.

B.4. Implementation of copy_if_true(i1, i2)

This short gadget is given two coordinates i1, i2 and sets wi2 = +1 only if wi1 = +1, otherwise
everything stays unchanged. We use it to decide if at any point in the circuit computation, the target

16

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 6: Training data for destructive_nand(i1, i2, i3).

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3)

0 0 −1 1 (−1, −1, 0)→ (−1, −1, −1)
(add trick) (−1, 1, 0)→ (−1, 1, −1)

(1, −1, 0)→ (1, −1, −1)
(1, 1, 0)→ (1, 1, −1)

−2 −2 −2 1 (−1, −1, −1)→ (−1, −1, −1)
(−1, 1, −1)→ (−1, 1, −1)
(1, −1, −1)→ (1, −1, −1)
(1, 1, −1)→ (−1, −1, −3)

reset(i1) (−1, −1, −1)→ (0, −1, −1)
(−1, 1, −1)→ (0, 1, −1)
(1, −1, −1)→ (0, −1, −1)
(−1, −1, −3)→ (0, −1, −3)

reset(i2) (0, −1, −1)→ (0, 0, −1)
(0, 1, −1)→ (0, 0, −1)
(0, −1, −1)→ (0, 0, −1)
(0, −1, −3)→ (0, 0, −3)

0 0 2 1 (0, 0, −1)→ (0, 0, 1)
(add trick) (0, 0, −1)→ (0, 0, 1)

(0, 0, −1)→ (0, 0, 1)
(0, 0, −3)→ (0, 0, −1)

17

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 7: Training data for set_false_if_unset(i1).

xi1 y Effect on (wi1)

−1
4 1 (−1)→ (−5

4)
(0)→ (−1

4)
(1)→ (3

4)

−1 1 (−5
4)→ (−5

4)
(−1

4)→ (−5
4)

(3
4)→ (−1

4)

−3 1 (−5
4)→ (−5

4)
(−5

4)→ (−5
4)

(−1
4)→ (−13

4)

9
4 1 (−5

4)→ (1)
(add trick) (−5

4)→ (1)
(−13

4)→ (−1)

not(i1) (1)→ (−1)
(1)→ (−1)
(−1)→ (1)

binary string s∗ is ever reached, in which case a specially reserved bit in the weight vector (e.g. the
first bit of the w) is set to 1 to signal this fact.

We are going to use one training example, an add trick and then a not gadget and the calculations
explaining the derivations of Table 8 are given below:

• The first training example has label y = +1, with xi1 = −4, xi2 = +1 and xi = 0,∀i 6= i1, i2.
If wi1 = −1, wi2 = 0 then yw · x = (+1)(+4) = +4 > 1 so there is no update. If
wi1 = +1, wi2 = 0 then yw · x = (+1)(+1)(−4) = −4 < 1, so the gradient step will add
yxi1 = (+1)(−4) = −4 to wi1 (which now becomes −3) and yxi2 = (+1)(+1) = +1 to
wi2 (which now becomes +1).

• Then, we perform the add trick mentioned above with the training example that has label
y = +1, with xi1 = 2, xi2 = 0 and xi = 0, ∀i 6= i1, i2 and finally we use a not gadget. The
corresponding weight updates are shown in Table 8.

Appendix C. Proof Extension for Regularization (Continued)

In this appendix, we give an augmented API for regularization, show how to modify the original
reduction to use the augmented API, and then give an implementation of the API.

C.1. Augmented API for Regularization

Our augmented API is listed in Table 10. These five functions serve the same purpose as the functions
of our original API (see Table 1), but now accept additional parameters and have return values so
that our reduction can keep track of the magnitude of each weight.

18

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 8: Training data for copy_if_true(i1, i2).

xi1 xi2 y Effect on (wi1 , wi2)

−4 1 1 (−1, 0)→ (−1, 0)
(1, 0)→ (−3, 1)

2 0 1 (−1, 0)→ (1, 0)
(add trick) (−3, 1)→ (−1, 1)

not(i1) (1, 0)→ (−1, 0)
(−1, 1)→ (1, 1)

All gadgets here, reset(i1, ε1), d_nand(i1, i2, i3, ε1, ε2), set_false_if_unset(i1, ε1),
and copy_if_true(i1, i2, ε1) have essentially the same behavior as before, but now accept mag-
nitude parameters and output the final magnitude of the weights that they write to. A more drastic
change was made to copy2(i1, i2, i3, ε1), which now destroys the bit stored in its input weight. To
compensate, it now makes two copies, so that using it increases the total number of copies of a
weight.

C.2. Reduction Modifications for Regularization

Our reduction still performs the same transformation of C into C′. However, we will use an additional
dimension (now d = n+m+ 4), which we also denote with a new special: 4. As stated before, we
keep a counter εi for each dimension i, decaying all counters by α after each training example we
produce.

In most cases, the appropriate εi to pass to our gadgets is clear: we take the last εi we re-
ceived from a gadget writing to this coordinate and decay it appropriately. There is one major
exception: in the first phase of the reduction, we need to iterate over i = 1, 2, . . . , n and call
set_false_if_unset(i, εi). The correct input magnitude is actually based on the last time
these weights were possibly edited, which is actually in the (previous pass over the data) fourth phase
of the reduction! Luckily, in our implementation of this API the number of training examples to
implement a gadget does not depend on the inputs εi. As a result, we can either pick the appropriate
values knowing the contents of all the phases, or we can run the reduction once with εi = 1 and
then perform a second pass once we know the total number of training examples and which training
examples are associated with which API calls. One important consequence of this reasoning is that
since the reduction touches each coordinate at least once as we pass over all training examples,
the maximum decay of any weight is only singly-exponential in the number of training examples
(which is polynomial in the original circuit problem size), which is better than the naive bound of
double-exponential. As a result, we only require polynomial bits of precision are needed to represent
the weights at any point in time. Note that if one does not care about regularization, then all of our
other constructions only required fixed precision.

Other than managing these magnitudes, we also alter the second and fourth phase of our reduction
to account for a revised copy function (this is why we need an additional dimension). In the new
second phase of our reduction, we iterate over i = n+ 1, n+ 2, . . . , n+m. Again, we look at the
associated NAND gate with inputs i1, i2. We call:

19

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 9: Training data for reset(i1, ε1).

xi1 y Effect on (wi1)

1
2ε1α2 1 (−ε1)→ (1

2ε1α2 − ε1α)
(ε1)→ (1

2ε1α2 + ε1α)

2ε1α
2 1 (1

2ε1α2 − ε1α)→ (1
2ε1α

+ ε1α
2)

(1
2ε1α2 + ε1α)→ (1

2ε1α
+ ε1α

2)

− 1
2ε1
− ε1α3 1 (1

2ε1α
+ ε1α

2)→ (0)

(1
2ε1α

+ ε1α
2)→ (0)

• copy2(i1,�,4, ·),

• reset(�, ·),

• copy2(4, i1,�, ·),

• copy2(i2,♦,4, ·),

• reset(♦, ·),

• copy2(4, i2,♦, ·), and

• d_nand(�,♦, i, ·, ·),

in that order with appropriate εi.
Similarly, in the fourth phase of our reduction, we iterate over i = 1, 2, . . . , n and call

reset(i, ·), copy2(i1, i,�, ·), copy2(�, i1,♦, ·), reset(♦, ·), in that order with appropriate
εi.

The reason the reduction works is the same as before: the reduction forces the weights to simulate
computation of the circuit and a check for s∗ with each pass through the training data. This completes
the description of how to modify the reduction.

C.3. Implementation of reset(i1, ε1)

At a high level, the idea behind this implementation is as follows. We are given a weight that either
contains a small negative or a small positive value. We would like to add the difference between
these two potential values, but only in the case where the original value is negative. In order to do so,
we must first increase both possible values so that when multiplied by their original difference, one
falls below and one falls above our comparison threshold of +1.

The training data that executes this plan is given in Table 9. The first training example has a
small magnitude so that both possibilities receive a gradient update:

1

2ε1α2
· ε1 =

1

2α2
.

20

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 10: Augmented API for Regularization. σ(wi) denotes the sign function.

Function Precondition(s) Returns Description

reset(i1, ε1) i1 ∈ {1, . . . , d} None wi1 ← 0
(for implementation, see Table 9) wi1 ∈ {−ε1,+ε1}

copy2(i1, i2, i3, ε1) i1, i2, i3 ∈ {1, . . . , d} (ε2, ε3) wi2 ← σ(wi1)ε2
(for implementation, see Table 11) wi1 ∈ {−ε1,+ε1} wi3 ← σ(wi1)ε3

wi2 = 0
wi3 = 0

d_nand(i1, i2, i3, ε1, ε2) i1, i2, i3 ∈ {1, . . . , d} (ε3) wi3 ← NAND (σ(wi1), σ(wi2)) ε3
(for implementation, see Table 12) wi1 ∈ {−ε1,+ε1} wi1 ← 0

wi2 ∈ {−ε2,+ε2} wi2 ← 0

set_false_if_unset(i1, ε1) i1 ∈ {1, . . . , d} (ε′1) If wi1 = 0, wi1 ← −ε′1
(for implementation, see Table 13) wi1 ∈ {−ε1, 0,+ε1} Else, wi1 ← σ(wi1)ε

′
1

copy_if_true(i1, i2, ε1) i1, i2 ∈ {1, . . . , d} (ε′1, ε2) If wi1 > 0, wi2 ← +ε2
(for implementation, see Table 14) wi1 ∈ {−ε1,+ε1} If wi1 < 0, wi2 remains at 0

wi2 = 0 (including in intermediate steps)
wi1 ← σ(wi1)ε

′
1

Note that the RHS is at most 1 due to the range of α. This update sets up for the second training
example. Observe that:

2ε1α
2 · 1

2ε1α2
= 1

so that the loss or gain of ε1α pushes our first possibility below the threshold and our second
possibility above the threshold of +1. We have now collapsed our two possibilities into only a
single possibility. The third training example triggers an update because x and w have a negative dot
product, and the term is chosen to cancel out the remaining value.

C.4. Implementation of copy2(i1, i2, i3, ε1)

At a high level, the idea behind this implementation is as follows. We are given a weight that either
contains a small negative or a small positive value. Using a large multiplier, we can detect the sign of
this weight and copy the sign into two other weights. We then cleanup and make the original weight
zero.

The training data that executes this plan is given in Table 11. The first training example has
enough magnitude so that the resulting product has magnitude 2:

2

ε1
· ε1 = 2

In the second update, we recenter around zero. In particular, we observe that + 2
ε1
− ε1α is positive,

so every component of (w · x) in this step is in fact negative, triggering an update.
We finish by using our reset gadget to clean up wi1 , noting that it uses three training examples

and our other weights continue to decay in the meantime.

21

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 11: Training data for copy2(i1, i2, i3, ε1).

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3)

2
ε1

−2 −2 1 (−ε1, 0, 0)→ (2
ε1
− ε1α, −2, −2)

(ε1, 0, 0)→ (ε1α, 0, 0)

− α
ε1

α α 1 (2
ε1
− ε1α, −2, −2)→ (α

ε1
− ε1α2, −α, −α)

(ε1α, 0, 0)→ (− α
ε1

+ ε1α
2, α, α)

reset
(
i1,

α
ε1
− ε1α2

)
(α

ε1
− ε1α2, −α, −α)→ (0, −α4, −α4)

(− α
ε1

+ ε1α
2, α, α)→ (0, α4, α4)

Return (ε2 = α4, ε3 = α4).

C.5. Implementation of d_nand(i1, i2, i3, ε1, ε2)

At a high level, the idea behind this implementation is as follows. The idea is similar to our original
NAND gate, where we used the observation that if two weights are ±1, we can use a threshold on
their sum to compute NAND: when the sum is −2 or 0, the result is true, and when the sum is +2,
the result is false. We use this sum to put the result of the NAND computation into the third weight.
Unfortunately, this results in the first two weights being in one of three possible states each, and some
work is needed to clean them up as well. Finally, the third state should be made into the form ±ε3.

The training data that executes this plan is given in Table 12. Note that the training examples
with entries (+ 4

ε1
, 0, 0,+1) and (0,+4α

ε2
, 0,+1) only have the listed effect due to our bounds on α.

In particular, one possible value of (w · x) is:

+
4α

ε2
· ε2α3 = 4α4

which is only greater than +1 due to our bounds on α.

C.6. Implementation of set_false_if_unset(i1, ε1)

At a high level, the idea behind this implementation is as follows. We have three possible states. Our
first training example only triggers on the nonnegative cases, while our second training example
triggers on the negative case. The difference between these two updates is designed so that the
negative case and zero case map to the same value. After that, we finish by performing a translation
so that the cases fall into the form ±ε′1.

The training data that executes this plan is given in Table 13. Note that although the returned ε′1
is not a power of α, we can use two additional coordinates and the following sequence of API calls
to provide such a guarantee:

• set_false_if_unset(i1, ε1), which returns (ε′1)

• copy2(i1, i2, i3, ε′1), which returns (ε2, ε3)

• reset(i3, ε3)

• copy2(i2, i1, i3, ε2), which returns (ε′′1, ε
′
3)

22

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 12: Training data for d_nand(i1, i2, i3, ε1, ε2).

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3)

0 0 −1 1 (−ε1, −ε2, 0)→ (−ε1α, −ε2α, −1)
(−ε1, ε2, 0)→ (−ε1α, ε2α, −1)
(ε1, −ε2, 0)→ (ε1α, −ε2α, −1)
(ε1, ε2, 0)→ (ε1α, ε2α, −1)

− 4
ε1α

− 4
ε2α

−2α 1 (−ε1α, −ε2α, −1)→ (−ε1α2, −ε2α2, −α)
(−ε1α, ε2α, −1)→ (−ε1α2, ε2α

2, −α)
(ε1α, −ε2α, −1)→ (ε1α

2, −ε2α2, −α)
(ε1α, ε2α, −1)→ (− 4

ε1α
+ ε1α

2, − 4
ε2α

+ ε2α
2, −3α)

4
ε1

0 0 1 (−ε1α2, −ε2α2, −α)→ (4
ε1
− ε1α3, −ε2α3, −α2)

(−ε1α2, ε2α
2, −α)→ (4

ε1
− ε1α3, ε2α

3, −α2)

(ε1α
2, −ε2α2, −α)→ (ε1α

3, −ε2α3, −α2)
(− 4

ε1α
+ ε1α

2, − 4
ε2α

+ ε2α
2, −3α)→ (ε1α

3, − 4
ε2

+ ε2α
3, −3α2)

0 4α
ε2

0 1 (4
ε1
− ε1α3, −ε2α3, −α2)→ (4α

ε1
− ε1α4, 4α

ε2
− ε2α4, −α3)

(4
ε1
− ε1α3, ε2α

3, −α2)→ (4α
ε1
− ε1α4, ε2α

4, −α3)

(ε1α
3, −ε2α3, −α2)→ (ε1α

4, 4α
ε2
− ε2α4, −α3)

(ε1α
3, − 4

ε2
+ ε2α

3, −3α2)→ (ε1α
4, ε2α

4, −3α3)

− 2α2

ε1
0 0 1 (4α

ε1
− ε1α4, 4α

ε2
− ε2α4, −α3)→ (2α2

ε1
− ε1α5, 4α2

ε2
− ε2α5, −α4)

(4α
ε1
− ε1α4, ε2α

4, −α3)→ (2α2

ε1
− ε1α5, ε2α

5, −α4)

(ε1α
4, 4α

ε2
− ε2α4, −α3)→ (− 2α2

ε1
+ ε1α

5, 4α2

ε2
− ε2α5, −α4)

(ε1α
4, ε2α

4, −3α3)→ (− 2α2

ε1
+ ε1α

5, ε2α
5, −3α4)

reset
(
i1,+

2α2

ε1
− ε1α5

)
(2α2

ε1
− ε1α5, 4α2

ε2
− ε2α5, −α4)→ (0, 4α5

ε2
− ε2α8, −α7)

(2α2

ε1
− ε1α5, ε2α

5, −α4)→ (0, ε2α
8, −α7)

(− 2α2

ε1
+ ε1α

5, 4α2

ε2
− ε2α5, −α4)→ (0, 4α5

ε2
− ε2α8, −α7)

(− 2α2

ε1
+ ε1α

5, ε2α
5, −3α4)→ (0, ε2α

8, −3α7)

0 − 2α6

ε1
0 1 (0, 4α5

ε2
− ε2α8, −α7)→ (0, 2α6

ε2
− ε2α9, −α8)

(0, ε2α
8, −α7)→ (0, − 2α6

ε2
+ ε2α

9, −α8)

(0, 4α5

ε2
− ε2α8, −α7)→ (0, 2α6

ε2
− ε2α9, −α8)

(0, ε2α
8, −3α7)→ (0, − 2α6

ε2
+ ε2α

9, −3α8)

reset
(
i2,+

2α6

ε2
− ε2α9

)
(0, 2α6

ε2
− ε2α9, −α8)→ (0, 0, −α11)

(0, − 2α6

ε2
+ ε2α

9, −α8)→ (0, 0, −α11)

(0, 2α6

ε2
− ε2α9, −α8)→ (0, 0, −α11)

(0, − 2α6

ε2
+ ε2α

9, −3α8)→ (0, 0, −3α11)

0 0 2α12 1 (0, 0, −α11)→ (0, 0, α12)
(0, 0, −α11)→ (0, 0, α12)
(0, 0, −α11)→ (0, 0, α12)
(0, 0, −3α11)→ (0, 0, −α12)

Return (ε3 = α12).

23

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 13: Training data for set_false_if_unset(i1, ε1).

xi1 y Effect on (wi1)(
− 1
ε1
− ε1α

)
1 (−ε1)→ (−ε1α)

(0)→ (− 1
ε1
− ε1α)

(ε1)→ (− 1
ε1

)

− α
ε1

1 (−ε1α)→ (− α
ε1
− ε1α2)

(− 1
ε1
− ε1α)→ (− α

ε1
− ε1α2)

(− 1
ε1

)→ (− α
ε1

)

α
ε1

+ ε1α3

2 1 (− α
ε1
− ε1α2)→ (− ε1α3

2)

(− α
ε1
− ε1α2)→ (− ε1α3

2)

(− α
ε1

)→ (ε1α3

2)

Return (ε′1 =
ε1α3

2).

Table 14: Training data for copy_if_true(i1, i2, ε1).

xi1 xi2 y Effect on (wi1 , wi2)(
− 1
ε1
− ε1α

)
1 1 (−ε1, 0)→ (−ε1α, 0)

(ε1, 0)→ (− 1
ε1

, 1)

− α
ε1

0 1 (−ε1α, 0)→ (− α
ε1
− ε1α2, 0)

(− 1
ε1

, 1)→ (− α
ε1

, α)

α2

ε1
+ ε1α3

2 0 1 (− α
ε1
− ε1α2, 0)→ (− ε1α3

2 , 0)

(− α
ε1

, α)→ (ε1α3

2 , α2)

Return (ε′1 =
ε1α3

2 , ε2 = α2).

• reset(i3, ε′3)

Of course, we need to remember to decrease the various ε parameters while other operations are
running, to account for weight decay.

C.7. Implementation of copy_if_true(i1, i2, ε1)

At a high level, we mimic the implementation of set_false_if_unset(i1, ε1), but piggyback
on a threshold check to read the first weight.

The training data that executes this plan is given in Table 14. Again, the returned ε′1 is not a
power of α, but we can correct this with two additional coordinates and copying around values, as
before.

24

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Appendix D. Proof Extensions for Additional Models

In this appendix, we show how to extend our proofs to work for two additional, more complex models.
In the first (easier) model, we consider a network with a single dense layer followed by a ReLU
activation (dense-ReLU); the output of this network is compared against the training output using
squared loss. In the second (harder) model, we consider a network with a dense layer followed by a
ReLU activation followed by another dense layer (dense-ReLU-dense); the output of this network is
also evaluated against the training output using squared loss.

D.1. Dense-ReLU under Squared Loss

Written in terms of the training example and weights, our network has the following loss function
(note that we only have a single hidden node).

`DR(w
t, (xt, yt)) = (yt − σ(wt · xt))2

where σ(·) is the coordinate-wise ReLU activation. At a fixed iteration, on a given example, the
partial derivative7 with respect to the one weight wi at that step is:

∂`DR(w,x, y)

∂wi
=

{
2(w · x− y)xi if w · x > 0

0 if w · x < 0

Theorem 4 There is a reduction which, given a circuit C and a target binary string s∗, produces a
set of training examples for OGD (where the updates are based on the `DR loss function) such that
repeated application of C to the all-false string eventually produces the string s∗ if and only if OGD
beginning with the all-zeroes weight vector and repeatedly fed this set of training examples (in the
same order) eventually produces a weight vector wt with positive first coordinate.

The proof is the same as that of Theorem 1, except we use the modified API found in Ta-
ble 15. As a consequence of using this modified API, we keep an additional special coordinate,
on, denoting the fourth coordinate whose weight is +1 in between calls to our API. When we in-
voke destructive_nand or set_false_if_unset, we pass the fourth or second argument,
respectively, to be on.

D.2. Dense-ReLU-Dense under Squared Loss

Having an additional layer gives us the following loss function.

`DRD((w
t, vt), (xt, yt)) = (yt − vtσ(wt · xt))2

where, as before, σ(·) denotes a ReLU activation function. At a fixed iteration, on a given example,
the partial derivative w. r. t. the weight (w, v) at that step is:

∂`DRD(w, v,x, y)

∂wi
=

{
2(vw · x− y)xiv if w · x > 0

0 if w · x < 0

∂`DRD(w, v,x, y)

∂v
=

{
2(vw · x− y)w · x if w · x > 0

0 if w · x < 0

7. Notice that the derivative of σ(0) is undefined, so our gadgets never result in a zero input to the ReLU activation unit.

25

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 15: Modified API for Dense-ReLU under Squared Loss.

Function Precondition(s) Description

reset(i1) i1 ∈ {1, . . . , d} wi1 ← 0
(for implementation, see Table 16) wi1 ∈ {−1,+1}

not(i1) i1 ∈ {1, . . . , d} If wi1 == −1, wi1 ← +1
(for implementation, see Table 17) wi1 ∈ {−1,+1} If wi1 == +1, wi1 ← −1

copy(i1, i2) i1, i2 ∈ {1, . . . , d} wi2 ← wi1
(for implementation, see Table 18) wi1 ∈ {−1,+1}

wi2 = 0

destructive_nand(i1, i2, i3, i4) i1, i2, i3, i4 ∈ {1, . . . , d} wi3 ← NAND(wi1 , wi2)
(for implementation, see Table 19) wi1 ∈ {−1,+1} wi1 ← 0

wi2 ∈ {−1,+1} wi2 ← 0
wi3 = 0 wi4 ← +1
wi4 = +1

set_false_if_unset(i1, i2) i1, i2 ∈ {1, . . . , d} If wi1 == 0, wi1 ← −1
(for implementation, see Table 20) wi1 ∈ {−1, 0,+1} wi2 ← +1

wi2 = +1

copy_if_true(i1, i2) i1, i2 ∈ {1, . . . , d} If wi1 > 0, wi2 ← +1
(for implementation, see Table 21) wi1 ∈ {−1,+1} If wi1 < 0, wi2 remains at 0

wi2 = 0 (including in intermediate steps)

Table 16: Training data for reset(i1) for Dense-ReLU under Squared Loss.

xi1 y Effect on (wi1)

1 0 (−1)→ (−1)
(1)→ (−1)

−1 1
2 (−1)→ (0)

(−1)→ (0)

Table 17: Training data for not(i1) for Dense-ReLU under Squared Loss.

xi1 y Effect on (wi1)

1 −2 (−1)→ (−1)
(1)→ (−5)

−1
2 −3

2 (−1)→ (1)
(−5)→ (−1)

26

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 18: Training data for copy(i1, i2) for Dense-ReLU under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2)

1 −1 7
8 (−1, 0)→ (−1, 0)

(1, 0)→ (3
4 , 1

4)

−1 1 7
8 (−1, 0)→ (−3

4 , −1
4)

(3
4 , 1

4)→ (3
4 , 1

4)

−1 0 7
8 (−3

4 , −1
4)→ (−1, −1

4)
(3

4 , 1
4)→ (3

4 , 1
4)

1 0 7
8 (−1, −1

4)→ (−1, −1
4)

(3
4 , 1

4)→ (1, 1
4)

0 −1 5
8 (−1, −1

4)→ (−1, −1)
(1, 1

4)→ (1, 1
4)

0 1 5
8 (−1, −1)→ (−1, −1)

(1, 1
4)→ (1, 1)

Theorem 5 There is a reduction which, given a circuit C and a target binary string s∗, produces a
set of training examples for OGD (where the updates are based on the `DRD loss function) such that
repeated application of C to the all-false string eventually produces the string s∗ if and only if OGD
beginning with the all-zeroes weight vector and repeatedly fed this set of training examples (in the
same order) eventually produces a weight vector wt with positive first coordinate.

Again, the proof is the same as that of Theorem 1, except we use the modified API found in
Table 22. Just as in the previous model, we need to keep an additional special coordinate, on, denoting
the fourth coordinate whose weight is +1 in between calls to our API. Whenever we invoke any
method of our API, we pass it on as its final argument. The other big difference for this case is we
have an additional (scalar) weight variable v representing the sole weight in the second layer of our
network. Before and after any method of our API, we require v to be one and ensure that v is one
again. Modulo this requirement, the idea behind all of our gadgets is essentially the same as the
previous section; at a high level we simply insert additional training points to correct the special
coordinate on and the second-layer weight v to one between every previous pair of training points.

27

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 19: Training data for destructive_nand(i1, i2, i3, i4) for Dense-ReLU under Squared
Loss.

xi1 xi2 xi3 xi4 y Effect on (wi1 , wi2 , wi3 , wi4)

−1 0 0 0 3
2 (−1, −1, 0, 1)→ (−2, −1, 0, 1)

(−1, 1, 0, 1)→ (−2, 1, 0, 1)
(1, −1, 0, 1)→ (1, −1, 0, 1)
(1, 1, 0, 1)→ (1, 1, 0, 1)

0 −1 0 0 3
2 (−2, −1, 0, 1)→ (−2, −2, 0, 1)

(−2, 1, 0, 1)→ (−2, 1, 0, 1)
(1, −1, 0, 1)→ (1, −2, 0, 1)
(1, 1, 0, 1)→ (1, 1, 0, 1)

1 1 1 0 1
2 (−2, −2, 0, 1)→ (−2, −2, 0, 1)

(−2, 1, 0, 1)→ (−2, 1, 0, 1)
(1, −2, 0, 1)→ (1, −2, 0, 1)
(1, 1, 0, 1)→ (−2, −2, −3, 1)

−1 0 0 0 1
2 (−2, −2, 0, 1)→ (1, −2, 0, 1)

(−2, 1, 0, 1)→ (1, 1, 0, 1)
(1, −2, 0, 1)→ (1, −2, 0, 1)
(−2, −2, −3, 1)→ (1, −2, −3, 1)

1 0 0 0 1
2 (1, −2, 0, 1)→ (0, −2, 0, 1)

(1, 1, 0, 1)→ (0, 1, 0, 1)
(1, −2, 0, 1)→ (0, −2, 0, 1)
(1, −2, −3, 1)→ (0, −2, −3, 1)

0 −1 0 0 1
2 (0, −2, 0, 1)→ (0, 1, 0, 1)

(0, 1, 0, 1)→ (0, 1, 0, 1)
(0, −2, 0, 1)→ (0, 1, 0, 1)
(0, −2, −3, 1)→ (0, 1, −3, 1)

0 1 0 0 1
2 (0, 1, 0, 1)→ (0, 0, 0, 1)

(0, 1, 0, 1)→ (0, 0, 0, 1)
(0, 1, 0, 1)→ (0, 0, 0, 1)
(0, 1, −3, 1)→ (0, 0, −3, 1)

0 0 1 1 − 3
2 (0, 0, 0, 1)→ (0, 0, −5, −4)

(0, 0, 0, 1)→ (0, 0, −5, −4)
(0, 0, 0, 1)→ (0, 0, −5, −4)
(0, 0, −3, 1)→ (0, 0, −3, 1)

0 0 −1 0 2 (0, 0, −5, −4)→ (0, 0, 1, −4)
(0, 0, −5, −4)→ (0, 0, 1, −4)
(0, 0, −5, −4)→ (0, 0, 1, −4)
(0, 0, −3, 1)→ (0, 0, −1, 1)

0 0 0 −1 3
2 (0, 0, 1, −4)→ (0, 0, 1, 1)

(0, 0, 1, −4)→ (0, 0, 1, 1)
(0, 0, 1, −4)→ (0, 0, 1, 1)
(0, 0, −1, 1)→ (0, 0, −1, 1)

28

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 20: Training data for set_false_if_unset(i1, i2) for Dense-ReLU under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2)

1 1
2 0 (−1, 1)→ (−1, 1)

(0, 1)→ (−1, 1
2)

(1, 1)→ (−2, −1
2)

0 1 0 (−1, 1)→ (−1, −1)
(−1, 1

2)→ (−1, −1
2)

(−2, −1
2)→ (−2, −1

2)

0 −2 3
2 (−1, −1)→ (−1, 1)

(−1, −1
2)→ (−1, −5

2)
(−2, −1

2)→ (−2, −5
2)

0 −1 3
4 (−1, 1)→ (−1, 1)

(−1, −5
2)→ (−1, 1)

(−2, −5
2)→ (−2, 1)

−1 0 3
4 (−1, 1)→ (−1

2 , 1)
(−1, 1)→ (−1

2 , 1)
(−2, 1)→ (1

2 , 1)

−1 0 3
4 (−1

2 , 1)→ (−1, 1)
(−1

2 , 1)→ (−1, 1)
(1

2 , 1)→ (1
2 , 1)

1 0 3
4 (−1, 1)→ (−1, 1)

(−1, 1)→ (−1, 1)
(1

2 , 1)→ (1, 1)

Table 21: Training data for copy_if_true(i1, i2) for Dense-ReLU under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2)

1 −2 3
4 (−1, 0)→ (−1, 0)

(1, 0)→ (1
2 , 1)

1 0 3
4 (−1, 0)→ (−1, 0)

(1
2 , 1)→ (1, 1)

29

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 22: Augmented API for Dense-ReLU-Dense under Squared Loss.

Function Precondition(s) Description

reset(i1, i2) i1, i2 ∈ {1, . . . , d} wi1 ← 0
(for implementation, see Table 23) wi1 ∈ {−1,+1} wi2 ← +1

wi2 = +1, v = +1 v ← +1

not(i1, i2) i1, i2 ∈ {1, . . . , d} If wi1 == −1, wi1 ← +1
(for implementation, see Table 24) wi1 ∈ {−1,+1} If wi1 == +1, wi1 ← −1

wi2 = +1, v = +1 wi2 ← +1, v ← +1

copy(i1, i2, i3) i1, i2, i3 ∈ {1, . . . , d} wi2 ← wi1
(for implementation, see Table 25) wi1 ∈ {−1,+1} wi1 remains unchanged

wi2 = 0, wi3 = +1, v = +1 wi3 ← +1, v ← +1

destructive_nand(i1, i2, i3, i4) i1, i2, i3, i4 ∈ {1, . . . , d} wi3 ← NAND(wi1 , wi2)
(for implementation, see Table 27) wi1 ∈ {−1,+1} wi1 ← 0

wi2 ∈ {−1,+1} wi2 ← 0
wi3 = 0 wi4 ← +1
wi4 = +1, v = +1 v ← +1

set_false_if_unset(i1, i2) i1, i2 ∈ {1, . . . , d} If wi1 == 0, wi1 ← −1
(for implementation, see Table 30) wi1 ∈ {−1, 0,+1} wi2 ← +1

wi2 = +1, v = +1 v ← +1

copy_if_true(i1, i2, i3) i1, i2, i3 ∈ {1, . . . , d} If wi1 > 0, wi2 ← +1
(for implementation, see Table 32) wi1 ∈ {−1,+1} If wi1 < 0, wi2 remains at 0

wi2 = 0 (including in intermediate steps)
wi3 = +1, v = +1 wi3 ← +1, v ← +1

30

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 23: Training data for reset(i1, i2) for Dense-ReLU-Dense under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2 , v)

1 0 3
4 (−1, 1, 1)→ (−1, 1, 1)

(1, 1, 1)→ (1
2 , 1, 1

2)

0 1 1 (−1, 1, 1)→ (−1, 1, 1)
(1

2 , 1, 1
2)→ (1

2 , 3
2 , 3

2)

0 1 17
4 (−1, 1, 1)→ (−1, 15

2 , 15
2)

(1
2 , 3

2 , 3
2)→ (1

2 , 15
2 , 15

2)

0 2
15

17
4 (−1, 15

2 , 15
2)→ (−1, 1, 1)

(1
2 , 15

2 , 15
2)→ (1

2 , 1, 1)

1 0 −1
4 (−1, 1, 1)→ (−1, 1, 1)

(1
2 , 1, 1)→ (−1, 1, 1

4)

0 1 3
4 (−1, 1, 1)→ (−1, 1

2 , 1
2)

(−1, 1, 1
4)→ (−1, 5

4 , 5
4)

0 1 31
16 (−1, 1

2 , 1
2)→ (−1, 35

16 , 35
16)

(−1, 5
4 , 5

4)→ (−1, 35
16 , 35

16)

0 16
35

51
32 (−1, 35

16 , 35
16)→ (−1, 1, 1)

(−1, 35
16 , 35

16)→ (−1, 1, 1)

−1 0 3
4 (−1, 1, 1)→ (−1

2 , 1, 1
2)

(−1, 1, 1)→ (−1
2 , 1, 1

2)

0 1 1 (−1
2 , 1, 1

2)→ (−1
2 , 3

2 , 3
2)

(−1
2 , 1, 1

2)→ (−1
2 , 3

2 , 3
2)

0 2
3

5
4 (−1

2 , 3
2 , 3

2)→ (−1
2 , 1, 1)

(−1
2 , 3

2 , 3
2)→ (−1

2 , 1, 1)

−1 0 1
4 (−1

2 , 1, 1)→ (0, 1, 3
4)

(−1
2 , 1, 1)→ (0, 1, 3

4)

0 1 5
4 (0, 1, 3

4)→ (0, 7
4 , 7

4)
(0, 1, 3

4)→ (0, 7
4 , 7

4)

0 4
7

11
8 (0, 7

4 , 7
4)→ (0, 1, 1)

(0, 7
4 , 7

4)→ (0, 1, 1)

31

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 24: Training data for not(i1, i2) for Dense-ReLU-Dense under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2 , v)

1 0 −4 (−1, 1, 1)→ (−1, 1, 1)
(1, 1, 1)→ (−9, 1, −9)

0 1 −17
2 (−1, 1, 1)→ (−1, −18, −18)

(−9, 1, −9)→ (−9, −8, −8)

0 −1 −1063
2 (−1, −18, −18)→ (−1, −7488, −7488)

(−9, −8, −8)→ (−9, −7488, −7488)

0 − 1
7488 −7487

2 (−1, −7488, −7488)→ (−1, 1, 1)
(−9, −7488, −7488)→ (−9, 1, 1)

−1
2 0 3

2 (−1, 1, 1)→ (−2, 1, 2)
(−9, 1, 1)→ (−6, 1, −26)

0 1 5
2 (−2, 1, 2)→ (−2, 3, 3)

(−6, 1, −26)→ (−6, −1481, 31)

0 −1 91803
2 (−2, 3, 3)→ (−2, 3, 3)

(−6, −1481, 31)→ (−6, −1450, −1450)

0 − 1
1450

1447
2 (−2, 3, 3)→ (−2, 3, 3)

(−6, −1450, −1450)→ (−6, 3, 3)

0 1
3 2 (−2, 3, 3)→ (−2, 1, 1)

(−6, 3, 3)→ (−6, 1, 1)

−1
2 0 −2 (−2, 1, 1)→ (1, 1, −5)

(−6, 1, 1)→ (−1, 1, −29)

0 1 −9
2 (1, 1, −5)→ (1, −4, −4)

(−1, 1, −29)→ (−1, −1420, 20)

0 −1 56799
2 (1, −4, −4)→ (1, 227320, 227320)

(−1, −1420, 20)→ (−1, −1400, −1400)

0 1
227320 112960 (1, 227320, 227320)→ (1, −1400, −1400)

(−1, −1400, −1400)→ (−1, −1400, −1400)

0 − 1
1400

1399
2 (1, −1400, −1400)→ (1, 1, 1)

(−1, −1400, −1400)→ (−1, 1, 1)

32

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 25: Training data for copy(i1, i2, i3) for Dense-ReLU-Dense under Squared Loss (Part 1 of 2)(
here ρ = 471272583

3125000

)
.

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3 , v)

1 −1 0 7
8 (−1, 0, 1, 1)→ (−1, 0, 1, 1)

(1, 0, 1, 1)→ (3
4 , 1

4 , 1, 3
4)

0 0 1 5
4 (−1, 0, 1, 1)→ (−1, 0, 3

2 , 3
2)

(3
4 , 1

4 , 1, 3
4)→ (3

4 , 1
4 , 7

4 , 7
4)

0 0 1 119
16 (−1, 0, 3

2 , 3
2)→ (−1, 0, 273

16 , 273
16)

(3
4 , 1

4 , 7
4 , 7

4)→ (3
4 , 1

4 , 273
16 , 273

16)

0 0 16
273

289
32 (−1, 0, 273

16 , 273
16)→ (−1, 0, 1, 1)

(3
4 , 1

4 , 273
16 , 273

16)→ (3
4 , 1

4 , 1, 1)

−1 1 0 7
8 (−1, 0, 1, 1)→ (− 3

4 , − 1
4 , 1, 3

4)
(3

4 , 1
4 , 1, 1)→ (3

4 , 1
4 , 1, 1)

0 0 1 5
4 (− 3

4 , − 1
4 , 1, 3

4)→ (− 3
4 , − 1

4 , 7
4 , 7

4)
(3

4 , 1
4 , 1, 1)→ (3

4 , 1
4 , 3

2 , 3
2)

0 0 1 119
16 (− 3

4 , − 1
4 , 7

4 , 7
4)→ (− 3

4 , − 1
4 , 273

16 , 273
16)

(3
4 , 1

4 , 3
2 , 3

2)→ (3
4 , 1

4 , 273
16 , 273

16)

0 0 16
273

289
32 (− 3

4 , − 1
4 , 273

16 , 273
16)→ (− 3

4 , − 1
4 , 1, 1)

(3
4 , 1

4 , 273
16 , 273

16)→ (3
4 , 1

4 , 1, 1)

−1 0 0 7
8 (− 3

4 , − 1
4 , 1, 1)→ (−1, − 1

4 , 1, 19
16)

(3
4 , 1

4 , 1, 1)→ (3
4 , 1

4 , 1, 1)

0 0 1 27
16 (−1, − 1

4 , 1, 19
16)→ (−1, − 1

4 , 35
16 , 35

16)
(3

4 , 1
4 , 1, 1)→ (3

4 , 1
4 , 19

8 , 19
8)

0 0 1 3871
256 (−1, − 1

4 , 35
16 , 35

16)→ (−1, − 1
4 , ρ, ρ)

(3
4 , 1

4 , 19
8 , 19

8)→ (3
4 , 1

4 , ρ, ρ)

0 0 1
ρ

ρ+1
2 (−1, − 1

4 , ρ, ρ)→ (−1, − 1
4 , 1, 1)

(3
4 , 1

4 , ρ, ρ)→ (3
4 , 1

4 , 1, 1)

1 0 0 7
8 (−1, − 1

4 , 1, 1)→ (−1, − 1
4 , 1, 1)

(3
4 , 1

4 , 1, 1)→ (1, 1
4 , 1, 19

16)

0 0 1 27
16 (−1, − 1

4 , 1, 1)→ (−1, − 1
4 , 19

8 , 19
8)

(1, 1
4 , 1, 19

16)→ (1, 1
4 , 35

16 , 35
16)

0 0 1 3871
256 (−1, − 1

4 , 19
8 , 19

8)→ (−1, − 1
4 , ρ, ρ)

(1, 1
4 , 35

16 , 35
16)→ (1, 1

4 , ρ, ρ)

0 0 1
ρ

ρ+1
2 (−1, − 1

4 , ρ, ρ)→ (−1, − 1
4 , 1, 1)

(1, 1
4 , ρ, ρ)→ (1, 1

4 , 1, 1)

0 −1 0 5
8 (−1, − 1

4 , 1, 1)→ (−1, −1, 1, 19
16)

(1, 1
4 , 1, 1)→ (1, 1

4 , 1, 1)

33

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 26: Continuing Table 25 (Part 2 of 2)
(
here ρ = 471272583

3125000

)
.

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3 , v)

0 0 1 27
16 (−1, −1, 1, 19

16)→ (−1, −1, 35
16 , 35

16)
(1, 1

4 , 1, 1)→ (1, 1
4 , 19

8 , 19
8)

0 0 1 3871
256 (−1, −1, 35

16 , 35
16)→ (−1, −1, ρ, ρ)

(1, 1
4 , 19

8 , 19
8)→ (1, 1

4 , ρ, ρ)

0 0 1
ρ

ρ+1
2 (−1, −1, ρ, ρ)→ (−1, −1, 1, 1)

(1, 1
4 , ρ, ρ)→ (1, 1

4 , 1, 1)

0 1 0 5
8 (−1, −1, 1, 1)→ (−1, −1, 1, 1)

(1, 1
4 , 1, 1)→ (1, 1, 1, 19

16)

0 0 1 27
16 (−1, −1, 1, 1)→ (−1, −1, 19

8 , 19
8)

(1, 1, 1, 19
16)→ (1, 1, 35

16 , 35
16)

0 0 1 3871
256 (−1, −1, 19

8 , 19
8)→ (−1, −1, ρ, ρ)

(1, 1, 35
16 , 35

16)→ (1, 1, ρ, ρ)

0 0 1
ρ

ρ+1
2 (−1, −1, ρ, ρ)→ (−1, −1, 1, 1)

(1, 1, ρ, ρ)→ (1, 1, 1, 1)

34

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 27: Training data for destructive_nand(i1, i2, i3, i4) for Dense-ReLU-Dense under
Squared Loss. (Part 1 of 3).

xi1 xi2 xi3 xi4 y Effect on (wi1 , wi2 , wi3 , wi4 , v)

−1 0 0 0 3
2 (−1, −1, 0, 1, 1)→ (−2, −1, 0, 1, 2)

(−1, 1, 0, 1, 1)→ (−2, 1, 0, 1, 2)
(1, −1, 0, 1, 1)→ (1, −1, 0, 1, 1)
(1, 1, 0, 1, 1)→ (1, 1, 0, 1, 1)

0 0 0 1 5
2 (−2, −1, 0, 1, 2)→ (−2, −1, 0, 3, 3)

(−2, 1, 0, 1, 2)→ (−2, 1, 0, 3, 3)
(1, −1, 0, 1, 1)→ (1, −1, 0, 4, 4)
(1, 1, 0, 1, 1)→ (1, 1, 0, 4, 4)

0 0 0 1 73
2 (−2, −1, 0, 3, 3)→ (−2, −1, 0, 168, 168)

(−2, 1, 0, 3, 3)→ (−2, 1, 0, 168, 168)
(1, −1, 0, 4, 4)→ (1, −1, 0, 168, 168)
(1, 1, 0, 4, 4)→ (1, 1, 0, 168, 168)

0 0 0 1
168

169
2 (−2, −1, 0, 168, 168)→ (−2, −1, 0, 1, 1)

(−2, 1, 0, 168, 168)→ (−2, 1, 0, 1, 1)
(1, −1, 0, 168, 168)→ (1, −1, 0, 1, 1)
(1, 1, 0, 168, 168)→ (1, 1, 0, 1, 1)

0 −1 0 0 3
2 (−2, −1, 0, 1, 1)→ (−2, −2, 0, 1, 2)

(−2, 1, 0, 1, 1)→ (−2, 1, 0, 1, 1)
(1, −1, 0, 1, 1)→ (1, −2, 0, 1, 2)
(1, 1, 0, 1, 1)→ (1, 1, 0, 1, 1)

0 0 0 1 5
2 (−2, −2, 0, 1, 2)→ (−2, −2, 0, 3, 3)

(−2, 1, 0, 1, 1)→ (−2, 1, 0, 4, 4)
(1, −2, 0, 1, 2)→ (1, −2, 0, 3, 3)
(1, 1, 0, 1, 1)→ (1, 1, 0, 4, 4)

0 0 0 1 73
2 (−2, −2, 0, 3, 3)→ (−2, −2, 0, 168, 168)

(−2, 1, 0, 4, 4)→ (−2, 1, 0, 168, 168)
(1, −2, 0, 3, 3)→ (1, −2, 0, 168, 168)
(1, 1, 0, 4, 4)→ (1, 1, 0, 168, 168)

0 0 0 1
168

169
2 (−2, −2, 0, 168, 168)→ (−2, −2, 0, 1, 1)

(−2, 1, 0, 168, 168)→ (−2, 1, 0, 1, 1)
(1, −2, 0, 168, 168)→ (1, −2, 0, 1, 1)
(1, 1, 0, 168, 168)→ (1, 1, 0, 1, 1)

1 1 1 0 1
2 (−2, −2, 0, 1, 1)→ (−2, −2, 0, 1, 1)

(−2, 1, 0, 1, 1)→ (−2, 1, 0, 1, 1)
(1, −2, 0, 1, 1)→ (1, −2, 0, 1, 1)
(1, 1, 0, 1, 1)→ (−2, −2, −3, 1, −5)

0 0 0 1 − 9
4 (−2, −2, 0, 1, 1)→ (−2, −2, 0, −10, −10)

(−2, 1, 0, 1, 1)→ (−2, 1, 0, −10, −10)
(1, −2, 0, 1, 1)→ (1, −2, 0, −10, −10)
(−2, −2, −3, 1, −5)→ (−2, −2, −3, −4, −4)

0 0 0 −1 − 311
2 (−2, −2, 0, −10, −10)→ (−2, −2, 0, −1120, −1120)

(−2, 1, 0, −10, −10)→ (−2, 1, 0, −1120, −1120)
(1, −2, 0, −10, −10)→ (1, −2, 0, −1120, −1120)
(−2, −2, −3, −4, −4)→ (−2, −2, −3, −1120, −1120)35

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 28: Continuing Table 27 (Part 2 of 3).

xi1 xi2 xi3 xi4 y Effect on (wi1 , wi2 , wi3 , wi4 , v)

0 0 0 − 1
1120 − 1119

2 (−2, −2, 0, −1120, −1120)→ (−2, −2, 0, 1, 1)
(−2, 1, 0, −1120, −1120)→ (−2, 1, 0, 1, 1)
(1, −2, 0, −1120, −1120)→ (1, −2, 0, 1, 1)
(−2, −2, −3, −1120, −1120)→ (−2, −2, −3, 1, 1)

−1 0 0 0 1
2 (−2, −2, 0, 1, 1)→ (1, −2, 0, 1, −5)

(−2, 1, 0, 1, 1)→ (1, 1, 0, 1, −5)
(1, −2, 0, 1, 1)→ (1, −2, 0, 1, 1)
(−2, −2, −3, 1, 1)→ (1, −2, −3, 1, −5)

0 0 0 1 − 9
2 (1, −2, 0, 1, −5)→ (1, −2, 0, −4, −4)

(1, 1, 0, 1, −5)→ (1, 1, 0, −4, −4)
(1, −2, 0, 1, 1)→ (1, −2, 0, −10, −10)
(1, −2, −3, 1, −5)→ (1, −2, −3, −4, −4)

0 0 0 −1 − 311
2 (1, −2, 0, −4, −4)→ (1, −2, 0, −1120, −1120)

(1, 1, 0, −4, −4)→ (1, 1, 0, −1120, −1120)
(1, −2, 0, −10, −10)→ (1, −2, 0, −1120, −1120)
(1, −2, −3, −4, −4)→ (1, −2, −3, −1120, −1120)

0 0 0 − 1
1120 − 1119

2 (1, −2, 0, −1120, −1120)→ (1, −2, 0, 1, 1)
(1, 1, 0, −1120, −1120)→ (1, 1, 0, 1, 1)
(1, −2, 0, −1120, −1120)→ (1, −2, 0, 1, 1)
(1, −2, −3, −1120, −1120)→ (1, −2, −3, 1, 1)

1 0 0 0 1
2 (1, −2, 0, 1, 1)→ (0, −2, 0, 1, 0)

(1, 1, 0, 1, 1)→ (0, 1, 0, 1, 0)
(1, −2, 0, 1, 1)→ (0, −2, 0, 1, 0)
(1, −2, −3, 1, 1)→ (0, −2, −3, 1, 0)

0 0 0 1 1
2 (0, −2, 0, 1, 0)→ (0, −2, 0, 1, 1)

(0, 1, 0, 1, 0)→ (0, 1, 0, 1, 1)
(0, −2, 0, 1, 0)→ (0, −2, 0, 1, 1)
(0, −2, −3, 1, 0)→ (0, −2, −3, 1, 1)

0 −1 0 0 1
2 (0, −2, 0, 1, 1)→ (0, 1, 0, 1, −5)

(0, 1, 0, 1, 1)→ (0, 1, 0, 1, 1)
(0, −2, 0, 1, 1)→ (0, 1, 0, 1, −5)
(0, −2, −3, 1, 1)→ (0, 1, −3, 1, −5)

0 0 0 1 − 9
2 (0, 1, 0, 1, −5)→ (0, 1, 0, −4, −4)

(0, 1, 0, 1, 1)→ (0, 1, 0, −10, −10)
(0, 1, 0, 1, −5)→ (0, 1, 0, −4, −4)
(0, 1, −3, 1, −5)→ (0, 1, −3, −4, −4)

0 0 0 −1 − 311
2 (0, 1, 0, −4, −4)→ (0, 1, 0, −1120, −1120)

(0, 1, 0, −10, −10)→ (0, 1, 0, −1120, −1120)
(0, 1, 0, −4, −4)→ (0, 1, 0, −1120, −1120)
(0, 1, −3, −4, −4)→ (0, 1, −3, −1120, −1120)

0 0 0 − 1
1120 − 1119

2 (0, 1, 0, −1120, −1120)→ (0, 1, 0, 1, 1)
(0, 1, 0, −1120, −1120)→ (0, 1, 0, 1, 1)
(0, 1, 0, −1120, −1120)→ (0, 1, 0, 1, 1)
(0, 1, −3, −1120, −1120)→ (0, 1, −3, 1, 1)

36

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 29: Continuing Table 27 (Part 3 of 3).

xi1 xi2 xi3 xi4 y Effect on (wi1 , wi2 , wi3 , wi4 , v)

0 1 0 0 1
2 (0, 1, 0, 1, 1)→ (0, 0, 0, 1, 0)

(0, 1, 0, 1, 1)→ (0, 0, 0, 1, 0)
(0, 1, 0, 1, 1)→ (0, 0, 0, 1, 0)
(0, 1, −3, 1, 1)→ (0, 0, −3, 1, 0)

0 0 0 1 1
2 (0, 0, 0, 1, 0)→ (0, 0, 0, 1, 1)

(0, 0, 0, 1, 0)→ (0, 0, 0, 1, 1)
(0, 0, 0, 1, 0)→ (0, 0, 0, 1, 1)
(0, 0, −3, 1, 0)→ (0, 0, −3, 1, 1)

0 0 1 1 −3
2 (0, 0, 0, 1, 1)→ (0, 0, −5, −4, −4)

(0, 0, 0, 1, 1)→ (0, 0, −5, −4, −4)
(0, 0, 0, 1, 1)→ (0, 0, −5, −4, −4)
(0, 0, −3, 1, 1)→ (0, 0, −3, 1, 1)

0 0 0 −1
4 −3

2 (0, 0, −5, −4, −4)→ (0, 0, −5, 1, 1)
(0, 0, −5, −4, −4)→ (0, 0, −5, 1, 1)
(0, 0, −5, −4, −4)→ (0, 0, −5, 1, 1)
(0, 0, −3, 1, 1)→ (0, 0, −3, 1, 1)

0 0 −1 0 2 (0, 0, −5, 1, 1)→ (0, 0, 1, 1, −29)
(0, 0, −5, 1, 1)→ (0, 0, 1, 1, −29)
(0, 0, −5, 1, 1)→ (0, 0, 1, 1, −29)
(0, 0, −3, 1, 1)→ (0, 0, −1, 1, −5)

0 0 0 1 −57
2 (0, 0, 1, 1, −29)→ (0, 0, 1, −28, −28)

(0, 0, 1, 1, −29)→ (0, 0, 1, −28, −28)
(0, 0, 1, 1, −29)→ (0, 0, 1, −28, −28)
(0, 0, −1, 1, −5)→ (0, 0, −1, 236, −52)

0 0 0 1 −24543
2 (0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)

(0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)
(0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)
(0, 0, −1, 236, −52)→ (0, 0, −1, 184, 184)

0 0 0 1
184 78 (0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)

(0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)
(0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)
(0, 0, −1, 184, 184)→ (0, 0, −1, −28, −28)

0 0 0 − 1
28 −27

2 (0, 0, 1, −28, −28)→ (0, 0, 1, 1, 1)
(0, 0, 1, −28, −28)→ (0, 0, 1, 1, 1)
(0, 0, 1, −28, −28)→ (0, 0, 1, 1, 1)
(0, 0, −1, −28, −28)→ (0, 0, −1, 1, 1)

37

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 30: Training data for set_false_if_unset(i1, i2) for Dense-ReLU-Dense under Squared
Loss.

xi1 xi2 y Effect on (wi1 , wi2 , v)

1 1
2 0 (−1, 1, 1)→ (−1, 1, 1)

(0, 1, 1)→ (−1, 1
2 , 1

2)
(1, 1, 1)→ (−2, −1

2 , −7
2)

0 −1 −9
4 (−1, 1, 1)→ (−1, 1, 1)

(−1, 1
2 , 1

2)→ (−1, 1
2 , 1

2)
(−2, −1

2 , −7
2)→ (−2, −4, −4)

0 1 5
4 (−1, 1, 1)→ (−1, 3

2 , 3
2)

(−1, 1
2 , 1

2)→ (−1, 3
2 , 3

2)
(−2, −4, −4)→ (−2, −4, −4)

0 −1 −245
16 (−1, 3

2 , 3
2)→ (−1, 3

2 , 3
2)

(−1, 3
2 , 3

2)→ (−1, 3
2 , 3

2)
(−2, −4, −4)→ (−2, 3

2 , 3
2)

0 2
3

5
4 (−1, 3

2 , 3
2)→ (−1, 1, 1)

(−1, 3
2 , 3

2)→ (−1, 1, 1)
(−2, 3

2 , 3
2)→ (−2, 1, 1)

−1 0 3
4 (−1, 1, 1)→ (−1

2 , 1, 1
2)

(−1, 1, 1)→ (−1
2 , 1, 1

2)
(−2, 1, 1)→ (1

2 , 1, −4)

0 1 1 (−1
2 , 1, 1

2)→ (−1
2 , 3

2 , 3
2)

(−1
2 , 1, 1

2)→ (−1
2 , 3

2 , 3
2)

(1
2 , 1, −4)→ (1

2 , −39, 6)

0 −1 467
2 (−1

2 , 3
2 , 3

2)→ (−1
2 , 3

2 , 3
2)

(−1
2 , 3

2 , 3
2)→ (−1

2 , 3
2 , 3

2)
(1

2 , −39, 6)→ (1
2 , −33, −33)

0 −1 47893
44 (−1

2 , 3
2 , 3

2)→ (−1
2 , 3

2 , 3
2)

(−1
2 , 3

2 , 3
2)→ (−1

2 , 3
2 , 3

2)
(1

2 , −33, −33)→ (1
2 , 3

2 , 3
2)

0 2
3

5
4 (−1

2 , 3
2 , 3

2)→ (−1
2 , 1, 1)

(−1
2 , 3

2 , 3
2)→ (−1

2 , 1, 1)
(1

2 , 3
2 , 3

2)→ (1
2 , 1, 1)

−1 0 3
4 (−1

2 , 1, 1)→ (−1, 1, 5
4)

(−1
2 , 1, 1)→ (−1, 1, 5

4)
(1

2 , 1, 1)→ (1
2 , 1, 1)

0 1 7
4 (−1, 1, 5

4)→ (−1, 9
4 , 9

4)
(−1, 1, 5

4)→ (−1, 9
4 , 9

4)
(1

2 , 1, 1)→ (1
2 , 5

2 , 5
2)

38

ON THE COMPUTATIONAL POWER OF ONLINE GRADIENT DESCENT

Table 31: Continuing Table 30.

xi1 xi2 y Effect on (wi1 , wi2 , v)

0 1 263
16 (−1, 9

4 , 9
4)→ (−1, 855

16 , 855
16)

(−1, 9
4 , 9

4)→ (−1, 855
16 , 855

16)
(1

2 , 5
2 , 5

2)→ (1
2 , 855

16 , 855
16)

0 16
855

871
32 (−1, 855

16 , 855
16)→ (−1, 1, 1)

(−1, 855
16 , 855

16)→ (−1, 1, 1)
(1

2 , 855
16 , 855

16)→ (1
2 , 1, 1)

1 0 3
4 (−1, 1, 1)→ (−1, 1, 1)

(−1, 1, 1)→ (−1, 1, 1)
(1

2 , 1, 1)→ (1, 1, 5
4)

0 1 7
4 (−1, 1, 1)→ (−1, 5

2 , 5
2)

(−1, 1, 1)→ (−1, 5
2 , 5

2)
(1, 1, 5

4)→ (1, 9
4 , 9

4)

0 1 263
16 (−1, 5

2 , 5
2)→ (−1, 855

16 , 855
16)

(−1, 5
2 , 5

2)→ (−1, 855
16 , 855

16)
(1, 9

4 , 9
4)→ (1, 855

16 , 855
16)

0 16
855

871
32 (−1, 855

16 , 855
16)→ (−1, 1, 1)

(−1, 855
16 , 855

16)→ (−1, 1, 1)
(1, 855

16 , 855
16)→ (1, 1, 1)

Table 32: Training data for copy_if_true(i1, i2, i3) for Dense-ReLU-Dense under Squared Loss.

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3 , v)

1 −2 0 3
4 (−1, 0, 1, 1)→ (−1, 0, 1, 1)

(1, 0, 1, 1)→ (1
2 , 1, 1, 1

2)

0 0 1 1 (−1, 0, 1, 1)→ (−1, 0, 1, 1)
(1

2 , 1, 1, 1
2)→ (1

2 , 1, 3
2 , 3

2)

0 0 1 17
4 (−1, 0, 1, 1)→ (−1, 0, 15

2 , 15
2)

(1
2 , 1, 3

2 , 3
2)→ (1

2 , 1, 15
2 , 15

2)

0 0 2
15

17
4 (−1, 0, 15

2 , 15
2)→ (−1, 0, 1, 1)

(1
2 , 1, 15

2 , 15
2)→ (1

2 , 1, 1, 1)

1 0 0 3
4 (−1, 0, 1, 1)→ (−1, 0, 1, 1)

(1
2 , 1, 1, 1)→ (1, 1, 1, 5

4)

0 0 1 7
4 (−1, 0, 1, 1)→ (−1, 0, 5

2 , 5
2)

(1, 1, 1, 5
4)→ (1, 1, 9

4 , 9
4)

0 0 1 263
16 (−1, 0, 5

2 , 5
2)→ (−1, 0, 855

16 , 855
16)

(1, 1, 9
4 , 9

4)→ (1, 1, 855
16 , 855

16)

0 0 16
855

871
32 (−1, 0, 855

16 , 855
16)→ (−1, 0, 1, 1)

(1, 1, 855
16 , 855

16)→ (1, 1, 1, 1)

39

	Introduction
	Related Work

	Preliminaries
	Soft-Margin SVMs
	Complexity Theory Background

	PSPACE-Hardness Reduction
	Simplifying Assumptions
	API for Reduction Gadgets
	Performing the Reduction using the API

	API Implementation
	Implementation of reset(i1)
	Implementation of not(i1)

	Extensions
	Handling a Bias Term
	Handling a Fixed Learning Rate
	Handling a Regularizer

	Proof Extensions for Neural Networks
	Open Problems
	Barrier for Quadratic Models
	API Implementation (Continued)
	Implementation of copy(i1, i2)
	Implementation of destructive_nand(i1, i2, i3)
	Implementation of set_false_if_unset(i1)
	Implementation of copy_if_true(i1, i2)

	Proof Extension for Regularization (Continued)
	Augmented API for Regularization
	Reduction Modifications for Regularization
	Implementation of reset(i1, 1)
	Implementation of copy2(i1, i2, i3, 1)
	Implementation of d_nand(i1, i2, i3, 1, 2)
	Implementation of set_false_if_unset(i1, 1)
	Implementation of copy_if_true(i1, i2, 1)

	Proof Extensions for Additional Models
	Dense-ReLU under Squared Loss
	Dense-ReLU-Dense under Squared Loss

